1
|
Schmitter CV, Pazen M, Uhlmann L, van Kemenade BM, Kircher T, Straube B. Predictive neural processing of self-generated hand and tool actions in patients with schizophrenia spectrum disorders and healthy individuals. Transl Psychiatry 2025; 15:85. [PMID: 40097402 PMCID: PMC11914148 DOI: 10.1038/s41398-025-03306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Schizophrenia spectrum disorders (SSD) have been linked to dysfunctions in the predictive neural suppression of sensory input elicited by one's own actions. Such motor predictions become particularly challenging during tool use and when feedback from multiple sensory modalities is present. In this study, we investigated the neural correlates and potential dysfunctions of action feedback processing in SSD during tool use actions and bimodal sensory feedback presentation. Patients with SSD (NTotal = 42; schizophrenia NF20 = 34; schizoaffective disorder NF25 = 6; other N = 2) and healthy controls (HC, N = 27) performed active or passive hand movements with or without a tool and received unimodal (visual; a video of their hand movement) or bimodal (visual and auditory) feedback with various delays (0, 83, 167, 250, 333, 417 ms). Subjects reported whether they detected a delay. A subgroup (NSSD = 20; NHC = 20) participated in an identical fMRI experiment. Both groups reported fewer delays in active than passive conditions and exhibited neural suppression in all conditions in occipital and temporoparietal regions, cerebellum, and SMA. Group differences emerged in right cuneus, calcarine, and middle occipital gyrus, with reduced active-passive differences in patients during tool use actions and in bimodal trials during actions performed without a tool. These results demonstrate for the first time that, although patients and HC show similarities in neural suppression, higher-level visual processing areas fail to adequately distinguish between self- and externally generated sensory input in patients, particularly in complex action feedback scenarios involving bimodal action feedback and feedback elicited by tool use actions.
Collapse
Affiliation(s)
- Christina V Schmitter
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, Marburg, Germany.
| | - Mareike Pazen
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, Marburg, Germany
| | - Lukas Uhlmann
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, Marburg, Germany
| | - Bianca M van Kemenade
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, Marburg, Germany
- Center for Psychiatry, Justus Liebig University Giessen, Klinikstrasse 36, Giessen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, Marburg, Germany
| |
Collapse
|
2
|
Ji LJ, Hu JY, Zeng YM, Ling Q, Zou J, Chen C, He LQ, Wang XY, Wei H, Chen X, Wang YX, Shao Y, Yu Y. Brain activity in different brain areas of patients with diabetic vitreous hemorrhage according to voxel-based morphometry. Int J Ophthalmol 2025; 18:258-267. [PMID: 39967965 PMCID: PMC11754023 DOI: 10.18240/ijo.2025.02.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/29/2024] [Indexed: 02/20/2025] Open
Abstract
AIM To elucidate the neuropathological mechanisms underlying diabetic vitreous hemorrhage (DVH) and its correlation with clinical characteristics. METHODS Twenty-one individuals with DVH (male/female 12/9; mean age 52.29±11.66y) were selected, alongside 21 appropriately matched controls with diabetes mellitus (DM). Voxel-based morphometry (VBM) techniques were employed to identify aberrant functional regions in the brain. Receiver operating characteristic (ROC) curves were utilized for classification based on the average VBM values of the two groups, and Pearson correlation analysis was conducted to assess the relationship between average VBM values in distinct brain regions and clinical manifestations. RESULTS Relative to the DM controls, DVH patients exhibited reduced VBM values in the right superior temporal pole, the right superior temporal gyrus, the right medial orbital frontal gyrus, and the left superior frontal gyrus. Furthermore, ROC curve analysis of these four brain regions in DVH patients demonstrated a high degree of accuracy, as indicated by the area under the curve. The average VBM value in each of these regions exhibited a negative correlation with both the duration of DVH and the score on the Hospital Anxiety and Depression Scale (HADS). CONCLUSION Pathological alterations in four distinct brain regions are observed in patients with DVH, potentially reflecting neuropathological changes associated with this condition.
Collapse
Affiliation(s)
- Li-Jun Ji
- Department of Ophthalmology, Dahua Hospital, Shanghai 200237, China
| | - Jin-Yu Hu
- Department of Endocrine and Metabolic, the First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Centre for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for metabolic Disease, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yan-Mei Zeng
- Department of Endocrine and Metabolic, the First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Centre for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for metabolic Disease, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qian Ling
- Department of Endocrine and Metabolic, the First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Centre for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for metabolic Disease, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jie Zou
- Department of Endocrine and Metabolic, the First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Centre for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for metabolic Disease, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cheng Chen
- Department of Endocrine and Metabolic, the First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Centre for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for metabolic Disease, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang-Qi He
- Department of Endocrine and Metabolic, the First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Centre for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for metabolic Disease, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Wang
- Department of Endocrine and Metabolic, the First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Centre for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for metabolic Disease, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hong Wei
- Department of Endocrine and Metabolic, the First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Centre for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for metabolic Disease, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xu Chen
- Ophthalmology Centre of Maastricht University, Maastricht 6200MS, Limburg Provincie, the Netherlands
| | - Yi-Xin Wang
- School of optometry and vision science, Cardiff University, Cardiff, CF24 4HQ, Wales, UK
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai 200080, China
| | - Yao Yu
- Department of Endocrine and Metabolic, the First Affiliated Hospital of Nanchang University, Jiangxi Clinical Research Centre for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for metabolic Disease, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
3
|
Zhang L, Wang W, Ruan Y, Li Z, Yanjun, Ji GJ, Tian Y, Wang K. Hyperactivity and altered functional connectivity of the ventral striatum in schizophrenia compared with bipolar disorder: A resting state fMRI study. Psychiatry Res Neuroimaging 2024; 345:111881. [PMID: 39278197 DOI: 10.1016/j.pscychresns.2024.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Schizophrenia patients frequently present with structural and functional abnormalities of the ventral striatum (VS). METHODS we examined basal activation state and functional connectivity (FC) in four subregions of the bilateral ventral striatum: left inferior ventral striatum (VSi_L), left superior ventral striatum(VSs_L), right inferior ventral striatum(VSi_R), and right superior ventral striatum(VSs_R). Resting-state functional magnetic resonance images were obtained from 62 schizophrenia patients (SCH), 57 bipolar disorder (BD) patients, and 26 healthy controls (HCs). RESULTS The schizophrenia group exhibited greater fALFF in bilateral VS subregions compared to BD and HC groups as well as greater FC between the bilateral VSi and multiple brain regions, including the thalamus, putamen, posterior cingulate gyrus (PCC), frontal cortex and caudate. Moreover, the fALFF values of the bilateral ventral striatum were positively correlated with the severity of positive symptoms. We also found the functional connectivity between the bilateral inferior ventral striatum and some brain regions aforementioned were positively correlated with the severity of negative symptoms. CONCLUSION These findings confirm a crucial contribution of ventral striatum dysfunction, especially of the bilateral VSi in schizophrenia. Functionally dissociated regions of the ventral striatum are differentially disturbed in schizophrenia.
Collapse
Affiliation(s)
- Li Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China; Laboratory of Neuromodulation, Anhui Mental Health Center, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China.
| | - Wenli Wang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yuan Ruan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhiyong Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yanjun
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Yanghua Tian
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| |
Collapse
|
4
|
Ren H, Li Z, Li J, Zhou J, He Y, Li C, Wang Q, Chen X, Tang J. Correlation Between Cortical Thickness Abnormalities of the Olfactory Sulcus and Olfactory Identification Disorder and Persistent Auditory Verbal Hallucinations in Chinese Patients With Chronic Schizophrenia. Schizophr Bull 2024; 50:1232-1242. [PMID: 38577952 PMCID: PMC11349016 DOI: 10.1093/schbul/sbae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND HYPOTHESIS Persistent auditory verbal hallucinations (pAVHs) and olfactory identification impairment are common in schizophrenia (SCZ), but the neuroimaging mechanisms underlying both pAVHs and olfactory identification impairment are unclear. This study aimed to investigate whether pAVHs and olfactory identification impairment in SCZ patients are associated with changes in cortical thickness. STUDY DESIGN In this study, cortical thickness was investigated in 78 SCZ patients with pAVHs (pAVH group), 58 SCZ patients without AVHs (non-AVH group), and 83 healthy controls (HC group) using 3T magnetic resonance imaging. The severity of pAVHs was assessed by the Auditory Hallucination Rating Scale. Olfactory identification deficits were assessed using the Odor Stick Identification Test for Japanese (OSIT-J). In addition, the relationship between the severity of pAVHs and olfactory identification disorder and cortical thickness abnormalities was determined. STUDY RESULTS Significant reductions in cortical thickness were observed in the right medial orbital sulcus (olfactory sulcus) and right orbital sulcus (H-shaped sulcus) in the pAVH group compared to both the non-AVH and HC groups (P < .003, Bonferroni correction). Furthermore, the severity of pAVHs was found to be negatively correlated with the reduction in cortical thickness in the olfactory sulcus and H-shaped sulcus. Additionally, a decrease in cortical thickness in the olfactory sulcus showed a positive correlation with the OSIT-J scores (P < .05, false discovery rate correction). CONCLUSIONS Cortical thickness abnormalities in the olfactory sulcus may be a common neuroimaging mechanism for pAVHs and olfactory identification deficits in SCZ patients.
Collapse
Affiliation(s)
- Honghong Ren
- Department of Clinical Psychology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Clinical Psychology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jun Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Qianjin Wang
- Department of Clinical Psychology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Clinical Psychology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Hunan Provincial Brain Hospital (The second people's Hospital of Hunan Province), Changsha, China
- Zigong Mental Health Center, Zigong, China
| |
Collapse
|
5
|
Albaugh MD, Owens MM, Juliano A, Ottino-Gonzalez J, Cupertino R, Cao Z, Mackey S, Lepage C, Rioux P, Evans A, Banaschewski T, Bokde ALW, Conrod P, Desrivières S, Flor H, Grigis A, Gowland P, Heinz A, Ittermann B, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Potter A, Garavan H. Differential associations of adolescent versus young adult cannabis initiation with longitudinal brain change and behavior. Mol Psychiatry 2023; 28:5173-5182. [PMID: 37369720 DOI: 10.1038/s41380-023-02148-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Leveraging ~10 years of prospective longitudinal data on 704 participants, we examined the effects of adolescent versus young adult cannabis initiation on MRI-assessed cortical thickness development and behavior. Data were obtained from the IMAGEN study conducted across eight European sites. We identified IMAGEN participants who reported being cannabis-naïve at baseline and had data available at baseline, 5-year, and 9-year follow-up visits. Cannabis use was assessed with the European School Survey Project on Alcohol and Drugs. T1-weighted MR images were processed through the CIVET pipeline. Cannabis initiation occurring during adolescence (14-19 years) and young adulthood (19-22 years) was associated with differing patterns of longitudinal cortical thickness change. Associations between adolescent cannabis initiation and cortical thickness change were observed primarily in dorso- and ventrolateral portions of the prefrontal cortex. In contrast, cannabis initiation occurring between 19 and 22 years of age was associated with thickness change in temporal and cortical midline areas. Follow-up analysis revealed that longitudinal brain change related to adolescent initiation persisted into young adulthood and partially mediated the association between adolescent cannabis use and past-month cocaine, ecstasy, and cannabis use at age 22. Extent of cannabis initiation during young adulthood (from 19 to 22 years) had an indirect effect on psychotic symptoms at age 22 through thickness change in temporal areas. Results suggest that developmental timing of cannabis exposure may have a marked effect on neuroanatomical correlates of cannabis use as well as associated behavioral sequelae. Critically, this work provides a foundation for neurodevelopmentally informed models of cannabis exposure in humans.
Collapse
Affiliation(s)
- Matthew D Albaugh
- Department of Psychiatry, University of Vermont, Burlington, VT, USA.
| | - Max M Owens
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Anthony Juliano
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | | - Renata Cupertino
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Zhipeng Cao
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Claude Lepage
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Pierre Rioux
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Alan Evans
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Patricia Conrod
- Department of Psychiatry, University of Montreal, Montreal, QC, Canada
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; and AP-HP.Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental trajectories & psychiatry""; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette; and Etablissement Public de Santé (EPS) Barthélemy Durand, 91700, Sainte-Geneviève-des-Bois, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitaliere Universitaire Sainte-Justine, University of Montreal, Montreal, QC, H3T 1C5, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
- PONS Research Group, Dept of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin and Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P. R. China
| | - Alexandra Potter
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| |
Collapse
|
6
|
Sato Y, Nishimaru H, Matsumoto J, Setogawa T, Nishijo H. Electroencephalographic Effective Connectivity Analysis of the Neural Networks during Gesture and Speech Production Planning in Young Adults. Brain Sci 2023; 13:brainsci13010100. [PMID: 36672081 PMCID: PMC9856316 DOI: 10.3390/brainsci13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Gestures and speech, as linked communicative expressions, form an integrated system. Previous functional magnetic resonance imaging studies have suggested that neural networks for gesture and spoken word production share similar brain regions consisting of fronto-temporo-parietal brain regions. However, information flow within the neural network may dynamically change during the planning of two communicative expressions and also differ between them. To investigate dynamic information flow in the neural network during the planning of gesture and spoken word generation in this study, participants were presented with spatial images and were required to plan the generation of gestures or spoken words to represent the same spatial situations. The evoked potentials in response to spatial images were recorded to analyze the effective connectivity within the neural network. An independent component analysis of the evoked potentials indicated 12 clusters of independent components, the dipoles of which were located in the bilateral fronto-temporo-parietal brain regions and on the medial wall of the frontal and parietal lobes. Comparison of effective connectivity indicated that information flow from the right middle cingulate gyrus (MCG) to the left supplementary motor area (SMA) and from the left SMA to the left precentral area increased during gesture planning compared with that of word planning. Furthermore, information flow from the right MCG to the left superior frontal gyrus also increased during gesture planning compared with that of word planning. These results suggest that information flow to the brain regions for hand praxis is more strongly activated during gesture planning than during word planning.
Collapse
Affiliation(s)
- Yohei Sato
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Nishimaru
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Jumpei Matsumoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Tsuyoshi Setogawa
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
- Correspondence:
| |
Collapse
|
7
|
Li Q, Liu S, Cao X, Li Z, Fan YS, Wang Y, Wang J, Xu Y. Disassociated and concurrent structural and functional abnormalities in the drug-naïve first-episode early onset schizophrenia. Brain Imaging Behav 2022; 16:1627-1635. [PMID: 35179706 PMCID: PMC9279212 DOI: 10.1007/s11682-021-00608-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Schizophrenia which is an abnormally developmental disease has been widely reported to show abnormal brain structure and function. Enhanced functional integration is a predominant neural marker for brain mature. Abnormal development of structure and functional integration may be a biomarker for early diagnosis of schizophrenia. Fifty-five patients with early onset schizophrenia (EOS) and 79 healthy controls were enrolled in this study. Voxel-based morphometry (VBM) and functional connectivity density (FCD) were performed to explore gray matter volume (GMV) lesion, abnormal functional integration, and concurrent structural and functional abnormalities in the brain. Furthermore, the relationships between abnormalities structural and function and clinical characteristics were evaluated in EOS. Compared with healthy controls, EOS showed significantly decreased GMV in the bilateral OFC, frontal, temporal, occipital, parietal and limbic system. EOS also showed decreased FCD in precuneus and increased FCD in cerebellum. Moreover, we found concurrent changes of structure and function in left lateral orbitofrontal cortex (lOFC). Finally, correlation analyses did not find significant correlation between abnormal neural measurements and clinical characteristic in EOS. The results reveal disassociated and bound structural and functional abnormalities patterns in EOS suggesting structural and functional measurements play different roles in delineating the abnormal patterns of EOS. The concurrent structural and functional changes in lOFC may be a biomarker for early diagnosis of schizophrenia. Our findings will deepen our understanding of the pathophysiological mechanisms in EOS.
Collapse
Affiliation(s)
- Qiang Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder/Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang Nan Road, Taiyuan, China
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder/Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang Nan Road, Taiyuan, China
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaohua Cao
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder/Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang Nan Road, Taiyuan, China
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Zexuan Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder/Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang Nan Road, Taiyuan, China
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yun-Shuang Fan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Yanfang Wang
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder/Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang Nan Road, Taiyuan, China
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jiaojian Wang
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder/Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang Nan Road, Taiyuan, China.
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Yuan L, Ma X, Li D, Li Z, Ouyang L, Fan L, Yang Z, Zhang Z, Li C, He Y, Chen X. Abnormal Brain Network Interaction Associated With Positive Symptoms in Drug-Naive Patients With First-Episode Schizophrenia. Front Psychiatry 2022; 13:870709. [PMID: 35656348 PMCID: PMC9152123 DOI: 10.3389/fpsyt.2022.870709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Positive symptoms are marked features of schizophrenia, and emerging evidence has suggested that abnormalities of the brain network underlying these symptoms may play a crucial role in the pathophysiology of the disease. We constructed two brain functional networks based on the positive and negative correlations between positive symptom scores and brain connectivity in drug-naive patients with first-episode schizophrenia (FES, n = 45) by using a machine-learning approach (connectome-based predictive modeling, CPM). The accuracy of the model was r = 0.47 (p = 0.002). The positively and negatively associated network strengths were then compared among FES subjects, individuals at genetic high risk (GHR, n = 41) for schizophrenia, and healthy controls (HCs, n = 48). The results indicated that the positively associated network contained more cross-subnetwork connections (96.02% of 176 edges), with a focus on the default-mode network (DMN)-salience network (SN) and the DMN-frontoparietal task control (FPT) network. The negatively associated network had fewer cross-subnetwork connections (71.79% of 117 edges) and focused on the sensory/somatomotor hand (SMH)-Cingulo opercular task control (COTC) network, the DMN, and the visual network with significantly decreased connectivity in the COTC-SMH network in FES (FES < GHR, p = 0.01; FES < HC, p = 0.01). Additionally, the connectivity strengths of the right supplementary motor area (SMA) (p < 0.001) and the right precentral gyrus (p < 0.0001) were reduced in FES. To the best of our knowledge, this is the first study to generate two brain networks associated with positive symptoms by utilizing CPM in FES. Abnormal segregation, interactions of brain subnetworks, and impaired SMA might lead to salience attribution abnormalities and, thus, as a result, induce positive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - David Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Zihao Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Zhenmei Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| |
Collapse
|
9
|
Zhang L, Zhang X, Fang X, Zhou C, Wen L, Pan X, Zhang F, Chen J. Eye movement characteristics in male patients with deficit and non-deficit schizophrenia and their relationships with psychiatric symptoms and cognitive function. BMC Neurosci 2021; 22:70. [PMID: 34819034 PMCID: PMC8613938 DOI: 10.1186/s12868-021-00673-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cognitive impairment pattern of deficit schizophrenia (DS) is centered on an impaired attention function. Previous studies have suggested that the exploratory eye movement (EEM) tests reflect attention deficits in patients with schizophrenia. However, no study has investigated the characteristics of eye movement in DS in the Chinese Han population. This study aimed to investigate the pattern of eye movement characteristics in DS patients and to examine whether eye movement characteristic is associated with serious negative symptoms and cognitive decline in this schizophrenia subtype. METHODS A total of 86 male patients [37 DS and 49 non-deficit schizophrenia (NDS)] and 80 healthy controls (HC) participated in this study. Clinical symptoms were assessed using the Scale for the Assessment of Positive Symptoms (SAPS) and Scale for the Assessment of Negative Symptoms (SANS). Cognitive function was assessed using the Mattis Dementia Rating Scale (MDRS-2). Eye movement data of subjects were collected using an eye movement tracking analyzer. RESULTS There were significant differences in the overall eye movement data and cognitive test scores among the three groups (all P < 0.001). Both DS and NDS schizophrenia subgroups showed more severe eye movement and cognitive impairment compared with the control group. The number of eye fixations (NEF), total of eye scanning length (TESL), and cognitive function in DS patients were significantly lower than those in NDS patients. The discriminant analysis (D score) was higher than that of the control group (P < 0.001). In the DS group, the inattention factor of SANS was negatively correlated with the attention factor (r = - 0.545, P = 0.001) and structure factor of cognitive (r = - 0.389, P = 0.023), the affective flattening factor of SANS was negatively correlated with TESL (r = - 0.353, P = 0.041) and initiation/retention factor of cognitive (r = - 0.376,P = 0.028). TESL was found to positively correlate with the MDRS-2 total score (r = 0.427, P = 0.012), attention factor (r = 0.354, P = 0.040), and memory factor (r = 0.349, P = 0.043) in the DS group, whereas the mean of eye scanning length (MESL) positively correlated with cognitive impairments in the NDS group. The negative symptoms showed no significant correlation with cognition in the NDS group. CONCLUSIONS Total of eye scanning length may be a characteristic eye movement symptom in DS patients, which is associated with serious negative symptoms and cognitive impairment in this schizophrenia subtype.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Geriatric Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Department of Psychiatry, The Second People's Hospital of Jiangning District, No. 50 ChenLing Road, Nanjing, 210003, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lu Wen
- Department of Psychiatry, The Second People's Hospital of Jiangning District, No. 50 ChenLing Road, Nanjing, 210003, Jiangsu, China
| | - Xinming Pan
- Department of Psychiatry, The Second People's Hospital of Jiangning District, No. 50 ChenLing Road, Nanjing, 210003, Jiangsu, China
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| |
Collapse
|
10
|
Yu XM, Qiu LL, Huang HX, Zuo X, Zhou ZH, Wang S, Liu HS, Tian L. Comparison of resting-state spontaneous brain activity between treatment-naive schizophrenia and obsessive-compulsive disorder. BMC Psychiatry 2021; 21:544. [PMID: 34732149 PMCID: PMC8565005 DOI: 10.1186/s12888-021-03554-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Schizophrenia (SZ) and obsessive-compulsive disorder (OCD) share many demographic characteristics and severity of clinical symptoms, genetic risk factors, pathophysiological underpinnings, and brain structure and function. However, the differences in the spontaneous brain activity patterns between the two diseases remain unclear. Here this study aimed to compare the features of intrinsic brain activity in treatment-naive participants with SZ and OCD and to explore the relationship between spontaneous brain activity and the severity of symptoms. METHODS In this study, 22 treatment-naive participants with SZ, 27 treatment-naive participants with OCD, and sixty healthy controls (HC) underwent a resting-state functional magnetic resonance imaging (fMRI) scan. The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo) and degree of centrality (DC) were performed to examine the intrinsic brain activity of participants. Additionally, the relationships among spontaneous brain activity, the severity of symptoms, and the duration of illness were explored in SZ and OCD groups. RESULTS Compared with SZ group and HC group, participants with OCD had significantly higher ALFF in the right angular gyrus and the left middle frontal gyrus/precentral gyrus and significantly lower ALFF in the left superior temporal gyrus/insula/rolandic operculum and the left postcentral gyrus, while there was no significant difference in ALFF between SZ group and HC group. Compared with HC group, lower ALFF in the right supramarginal gyrus/inferior parietal lobule and lower DC in the right lingual gyrus/calcarine fissure and surrounding cortex of the two patient groups, higher ReHo in OCD group and lower ReHo in SZ group in the right angular gyrus/middle occipital gyrus brain region were documented in the present study. DC in SZ group was significantly higher than that in HC group in the right inferior parietal lobule/angular gyrus, while there were no significant DC differences between OCD group and HC group. In addition, ALFF in the left postcentral gyrus were positively correlated with positive subscale score (r = 0.588, P = 0.013) and general psychopathology subscale score (r = 0.488, P = 0.047) respectively on the Positive and Negative Syndrome Scale (PANSS) in SZ group. ALFF in the left superior temporal gyrus/insula/rolandic operculum of participants with OCD were positively correlated with compulsion subscale score (r = 0.463, P = 0.030) on the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). The longer the illness duration in SZ group, the smaller the ALFF of the left superior temporal gyrus/insula/rolandic operculum (Rho = 0.-492, P = 0.020). The longer the illness duration in OCD group, the higher the ALFF of the right supramarginal gyrus/inferior parietal lobule (Rho = 0.392, P = 0.043) and the left postcentral gyrus (Rho = 0.385, P = 0.048), and the lower the DC of the right inferior parietal lobule/angular gyrus (Rho = - 0.518, P = 0.006). CONCLUSION SZ and OCD show some similarities in spontaneous brain activity in parietal and occipital lobes, but exhibit different patterns of spontaneous brain activity in frontal, temporal, parietal, occipital, and insula brain regions, which might imply different underlying neurobiological mechanisms in the two diseases. Compared with OCD, SZ implicates more significant abnormalities in the functional connections among brain regions.
Collapse
Affiliation(s)
- Xiao-Man Yu
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu 214151 People’s Republic of China
| | - Lin-Lin Qiu
- grid.186775.a0000 0000 9490 772XSchool of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui 230032 People’s Republic of China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders & Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui 230032 People’s Republic of China
| | - Hai-Xia Huang
- Department of Medical Imaging, Huadong Sanatorium, Wuxi, Jiangsu 214065 People’s Republic of China
| | - Xiang Zuo
- Department of Medical Imaging, Huadong Sanatorium, Wuxi, Jiangsu 214065 People’s Republic of China
| | - Zhen-He Zhou
- Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu, 214151, People's Republic of China.
| | - Shuai Wang
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu 214151 People’s Republic of China
| | - Hai-Sheng Liu
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu 214151 People’s Republic of China
| | - Lin Tian
- Department of Psychiatry, the Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu, 214151, People's Republic of China.
| |
Collapse
|
11
|
Abnormal functional connectivity of the salience network in insomnia. Brain Imaging Behav 2021; 16:930-938. [PMID: 34686967 DOI: 10.1007/s11682-021-00567-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
The salience network plays an important role in detecting stimuli related to behavior and integrating neural processes. The aim of this study was to investigate changes in functional connectivity of the salience network in insomnia patients. Independent component analysis combined with a dual regression approach was used to examine functional connectivity differences in the salience network between patients with insomnia (n = 33) and healthy controls (n = 33). Pearson correlation analysis was used to analyze the relationship between differences in functional connectivity and the clinical characteristics of insomnia patients. Compared to healthy controls, insomnia patients showed increased functional connectivity in the dorsal anterior cingulate cortex within the salience network, as well as greater connectivity between the salience network and other brain regions including the dorsolateral prefrontal cortex, superior frontal gyrus, sensorimotor area and brain stem. The correlation analysis showed that increased functional connectivity between the salience network and left dorsolateral prefrontal cortex was positively correlated with Pittsburgh Sleep Quality Index score. Increased functional connectivity between salience network and several brain regions may be related to hyperarousal in insomnia patients. The connectivity between salience network and dorsolateral prefrontal cortex may potentially be used as a neuroimaging biomarker of sleep quality.
Collapse
|
12
|
Altered brain activity in the bilateral frontal cortices and neural correlation with cognitive impairment in schizophrenia. Brain Imaging Behav 2021; 16:415-423. [PMID: 34449034 DOI: 10.1007/s11682-021-00516-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Cognitive impairments are core aspects of schizophrenia and are highly related to poor outcomes. However, the effect of therapy on cognitive impairments remains unsatisfactory as its biological mechanisms are not fully understood. The purpose of this study was to investigate the disrupted intrinsic neural activity of the frontal areas and to further examine the functional connectivity of frontal areas related to cognitive impairments in schizophrenia. We collected brain imaging data using a 3T Siemens Prisma MRI system in 32 patients with schizophrenia and 34 age- and sex-matched healthy controls. The mean fractional amplitude of low-frequency fluctuation (mfALFF) in the frontal regions was calculated and analyzed to evaluate regional neural activity alterations in schizophrenia. Seed regions were generated from clusters showing significant changes in mfALFF in schizophrenia, and its resting-state functional connectivity (rs-FC) with other brain regions were estimated to detect possible aberrant rs-FC indicating cognitive impairments in schizophrenia. We found that mfALFF in the bilateral frontal cortices was increased in schizophrenia. mfALFF-based rs-FC revealed that decreased rs-FC between left middle frontal gyrus (MFG) and left medial superior frontal gyrus (MFSG) was associated with poor delayed memory (r = 0.566, Bonferroni-corrected p = 0.012). These findings demonstrate increased neural activity in the frontal cortices in schizophrenia. FC analysis revealed a diminished rs-FC pattern between the left MFG and left MSFG that was associated with cognitive impairments. These findings have provided deeper insight into the alterations in brain function related to specific domains of cognitive impairment and may provide evidence for precise interventions for cognitive deficits in schizophrenia.
Collapse
|
13
|
Zhao G, Lau WKW, Wang C, Yan H, Zhang C, Lin K, Qiu S, Huang R, Zhang R. A Comparative Multimodal Meta-analysis of Anisotropy and Volume Abnormalities in White Matter in People Suffering From Bipolar Disorder or Schizophrenia. Schizophr Bull 2021; 48:69-79. [PMID: 34374427 PMCID: PMC8781378 DOI: 10.1093/schbul/sbab093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) share some similarities in terms of genetic-risk genes and abnormalities of gray-matter structure in the brain, but white matter (WM) abnormalities have not been studied in depth. We undertook a comparative multimodal meta-analysis to identify common and disorder-specific abnormalities in WM structure between SZ and BD. Anisotropic effect size-signed differential mapping software was used to conduct a comparative meta-analysis of 68 diffusion tensor imaging (DTI) and 34 voxel-based morphometry (VBM) studies comparing fractional anisotropy (FA) and white matter volume (WMV), respectively, between patients with SZ (DTI: N = 1543; VBM: N = 1068) and BD (DTI: N = 983; VBM: N = 518) and healthy controls (HCs). The bilateral corpus callosum (extending to the anterior and superior corona radiata) showed shared decreased WMV and FA in SZ and BD. Compared with BD patients, SZ patients showed remarkable disorder-specific WM abnormalities: decreased FA and increased WMV in the left cingulum, and increased FA plus decreased WMV in the right anterior limb of the internal capsule. SZ patients showed more extensive alterations in WM than BD cases, which may be the pathophysiological basis for the clinical continuity of both disorders. The disorder-specific regions in the left cingulum and right anterior limb of the internal capsule provided novel insights into both disorders. Our study adds value to further understanding of the pathophysiology, classification, and differential diagnosis of SZ and BD.
Collapse
Affiliation(s)
- Guorui Zhao
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Way K W Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, China
| | - Chanyu Wang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haifeng Yan
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chichen Zhang
- School of Management, Southern Medical University, Guangzhou, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou Chinese traditional Medical University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ruibin Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China,To whom correspondence should be addressed; Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, tel/fax:020-62789234, e-mail:
| |
Collapse
|
14
|
Athanasopoulos F, Saprikis OV, Margeli M, Klein C, Smyrnis N. Towards Clinically Relevant Oculomotor Biomarkers in Early Schizophrenia. Front Behav Neurosci 2021; 15:688683. [PMID: 34177483 PMCID: PMC8222521 DOI: 10.3389/fnbeh.2021.688683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
In recent years, psychiatric research has focused on the evaluation and implementation of biomarkers in the clinical praxis. Oculomotor function deviances are among the most consistent and replicable cognitive deficits in schizophrenia and have been suggested as viable candidates for biomarkers. In this narrative review, we focus on oculomotor function in first-episode psychosis, recent onset schizophrenia as well as individuals at high risk for developing psychosis. We critically discuss the evidence for the possible utilization of oculomotor function measures as diagnostic, susceptibility, predictive, monitoring, and prognostic biomarkers for these conditions. Based on the current state of research we conclude that there are not sufficient data to unequivocally support the use of oculomotor function measures as biomarkers in schizophrenia.
Collapse
Affiliation(s)
- Fotios Athanasopoulos
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, University General Hospital "ATTIKON", Athens, Greece.,Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| | - Orionas-Vasilis Saprikis
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, University General Hospital "ATTIKON", Athens, Greece.,Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| | - Myrto Margeli
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, University General Hospital "ATTIKON", Athens, Greece.,Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| | - Christoph Klein
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, University General Hospital "ATTIKON", Athens, Greece.,Department of Child and Adolescent Psychiatry, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nikolaos Smyrnis
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, University General Hospital "ATTIKON", Athens, Greece.,Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| |
Collapse
|
15
|
Wolf A, Ueda K, Hirano Y. Recent updates of eye movement abnormalities in patients with schizophrenia: A scoping review. Psychiatry Clin Neurosci 2021; 75:82-100. [PMID: 33314465 PMCID: PMC7986125 DOI: 10.1111/pcn.13188] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
AIM Although eye-tracking technology expands beyond capturing eye data just for the sole purpose of ensuring participants maintain their gaze at the presented fixation cross, gaze technology remains of less importance in clinical research. Recently, impairments in visual information encoding processes indexed by novel gaze metrics have been frequently reported in patients with schizophrenia. This work undertakes a scoping review of research on saccadic dysfunctions and exploratory eye movement deficits among patients with schizophrenia. It gathers promising pieces of evidence of eye movement abnormalities in attention-demanding tasks on the schizophrenia spectrum that have mounted in recent years and their outcomes as potential biological markers. METHODS The protocol was drafted based on PRISMA for scoping review guidelines. Electronic databases were systematically searched to identify articles published between 2010 and 2020 that examined visual processing in patients with schizophrenia and reported eye movement characteristics as potential biomarkers for this mental illness. RESULTS The use of modern eye-tracking instrumentation has been reported by numerous neuroscientific studies to successfully and non-invasively improve the detection of visual information processing impairments among the screened population at risk of and identified with schizophrenia. CONCLUSIONS Eye-tracking technology has the potential to contribute to the process of early intervention and more apparent separation of the diagnostic entities, being put together by the syndrome-based approach to the diagnosis of schizophrenia. However, context-processing paradigms should be conducted and reported in equally accessible publications to build comprehensive models.
Collapse
Affiliation(s)
- Alexandra Wolf
- International Research Fellow of Japan Society for the Promotion of ScienceFukuokaJapan
- Department of Human Science, Research Center for Applied Perceptual ScienceKyushu UniversityFukuokaJapan
| | - Kazuo Ueda
- Department of Human Science, Research Center for Applied Perceptual ScienceKyushu UniversityFukuokaJapan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
16
|
Ma M, Zhang Y, Zhang X, Yan H, Zhang D, Yue W. Common and Distinct Alterations of Cognitive Function and Brain Structure in Schizophrenia and Major Depressive Disorder: A Pilot Study. Front Psychiatry 2021; 12:705998. [PMID: 34354618 PMCID: PMC8329352 DOI: 10.3389/fpsyt.2021.705998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: Numerous studies indicate that schizophrenia (SCZ) and major depressive disorder (MDD) share pathophysiological characteristics. Investigating the neurobiological features of psychiatric-affective disorders may facilitate the diagnosis of psychiatric disorders. Hence, we aimed to explore whether patients with SCZ and patients with MDD had the similar or distinct cognitive impairments and GMV alterations to further understand their underlying pathophysiological mechanisms. Methods: We recruited a total of 52 MDD patients, 64 SCZ patients, and 65 healthy controls (HCs). The Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery was used to assess cognitive functions. In addition, voxel-based morphometry (VBM) analysis was used to evaluate the gray matter volume (GMV) by using MRI scanning. One-way ANOVA and post-hoc tests were used to find the differences among the MDD, SCZ, and HCs. Finally, we explored the correlation between structural alterations and cognitive functions. Results: Compared with that of HCs, processing speed was impaired in both patients with SCZ and patients with MDD (F = 49.505, p < 0.001). SCZ patients displayed impaired cognitive performance in all dimensions of cognitive functions compared with HCs (p < 0.001, except social cognition, p = 0.043, Bonferroni corrected). Whole-brain VBM analysis showed that both SCZ and MDD groups had reductions of GMV in the medial superior frontal cortex (cluster-level FWE p < 0.05). Patients with SCZ exhibited declining GMV in the anterior cingulate cortex and right middle frontal cortex (MFC) compared with HCs and MDD patients (cluster-level FWE p < 0.05). The mean values of GMV in the right MFC had a positive correlation with the attention/vigilance function in patients with MDD (p = 0.014, partial. r = 0.349, without Bonferroni correction). Conclusions: In total, our study found that MDD and SCZ groups had common cognitive impairments and brain structural alterations, but the SCZ group exhibited more severe impairment than the MDD group in both fields. The above findings may provide a potential support for recognizing the convergent and divergent brain neural pathophysiological mechanisms between MDD and SCZ.
Collapse
Affiliation(s)
- Mengying Ma
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Yuyanan Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Xiao Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Hao Yan
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
17
|
Morita K, Miura K, Kasai K, Hashimoto R. Eye movement characteristics in schizophrenia: A recent update with clinical implications. Neuropsychopharmacol Rep 2019; 40:2-9. [PMID: 31774633 PMCID: PMC7292223 DOI: 10.1002/npr2.12087] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Eye movements are indispensable for the collection of visual information in everyday life. Many findings regarding the neural basis of eye movements have been accumulated from neurophysiological and psychophysical studies. In the field of psychiatry, studies on eye movement characteristics in mental illnesses have been conducted since the early 1900s. Participants with schizophrenia are known to have characteristic eye movements during smooth pursuit, saccade control, and visual search. Recently, studies evaluating eye movement characteristics as biomarkers for schizophrenia have attracted considerable attention. In this article, we review the neurophysiological basis of eye movement control and eye movement characteristics in schizophrenia. Furthermore, we discuss the prospects for eye movements as biomarkers for mental illnesses.
Collapse
Affiliation(s)
- Kentaro Morita
- Department of Rehabilitation, University of Tokyo Hospital, Tokyo, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Osaka University, Osaka, Japan
| |
Collapse
|
18
|
Zhu Q, Li H, Huang J, Xu X, Guan D, Zhang D. Hybrid Functional Brain Network With First-Order and Second-Order Information for Computer-Aided Diagnosis of Schizophrenia. Front Neurosci 2019; 13:603. [PMID: 31316330 PMCID: PMC6587891 DOI: 10.3389/fnins.2019.00603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/27/2019] [Indexed: 01/17/2023] Open
Abstract
Brain functional connectivity network (BFCN) analysis has been widely used in the diagnosis of mental disorders, such as schizophrenia. In BFCN methods, brain network construction is one of the core tasks due to its great influence on the diagnosis result. Most of the existing BFCN construction methods only consider the first-order relationship existing in each pair of brain regions and ignore the useful high-order information, including multi-region correlation in the whole brain. Some early schizophrenia patients have subtle changes in brain function networks, which cannot be detected in conventional BFCN construction methods. It is well-known that the high-order method is usually more sensitive to the subtle changes in signal than the low-order method. To exploit high-order information among brain regions, we define the triplet correlation among three brain regions, and derive the second-order brain network based on the connectivity difference and ordinal information in each triplet. For making full use of the complementary information in different brain networks, we proposed a hybrid approach to fuse the first- and second-order brain networks. The proposed method is applied to identify the biomarkers of schizophrenia. The experimental results on six schizophrenia datasets (totally including 439 patients and 426 controls) show that the proposed method outperforms the existing brain network methods in the diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Qi Zhu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.,Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China
| | - Huijie Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jiashuang Huang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Psychiatry, Medical School, Nanjing Brain Hospital, Nanjing University, Nanjing, China
| | - Donghai Guan
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
19
|
Identifying Brain Abnormalities with Schizophrenia Based on a Hybrid Feature Selection Technology. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many medical imaging data, especially the magnetic resonance imaging (MRI) data, usually have a small sample size, but a large number of features. How to reduce effectively the data dimension and locate accurately the biomarkers from such kinds of data are quite crucial for diagnosis and further precision medicine. In this paper, we propose a hybrid feature selection method based on machine learning and traditional statistical approaches and explore the brain abnormalities of schizophrenia by using the functional and structural MRI data. The results show that the abnormal brain regions are mainly distributed in the supramarginal gyrus, cingulate gyrus, frontal gyrus, precuneus and caudate, and the abnormal functional connections are related to the caudate nucleus, insula and rolandic operculum. In addition, some complex network analyses based on graph theory are utilized on the functional connection data, and the results demonstrate that the located abnormal functional connections in brain can distinguish schizophrenia patients from healthy controls. The identified abnormalities in brain with schizophrenia by the proposed hybrid feature selection method show that there do exist some abnormal brain regions and abnormal disruption of the network segregation and network integration for schizophrenia, and these changes may lead to inaccurate and inefficient information processing and synthesis in the brain, which provide further evidence for the cognitive dysmetria of schizophrenia.
Collapse
|
20
|
Ding Y, Ou Y, Su Q, Pan P, Shan X, Chen J, Liu F, Zhang Z, Zhao J, Guo W. Enhanced Global-Brain Functional Connectivity in the Left Superior Frontal Gyrus as a Possible Endophenotype for Schizophrenia. Front Neurosci 2019; 13:145. [PMID: 30863277 PMCID: PMC6399149 DOI: 10.3389/fnins.2019.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
The notion of dysconnectivity in schizophrenia has been put forward for many years and results in substantial attempts to explore altered functional connectivity (FC) within different networks with inconsistent results. Clinical, demographical, and methodological heterogeneity may contribute to the inconsistency. Forty-four patients with first-episode, drug-naive schizophrenia, 42 unaffected siblings of schizophrenia patients and 44 healthy controls took part in this study. Global-brain FC (GFC) was employed to analyze the imaging data. Compared with healthy controls, patients with schizophrenia and unaffected siblings shared enhanced GFC in the left superior frontal gyrus (SFG). In addition, patients had increased GFC mainly in the thalamo-cortical network, including the bilateral thalamus, bilateral posterior cingulate cortex (PCC)/precuneus, left superior medial prefrontal cortex (MPFC), right angular gyrus, and right SFG/middle frontal gyrus and decreased GFC in the left ITG/cerebellum Crus I. No other altered GFC values were observed in the siblings group relative to the control group. Further ROC analysis showed that increased GFC in the left SFG could separate the patients or the siblings from the controls with acceptable sensitivities. Our findings suggest that increased GFC in the left SFG may serve as a potential endophenotype for schizophrenia.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qinji Su
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Pan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhikun Zhang
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|