1
|
Tsuruta K, Sato Y, Nango H, Sakata Y, Ishikawa H, Tsuboi M, Miyagishi H, Kosuge Y. Pentadecyl®, an odd-chain-rich triglyceride mixture derived from Aurantiochytrium oil, attenuates lipopolysaccharide-induced inflammatory cytokine production in BV-2 microglial cells. Int Immunopharmacol 2025; 158:114810. [PMID: 40349404 DOI: 10.1016/j.intimp.2025.114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/26/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND AND AIM Microglia are the primary immune cells of the central nervous system that play pivotal roles in health and disease. Abnormally activated microglia secrete proinflammatory factors and play essential roles in neurodegenerative disease progression. This study investigated the potential effects of Pentadecyl, rich in odd-numbered fatty acids, such as pentadecanoic acid, isolated from Aurantiochytrium limacinum, on the lipopolysaccharide (LPS)-induced immune response of BV-2 microglial cells. EXPERIMENTAL PROCEDURE Cell viability was detected using MTT and LIVE/DEAD assays. mRNA and protein levels of inflammatory cytokines and signaling factors were assessed using real-time PCR and western blotting, respectively. RESULTS AND CONCLUSION Pentadecyl did not affect MTT-reducing activity or the number of dead cells stained with ethidium homodimer-1. Pentadecyl selectively mitigated the LPS-induced overproduction of pro-inflammatory cytokines, including interleukin (IL)-6 and IL-1β, at the transcriptional and protein levels, whereas tumor necrosis factor-alpha (TNF-α) expression remained unchanged. Western blot analysis showed that Pentadecyl downregulated the LPS-induced increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) but did not affect the phosphorylation of p65, a component of nuclear factor-kappa B, or p38 and c-Jun N-terminal kinase, both of which are mitogen-activated protein kinases. Similar to Pentadecyl, Stattic, a representative STAT3 inhibitor, preferentially suppressed the LPS-induced upregulation of IL-6 and IL-1β mRNA expression, whereas its inhibitory effect on TNF-α expression was relatively modest. These results indicate that Pentadecyl suppresses LPS-induced pro-inflammatory cytokine production without affecting cell survival by regulating the STAT3 signaling pathway in BV-2 cells.
Collapse
Affiliation(s)
- Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba 274-8555, Japan..
| | - Yusei Sato
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba 274-8555, Japan..
| | - Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba 274-8555, Japan..
| | - Yasuko Sakata
- Research and Development Division of Sea Act, Sea Act Co., Ltd., 2-17-8 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan..
| | - Hideaki Ishikawa
- Research and Development Division of Sea Act, Sea Act Co., Ltd., 2-17-8 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan..
| | - Makoto Tsuboi
- Research and Development Division of Sea Act, Sea Act Co., Ltd., 2-17-8 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan..
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba 274-8555, Japan..
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba 274-8555, Japan..
| |
Collapse
|
2
|
Tao H, Wang C, Zou C, Zhu H, Zhang W. Unraveling the potential of neuroinflammation and autophagy in schizophrenia. Eur J Pharmacol 2025; 997:177469. [PMID: 40054715 DOI: 10.1016/j.ejphar.2025.177469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/03/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Schizophrenia (SCZ) is a complex and chronic psychiatric disorder that affects a significant proportion of the global population. Although the precise etiology of SCZ remains uncertain, recent studies have underscored the involvement of neuroinflammation and autophagy in its pathogenesis. Neuroinflammation, characterized by hyperactivated microglia and markedly elevated pro-inflammatory cytokines, has been observed in postmortem brain tissues of SCZ patients and is closely associated with disease severity. Autophagy, a cellular process responsible for eliminating damaged components and maintaining cellular homeostasis, is believed to play a pivotal role in neuronal health and the onset of SCZ. This review explores the roles and underlying mechanisms of neuroinflammation and autophagy in SCZ, with a particular focus on their intricate interplay. Additionally, we provide an overview of potential therapeutic strategies aimed at modulating neuroinflammation and autophagy, including nutritional interventions, anti-inflammatory drugs, antipsychotics, and plant-derived natural compounds. The review also addresses the dual effects of antipsychotics on autophagy. Our objective is to translate these insights into clinical practice, expanding the therapeutic options available to improve the overall health and well-being of individuals with SCZ.
Collapse
Affiliation(s)
- Hongxia Tao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Congyin Wang
- Department of Emergency Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Chuan Zou
- Department of General Practice, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Hongru Zhu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wei Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Chauhan R, Mohan M, Mannan A, Devi S, Singh TG. Unravelling the role of Interleukin-12 in Neuroinflammatory mechanisms: Pathogenic pathways linking Neuroinflammation to neuropsychiatric disorders. Int Immunopharmacol 2025; 156:114654. [PMID: 40294470 DOI: 10.1016/j.intimp.2025.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Neuropsychiatric disorders are clinically characterized conditions involving both neurology and psychiatry, arising from dysfunctioning of cerebral function, or indirect effects of extra cerebral disease. Neuropsychiatric disorders tend to influence emotions, mood, and brain functioning. Growing evidence indicates that the etiology of these disorders is not confined to neuronal abnormalities but extends to include inflammation. While the underlying mechanism of these disorders is still in its infancy, recent data highlights the significant role of neuroinflammation in their pathophysiology. Neuroinflammation concerns the inflammation within the neural tissue characterized by alteration in astrocytes, cytokines, microglia, and chemokines within the central nervous system. The cytokines include IFN-γ, IL-1β, IL-2, IL4, IL-6, IL-8, IL-10, and IL-12. This review focuses on interleukin-12 (IL-12), a key mediator of neuroinflammation, and its potential involvement in neuropsychiatric disorders. IL-12 promotes neuroinflammation and influences neurotransmitter systems. Additionally, it also affects the HPA axis, impairs neuroplasticity, and activates microglia by interacting with TLR, JAK-STAT, PI3K/Akt, GSK-3, NMDA, MAPK, PKC, VEGFR, ROCK, and Wnt signaling pathways and elicit its role in ND. In this review, we dwell on the current evidence supporting IL-12's pathogenic role and explore the possible mechanisms by which it contributes to the development and progression of these conditions. This review aims to provide insights that may aid in future therapeutic strategies by illuminating the interplay between neuroinflammation and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rupali Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Huang H, Luo Z, Min J, Luo W, Zhou X, Wang C. Targeting Neuroinflammation in Schizophrenia: A comprehensive review of mechanisms and pharmacological interventions. Int Immunopharmacol 2025; 159:114910. [PMID: 40424655 DOI: 10.1016/j.intimp.2025.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
Schizophrenia is a complex psychiatric disorder traditionally linked to neurotransmitter imbalances, but growing evidence implicates neuroinflammation as a key factor in its pathogenesis. Core pathological features include aberrant microglial activation, elevated proinflammatory cytokines (e.g., IL-6, TNF-α), blood-brain barrier disruption, and oxidative stress, all contributing to neuronal dysfunction. Genetic, epigenetic, and neurodevelopmental abnormalities further intensify the link between neuroinflammation and clinical symptoms, including cognitive deficits and positive/negative symptoms. Therapeutically, anti-inflammatory strategies show promise: Non-steroidal anti-inflammatory drugs inhibit the cyclooxygenase pathway; minocycline modulates microglial activity; cytokine inhibitors regulate immune responses; and antioxidants and mitochondrial agents (e.g., N-acetylcysteine, omega-3 fatty acids) reduce oxidative damage. Emerging approaches such as cannabidiol and nanodelivery systems also demonstrate anti-inflammatory and neuroprotective potential. However, long-term safety, dosage optimization, and individual variability remain to be fully validated. Future research should integrate single-cell genomics, neuroimaging, and biomarker stratification to elucidate neuroinflammatory mechanisms and enable precise combination therapies. Combining immunomodulatory and neurotransmitter-based strategies may overcome the limitations of traditional antipsychotics and improve clinical outcomes.
Collapse
Affiliation(s)
- Hao Huang
- Department of General surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zijie Luo
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Jieshu Min
- Department of Pharmacy, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Wenjie Luo
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xujia Zhou
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Changxu Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
5
|
Ni C, Wang L, Bai Y, Huang F, Shi H, Wu H, Wu X, Huang J. Taurochenodeoxycholic acid activates autophagy and suppresses inflammatory responses in microglia of MPTP-induced Parkinson's disease mice via AMPK/mTOR, AKT/NFκB and Pink1/Parkin signaling pathways mediated by Takeda G protein-coupled receptor 5. Free Radic Biol Med 2025; 235:347-363. [PMID: 40324640 DOI: 10.1016/j.freeradbiomed.2025.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by degeneration and necrosis of dopaminergic neurons in the substantia nigra and decreased dopamine secretion in the striatum. Bile acids are important components of animal bile. In recent years, a variety of hydrophilic bile acids have been reported to have ameliorative effects in neurodegenerative diseases. Taurochenodeoxycholic acid (TCDCA) is one of the components of bile acids. However, whether TCDCA can treat PD and its specific mechanism is unclear. In this study, 1-methyl-4-phenylpyridine (MPTP)-induced PD model mice were established to investigate the effects of TCDCA on PD model mice and the impact of microglia-mediated neuroinflammation. Concurrently, in vitro cell experiments utilized the lipopolysaccharide (LPS)-induced BV-2 microglial inflammation model to further investigate the effect and mechanism of TCDCA in inhibiting neuroinflammation. TCDCA effectively improved dyskinesia, attenuated dopaminergic neuronal damage in the substantia nigra and striatum, and inhibited α-Synuclein (α-Syn) expression in the substantia nigra of PD mice. TCDCA significantly inhibited microglia and astrocyte activation in the substantia nigra of PD mice, and decreased the messenger ribonucleic acid (mRNA) and protein expressions of inflammatory factors. In addition, TCDCA was found to inhibit nitric oxide release and reactive oxygen species production in LPS-stimulated BV2 microglia. Furthermore, TCDCA suppressed the production of inflammatory factors, including interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNF-α), both in vivo and in vitro. Meanwhile, TCDCA significantly promoted Takeda G protein-coupled receptor 5 (TGR5) protein expression and inhibited the phosphorylation of serine/threonine kinase B (AKT), nuclear factor κB (NFκB) and inhibitor of NFκB (IκBα). TCDCA promoted autophagy in vivo and in vitro by increasing adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation, inhibiting mammalian target of rapamycin (mTOR) phosphorylation, increasing LC3II/LC3I and Beclin1 expression, and decreasing P62 expression. Furthermore, TCDCA demonstrated mitochondrial protection by enhancing the expression of PTEN induced putative kinase 1 (Pink1) and Parkin. However, knockdown of TGR5 expression partially counteracted the inhibitory effect of TCDCA on LPS-treated BV-2 cells. Our results manifested that TCDCA activated autophagy and inhibited microglia-mediated neuroinflammation in experimental PD models probably through regulation of AKT/NFκB, AMPK/mTOR and Pink1/Parkin signaling pathways via activation of TGR5.
Collapse
Affiliation(s)
- Chenyang Ni
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jin Huang
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
Romero-Ferreiro V, García-Fernández L, Biscaia JM, Romero C, González-Soltero R, De la Fuente M, Álvarez-Mon MA, Wynn R, Rodriguez-Jimenez R. Effect of probiotics on C-reactive protein levels in schizophrenia: Evidence from a systematic review and meta-analysis. Complement Ther Med 2025; 89:103126. [PMID: 39798817 DOI: 10.1016/j.ctim.2025.103126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Inflammatory markers play a pivotal role in schizophrenia, as they provide insight into the neuroinflammatory processes occurring in the context of the disorder. Elevated levels of these markers, particularly C-reactive protein (CRP), can indicate an underlying immune system dysregulation, potentially influencing symptom severity and progression. Recognizing these markers has led to investigate the use of probiotics as an adjuvant to improve the treatment of schizophrenia. The main objective of this study is to rigorously evaluate the efficacy of probiotics in reducing plasma levels of CRP in patients with schizophrenia. METHODS A systematic search and meta-analysis were conducted to review randomized clinical trials following the PRISMA methodology. The following search strategy ((SCHIZO* OR PSYCHOTIC OR PSYCHOSES) AND (PROBIOTIC* OR BIFIDOBACTER* OR LACTOBACILL*)) was used for searching publications between June-December 2024 on the PubMed, Web of Science, and APA PsycINFO databases. Individual study quality was assessed with the Cochrane risk of bias (RoB2) and the certainty of total evidence was assessed with the GRADE system. RESULTS The primary outcome assessed was the impact of probiotic supplementation on plasma CRP levels. Out of 78 studies initially identified, 4 were finally included in the meta-analysis. Three out four studies found a significant reduction in high-sensitivity C-reactive protein levels in the supplemented compared with the placebo group. The pooled analysis revealed a significant reduction in CRP levels with probiotic supplementation, with a standardized mean difference (SMD) of -0.46, (95 % CI -0.719; -0.201; p = 0.001). CONCLUSIONS The synthesis and meta-analysis of available literature provide evidence for the potential role of probiotics in the reduction of serum CRP in schizophrenia compared with placebo. However, more clinical trials with better control of experimental design are needed before a clear recommendation as adjuvant therapy can be made.
Collapse
Affiliation(s)
- Verónica Romero-Ferreiro
- Universidad Europea de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain.
| | - Lorena García-Fernández
- CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain; Clinical Medicine Department, Universidad Miguel Hernández, Alicante, Spain; Psychiatry Department, Hospital Universitario de San Juan, Alicante, Spain
| | | | - Carmen Romero
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain; CIBERESP/ISCIII (Biomedical Research Networking Centre for Epidemiology and PublicHealth/Carlos III Health Institute), Spain
| | | | - Mónica De la Fuente
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Complutense University of Madrid (UCM), Madrid, Spain
| | - Miguel A Álvarez-Mon
- CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain; Department of Medicine and Medical Specialities, University of Alcala, Alcala de Henares, Spain; Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain; Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Rolf Wynn
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Education, ICT and Learning, Østfold University College, Tromsø, Norway
| | - Roberto Rodriguez-Jimenez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain; Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
7
|
Faustmann TJ, Corvace F, Faustmann PM, Ismail FS. Influence of antipsychotic drugs on microglia-mediated neuroinflammation in schizophrenia: perspectives in an astrocyte-microglia co-culture model. Front Psychiatry 2025; 16:1522128. [PMID: 40171306 PMCID: PMC11959008 DOI: 10.3389/fpsyt.2025.1522128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/12/2025] [Indexed: 04/03/2025] Open
Abstract
Schizophrenia is a severe mental disorder with a strong lifetime impact on patients' health and wellbeing. Usually, symptomatic treatment includes typical or atypical antipsychotics. Study findings show an involvement of low-grade inflammation (blood, brain parenchyma, and cerebrospinal fluid) in schizophrenia. Moreover, experimental and neuropathological evidence suggests that reactive microglia, which are the main resident immune cells of the central nervous system (CNS), have a negative impact on the differentiation and function of oligodendrocytes, glial progenitor cells, and astrocytes, which results in the disruption of neuronal networks and dysregulated synaptic transmission, contributing to the pathophysiology of schizophrenia. Here, the role of microglial cells related to neuroinflammation in schizophrenia was discussed to be essential. This review aims to summarize the evidence for the influence of antipsychotics on microglial inflammatory mechanisms in schizophrenia. Furthermore, we propose an established astrocyte-microglia co-culture model for testing regulatory mechanisms and examining the effects of antipsychotics on glia-mediated neuroinflammation. This could lead to a better understanding of how typical and atypical antipsychotics can be used to address positive and negative symptoms in schizophrenia and comorbidities like inflammatory diseases or the status of low-grade inflammation.
Collapse
Affiliation(s)
- Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Pedro M. Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| |
Collapse
|
8
|
Govil P, Kantrowitz JT. Negative Symptoms in Schizophrenia: An Update on Research Assessment and the Current and Upcoming Treatment Landscape. CNS Drugs 2025; 39:243-262. [PMID: 39799532 DOI: 10.1007/s40263-024-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 01/15/2025]
Abstract
The negative symptoms of schizophrenia include diminished emotional expression, avolition, alogia, anhedonia, and asociality, and due to their low responsiveness to available treatments, are a primary driver of functional disability in schizophrenia. This narrative review has the aim of providing a comprehensive overview of the current research developments in the treatment of negative symptoms in schizophrenia, and begins by introducing the concepts of primary, secondary, prominent, predominant, and broadly defined negative symptoms. We then compare and contrast commonly used research assessment scales for negative symptoms and review the evidence for the specific utility of widely available off-label and investigational treatments that have been studied for negative symptoms. Mechanism of action/putative treatments included are antipsychotics (D2R antagonists), N-methyl-D-aspartate receptor (NMDAR) and other glutamatergic modulators, serotonin receptor (5-HTR) modulators, anti-inflammatory agents, antidepressants, pro-dopaminergic modulators (non-D2R antagonists), acetylcholine modulators, oxytocin, and phosphodiesterase (PDE) inhibitors. With the caveat that no compounds are definitively proven as gold-standard treatments for broadly defined negative symptoms, the evidence base supports several potentially beneficial off-label and investigational medications for treating negative symptoms in schizophrenia, such as monotherapy with cariprazine, olanzapine, clozapine, and amisulpride, or adjunctive use of memantine, setrons such as ondansetron, minocycline, and antidepressants. These medications are widely available worldwide, generally tolerable and could be considered for an off-label, time-limited trial for a predesignated period of time, after which a decision to switch or stay can be made based on clinical response. Among investigational medications, NMDAR agonists, muscarinic agonists, and LB-102 remain under study. Suggestions for future research include reducing placebo effects by designing studies with a smaller number of high-quality study sites, potentially increasing the use of more precise rating scales for negative symptoms, and focused studies in people with predominant negative symptoms.
Collapse
Affiliation(s)
- Preetika Govil
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Joshua T Kantrowitz
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.
- College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Nathan Kline Institute, Orangeburg, NY, 10962, USA.
| |
Collapse
|
9
|
Nani JV, Muotri AR, Hayashi MAF. Peering into the mind: unraveling schizophrenia's secrets using models. Mol Psychiatry 2025; 30:659-678. [PMID: 39245692 DOI: 10.1038/s41380-024-02728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Schizophrenia (SCZ) is a complex mental disorder characterized by a range of symptoms, including positive and negative symptoms, as well as cognitive impairments. Despite the extensive research, the underlying neurobiology of SCZ remain elusive. To overcome this challenge, the use of diverse laboratory modeling techniques, encompassing cellular and animal models, and innovative approaches like induced pluripotent stem cell (iPSC)-derived neuronal cultures or brain organoids and genetically engineered animal models, has been crucial. Immortalized cellular models provide controlled environments for investigating the molecular and neurochemical pathways involved in neuronal function, while iPSCs and brain organoids, derived from patient-specific sources, offer significant advantage in translational research by facilitating direct comparisons of cellular phenotypes between patient-derived neurons and healthy-control neurons. Animal models can recapitulate the different psychopathological aspects that should be modeled, offering valuable insights into the neurobiology of SCZ. In addition, invertebrates' models are genetically tractable and offer a powerful approach to dissect the core genetic underpinnings of SCZ, while vertebrate models, especially mammals, with their more complex nervous systems and behavioral repertoire, provide a closer approximation of the human condition to study SCZ-related traits. This narrative review provides a comprehensive overview of the diverse modeling approaches, critically evaluating their strengths and limitations. By synthesizing knowledge from these models, this review offers a valuable source for researchers, clinicians, and stakeholders alike. Integrating findings across these different models may allow us to build a more holistic picture of SCZ pathophysiology, facilitating the exploration of new research avenues and informed decision-making for interventions.
Collapse
Affiliation(s)
- João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
10
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
11
|
Zou J, Gao J, Shang W, Fan X. Minocycline Ameliorates Staphylococcus aureus-Induced Neuroinflammation and Anxiety-like Behaviors by Regulating the TLR2 and STAT3 Pathways in Microglia. Brain Sci 2025; 15:128. [PMID: 40002461 PMCID: PMC11853265 DOI: 10.3390/brainsci15020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Anxiety disorders are the most common mental illnesses. S. aureus is a Gram-positive opportunistic pathogen most commonly associated with anxiety-like behaviors. Minocycline ameliorates Gram-negative bacterial LPS-induced anxiety-like behaviors by suppressing microglia activation. However, the effects of minocycline on anxiety-like behaviors caused by S. aureus infections have received little attention. In this study, we aimed to investigate the molecular mechanism and effect of minocycline on anxiety-like behaviors caused by S. aureus infection. Methods: BV2 and N9 microglial cells were treated in vitro. The effects of minocycline on lipoteichoic acid (LTA)-stimulated inflammatory responses, STAT3 activation, and GLS1 expression were assessed using Western blotting, and cytokine secretion was determined using an ELISA. A mouse model was used to evaluate the capacity of minocycline to ameliorate anxiety-like behaviors caused by S. aureus infection. Results: We found that ≥100 μmol/L of minocycline remarkably attenuated LTA-induced TLR2 signaling pathway activation and proinflammatory cytokine expression in microglial cells. Minocycline prevented LTA-stimulated STAT3 activation and GLS1 expression in vitro. LTA-induced TLR2, TNF-α, IL-6, and GLS1 expression was markedly reduced by the inhibition of STAT3 phosphorylation. Mice were pretreated with 50 mg/kg of minocycline, significantly attenuating microglial activation and neuroinflammation. Minocycline also effectively alleviated the anxiety-like behaviors induced by S. aureus infection. Conclusions: Our findings indicate that minocycline alleviates S. aureus infection-induced anxiety-like behaviors by suppressing microglia activation.
Collapse
Affiliation(s)
- Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China; (J.Z.); (J.G.)
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China; (J.Z.); (J.G.)
| | - Weilong Shang
- Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China;
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China; (J.Z.); (J.G.)
| |
Collapse
|
12
|
Rawani NS, Chan AW, Todd KG, Baker GB, Dursun SM. The Role of Neuroglia in the Development and Progression of Schizophrenia. Biomolecules 2024; 15:10. [PMID: 39858403 PMCID: PMC11761573 DOI: 10.3390/biom15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Schizophrenia is a complex heterogenous disorder thought to be caused by interactions between genetic and environmental factors. The theories developed to explain the etiology of schizophrenia have focused largely on the dysfunction of neurotransmitters such as dopamine, serotonin and glutamate with their receptors, although research in the past several decades has indicated strongly that other factors are also involved and that the role of neuroglial cells in psychotic disorders including schizophrenia should be given more attention. Although glia were originally thought to be present in the brain only to support neurons in a physical, metabolic and nutritional capacity, it has become apparent that these cells have a variety of important physiological roles and that abnormalities in their function may make significant contributions to the symptoms of schizophrenia. In the present paper, we review the interactions of brain microglia, astrocytes and oligodendroglia with aspects such as transmitter dysregulation, neuro-inflammation, oxidative stress, synaptic function, the gut microbiome, myelination and the blood-brain barrier that appear to affect the cause, development and treatment of schizophrenia. We also review crosstalk between microglia, astrocytes and oligodendrocytes and the effects of antipsychotics on neuroglia. Problems associated with studies on specific biomarkers for glia in schizophrenia are discussed.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (K.G.T.); (S.M.D.)
| | | |
Collapse
|
13
|
Wang LL, Wang H, Lin SJ, Xu XY, Hu WJ, Liu J, Zhang HY. ABBV-744 alleviates LPS-induced neuroinflammation via regulation of BATF2-IRF4-STAT1/3/5 axis. Acta Pharmacol Sin 2024; 45:2077-2091. [PMID: 38862817 PMCID: PMC11420366 DOI: 10.1038/s41401-024-01318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
Suppression of neuroinflammation using small molecule compounds targeting the key pathways in microglial inflammation has attracted great interest. Recently, increasing attention has been gained to the role of the second bromodomain (BD2) of the bromodomain and extra-terminal (BET) proteins, while its effect and molecular mechanism on microglial inflammation has not yet been explored. In this study, we evaluated the therapeutic effects of ABBV-744, a BD2 high selective BET inhibitor, on lipopolysaccharide (LPS)-induced microglial inflammation in vitro and in vivo, and explored the key pathways by which ABBV-744 regulated microglia-mediated neuroinflammation. We found that pretreatment of ABBV-744 concentration-dependently inhibited the expression of LPS-induced inflammatory mediators/enzymes including NO, TNF-α, IL-1β, IL-6, iNOS, and COX-2 in BV-2 microglial cells. These effects were validated in LPS-treated primary microglial cells. Furthermore, we observed that administration of ABBV-744 significantly alleviated LPS-induced activation of microglia and transcriptional levels of pro-inflammatory factors TNF-α and IL-1β in mouse hippocampus and cortex. RNA-Sequencing (RNA-seq) analysis revealed that ABBV-744 induced 508 differentially expressed genes (DEGs) in LPS-stimulated BV-2 cells, and gene enrichment and gene expression network analysis verified its regulation on activated microglial genes and inflammatory pathways. We demonstrated that pretreatment of ABBV-744 significantly reduced the expression levels of basic leucine zipper ATF-like transcription factor 2 (BATF2) and interferon regulatory factor 4 (IRF4), and suppressed JAK-STAT signaling pathway in LPS-stimulated BV-2 cells and mice, suggesting that the anti-neuroinflammatory effect of ABBV-744 might be associated with regulation of BATF2-IRF4-STAT1/3/5 pathway, which was confirmed by gene knockdown experiments. This study demonstrates the effect of a BD2 high selective BET inhibitor, ABBV-744, against microglial inflammation, and reveals a BATF2-IRF4-STAT1/3/5 pathway in regulation of microglial inflammation, which might provide new clues for discovery of effective therapeutic strategy against neuroinflammation.
Collapse
Affiliation(s)
- Le-le Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Si-Jin Lin
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing-Yu Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Juan Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hai-Yan Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
14
|
Lv H, Guo M, Guo C, He K. The Interrelationships between Cytokines and Schizophrenia: A Systematic Review. Int J Mol Sci 2024; 25:8477. [PMID: 39126046 PMCID: PMC11313682 DOI: 10.3390/ijms25158477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Schizophrenia (SCZ) imposes a significant burden on patients and their families because of its high prevalence rate and disabling nature. Given the lack of definitive conclusions regarding its pathogenesis, physicians heavily rely on patients' subjective symptom descriptions for diagnosis because reliable diagnostic biomarkers are currently unavailable. The role of the inflammatory response in the pathogenesis of SCZ has been supported by some studies. The findings of these studies showed abnormal changes in the levels of inflammatory factors, such as cytokines (CKs), in both peripheral blood and cerebrospinal fluid (CSF) among individuals affected by SCZ. The findings imply that inflammatory factors could potentially function as risk indicators for the onset of SCZ. Consequently, researchers have directed their attention towards investigating the potential utility of CKs as viable biomarkers for diagnosing SCZ. Extracellular vesicles (EVs) containing disease-specific components exhibit remarkable stability and abundance, making them promising candidates for biomarker discovery across various diseases. CKs encapsulated within EVs secreted by immune cells offer valuable insights into disease progression. This review presents a comprehensive analysis summarizing the relationship between CKs and SCZ and emphasizes the vital role of CKs encapsulated within EVs in the pathogenesis and development of SCZ.
Collapse
Affiliation(s)
- Haibing Lv
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (H.L.); (C.G.)
| | - Meng Guo
- Finance Office, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (H.L.); (C.G.)
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (H.L.); (C.G.)
| |
Collapse
|
15
|
McRae SA, Richards CM, Da Silva DE, Riar I, Yang SS, Zurfluh NE, Gibon J, Klegeris A. Pro-neuroinflammatory and neurotoxic potential of extracellular histones H1 and H3. Neurosci Res 2024; 204:34-45. [PMID: 38278218 DOI: 10.1016/j.neures.2024.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Histones organize DNA within cellular nuclei, but they can be released from damaged cells. In peripheral tissues extracellular histones act as damage-associated molecular patterns (DAMPs) inducing pro-inflammatory activation of immune cells. Limited studies have considered DAMP-like activity of histones in the central nervous system (CNS); therefore, we studied the effects of extracellular histones on microglia, the CNS immunocytes, and on neuronal cells. Both the linker histone H1 and the core histone H3 induced pro-inflammatory activation of microglia-like cells by upregulating their secretion of NO and cytokines, including interferon-γ-inducible protein 10 (IP-10) and tumor necrosis factor-α (TNF). The selective inhibitors MMG-11 and TAK-242 were used to demonstrate involvement of toll-like receptors (TLR) 2 and 4, respectively, in H1-induced NO secretion by BV-2 microglia. H1, but not H3, downregulated the phagocytic activity of BV-2 microglia. H1 was also directly toxic to all neuronal cell types studied. We conclude that H1, and to a lesser extent H3, when released extracellularly, have the potential to act as a CNS DAMPs. Inhibition of the DAMP-like effects of extracellular histones on microglia and their neurotoxic activity represents a potential strategy for combating neurodegenerative diseases that are characterized by the adverse activation of microglia and neuronal death.
Collapse
Affiliation(s)
- Seamus A McRae
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Dylan E Da Silva
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Ishvin Riar
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Sijie Shirley Yang
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Noah E Zurfluh
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
16
|
Chen J, Zhou X, Dai N, Liu X, Liu S, Zhang H, Kong L, Ma H. The Long-Acting Serine Protease Inhibitor mPEG-SPA-MDSPI16 Alleviates LPS-Induced Acute Lung Injury. Int J Mol Sci 2024; 25:4567. [PMID: 38674153 PMCID: PMC11049807 DOI: 10.3390/ijms25084567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Anti-inflammatory drugs have become the second-largest class of common drugs after anti-infective drugs in animal clinical care worldwide and are often combined with other drugs to treat fever and viral diseases caused by various factors. In our previous study, a novel serine protease inhibitor-encoding gene (MDSPI16) with improved anti-inflammatory activity was selected from a constructed suppressive subducted hybridization library of housefly larvae. This protein could easily induce an immune response in animals and had a short half-life, which limited its wide application in the clinic. Thus, in this study, mPEG-succinimidyl propionate (mPEG-SPA, Mw = 5 kDa) was used to molecularly modify the MDSPI16 protein, and the modified product mPEG-SPA-MDSPI16, which strongly inhibited elastase production, was purified. It had good stability and safety, low immunogenicity, and a long half-life, and the IC50 for elastase was 86 nM. mPEG-SPA-MDSPI16 effectively inhibited the expression of neutrophil elastase and decreased ROS levels. Moreover, mPEG-SPA-MDSPI16 exerted anti-inflammatory effects by inhibiting activation of the NF-κB signaling pathway and the MAPK signaling pathway in neutrophils. It also exerted therapeutic effects on a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. In summary, mPEG-SPA-MDSPI16 is a novel anti-inflammatory protein modified with PEG that has the advantages of safety, nontoxicity, improved stability, and strong anti-inflammatory activity in vivo and in vitro and is expected to become an effective anti-inflammatory drug.
Collapse
Affiliation(s)
- Jingrui Chen
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Xinjun Zhou
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Nan Dai
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Xiaoyu Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Shihan Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Hongxia Ma
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| |
Collapse
|
17
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
18
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
19
|
Schmitz I, da Silva A, Bobermin LD, Gonçalves CA, Steiner J, Quincozes-Santos A. The Janus face of antipsychotics in glial cells: Focus on glioprotection. Exp Biol Med (Maywood) 2023; 248:2120-2130. [PMID: 38230521 PMCID: PMC10800129 DOI: 10.1177/15353702231222027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Antipsychotics are commonly prescribed to treat several neuropsychiatric disorders, including schizophrenia, mania in bipolar disorder, autism spectrum disorder, delirium, and organic or secondary psychosis, for example, in dementias such as Alzheimer's disease. There is evidence that typical antipsychotics such as haloperidol are more effective in reducing positive symptoms than negative symptoms and/or cognitive deficits. In contrast, atypical antipsychotic agents have gained popularity over typical antipsychotics, due to fewer extrapyramidal side effects and their theoretical efficacy in controlling both positive and negative symptoms. Although these therapies focus on neuron-based therapeutic schemes, glial cells have been recognized as important regulators of the pathophysiology of neuropsychiatric disorders, as well as targets to improve the efficacy of these drugs. Glial cells (astrocytes, oligodendrocytes, and microglia) are critical for the central nervous system in both physiological and pathological conditions. Astrocytes are the most abundant glial cells and play important roles in brain homeostasis, regulating neurotransmitter systems and gliotransmission, since they express a wide variety of functional receptors for different neurotransmitters. In addition, converging lines of evidence indicate that psychiatric disorders are commonly associated with the triad neuroinflammation, oxidative stress, and excitotoxicity, and that glial cells may contribute to the gliotoxicity process. Conversely, glioprotective molecules attenuate glial damage by generating specific responses that can protect glial cells themselves and/or neurons, resulting in improved central nervous system (CNS) functioning. In this regard, resveratrol is well-recognized as a glioprotective molecule, including in clinical studies of schizophrenia and autism. This review will provide a summary of the dual role of antipsychotics on neurochemical parameters associated with glial functions and will highlight the potential activity of glioprotective molecules to improve the action of antipsychotics.
Collapse
Affiliation(s)
- Izaviany Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg 39120, Germany
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
20
|
Kim YT, Park BS, Yang HR, Yi S, Nam-Goong IS, Kim JG. Exploring the potential hypothalamic role in mediating cisplatin-induced negative energy balance. Chem Biol Interact 2023; 385:110733. [PMID: 37769865 DOI: 10.1016/j.cbi.2023.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Cisplatin is a chemotherapeutic drug commonly used for treating different types of cancer. However, long-term use can lead to side effects, including anorexia, nausea, vomiting, and weight loss, which negatively affect the patient's quality of life and ability to undergo chemotherapy. This study aimed to investigate the mechanisms underlying the development of a negative energy balance during cisplatin treatment. Mice treated with cisplatin exhibit reduced food intake, body weight, and energy expenditure. We observed altered neuronal activity in the hypothalamic nuclei involved in the regulation of energy metabolism in cisplatin-treated mice. In addition, we observed activation of microglia and inflammation in the hypothalamus following treatment with cisplatin. Consistent with this finding, inhibition of microglial activation effectively rescued cisplatin-induced anorexia and body weight loss. The present study identified the role of hypothalamic neurons and inflammation linked to microglial activation in the anorexia and body weight loss observed during cisplatin treatment. These findings provide insight into the mechanisms underlying the development of metabolic abnormalities during cisplatin treatment and suggest new strategies for managing these side effects.
Collapse
Affiliation(s)
- Yang Tae Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Byong Seo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hye Rim Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seon Yi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Il Seong Nam-Goong
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-714, Republic of Korea.
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Research Center of Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|