1
|
Sismanlar Eyuboglu T, Aslan AT, Medeni V, Can S, Ata N, Ulgu MM, Birinci S. Tuberculosis in children and adolescents using biological agents: a nationwide cohort study from Turkey. BMC Pulm Med 2025; 25:196. [PMID: 40281511 PMCID: PMC12023584 DOI: 10.1186/s12890-025-03616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The use of biological agents in various diseases in children has been increasing and the risk of tuberculosis (TB) increases with them. We aimed to investigate the role of biological agents in children diagnosed with TB in a moderate level of TB country where TB screening is mandatory before and during biological agent treatment. STUDY DESIGN AND METHODS This was a retrospective cohort study. All patients who were 0-18 years old and diagnosed with TB-related ICD-10 in the national health database system between 2018 and 2023 were included in the study. The number of patients, demographic characteristics, treatments used by the patients, underlying diseases, and organ involvement of TB were recorded. Children using and not using biological agents were compared. RESULTS A total of 4351 children were diagnosed with TB, and 1.9% of them were treated with biological agents. The age of diagnosis was older (p = 0.001), and both pulmonary and extrapulmonary involvement was more frequent in children using biological agents (p = 0.001). Pulmonary involvement was more frequent in rheumatological diseases (p = 0.001), and naproxen usage was higher in children with pulmonary involvement (p = 0.014). Naproxen was found to increase the risk of pulmonary TB in children using biological agents (OR:3.824, p = 0.033). CONCLUSIONS The low frequency of TB may be due to effective TB screening before and during the therapy. The age of diagnosis was older, pulmonary and extrapulmonary TB involvement was more common in children using biological agents, which may be related to the immunosuppressive effects. Children using biological agents who are also using naproxen should be closely followed up in terms of pulmonary TB.
Collapse
Affiliation(s)
| | - Ayse Tana Aslan
- Faculty of Medicine, Department of Pediatric Pulmonology, Gazi University, Ankara, Turkey
| | - Volkan Medeni
- Faculty of Medicine, Department of Public Health, Gazi University, Ankara, Turkey
| | - Sinem Can
- Republic of Turkey Ministry of Health, General Directorate of Health Information Systems, Ankara, Turkey
| | - Naim Ata
- Republic of Turkey Ministry of Health, General Directorate of Health Information Systems, Ankara, Turkey
| | - Mustafa Mahir Ulgu
- Republic of Turkey Ministry of Health, General Directorate of Health Information Systems, Ankara, Turkey
| | | |
Collapse
|
2
|
Lu HJ, Guo D, Wei QQ. Potential of Neuroinflammation-Modulating Strategies in Tuberculous Meningitis: Targeting Microglia. Aging Dis 2024; 15:1255-1276. [PMID: 37196131 PMCID: PMC11081169 DOI: 10.14336/ad.2023.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/11/2023] [Indexed: 05/19/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe complication of tuberculosis (TB) and is associated with high rates of disability and mortality. Mycobacterium tuberculosis (M. tb), the infectious agent of TB, disseminates from the respiratory epithelium, breaks through the blood-brain barrier, and establishes a primary infection in the meninges. Microglia are the core of the immune network in the central nervous system (CNS) and interact with glial cells and neurons to fight against harmful pathogens and maintain homeostasis in the brain through pleiotropic functions. However, M. tb directly infects microglia and resides in them as the primary host for bacillus infections. Largely, microglial activation slows disease progression. The non-productive inflammatory response that initiates the secretion of pro-inflammatory cytokines and chemokines may be neurotoxic and aggravate tissue injuries based on damages caused by M. tb. Host-directed therapy (HDT) is an emerging strategy for modulating host immune responses against diverse diseases. Recent studies have shown that HDT can control neuroinflammation in TBM and act as an adjunct therapy to antibiotic treatment. In this review, we discuss the diverse roles of microglia in TBM and potential host-directed TB therapies that target microglia to treat TBM. We also discuss the limitations of applying each HDT and suggest a course of action for the near future.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
3
|
Bigio J, Viscardi A, Gore G, Matteelli A, Sulis G. A scoping review on the risk of tuberculosis in specific population groups: can we expand the World Health Organization recommendations? Eur Respir Rev 2023; 32:220127. [PMID: 36631131 PMCID: PMC9879343 DOI: 10.1183/16000617.0127-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/13/2022] [Indexed: 01/13/2023] Open
Abstract
Since 2015, the World Health Organization (WHO) has recommended prioritising testing and treatment of tuberculosis (TB) infection (TBI) in 11 high-risk groups. With new options emerging for TB preventive treatment, we conducted a scoping review, in consultation with the WHO's Global Tuberculosis Programme, to explore the evidence for other population groups at potentially high risk of progression to active TB. We searched six databases for preprints and articles published between 2000 and August 2022. 18 out of 33 668 screened records were included (six meta-analyses and 12 original research studies). Most were observational studies reporting the incidence of active TB in a risk group versus control. Glomerular diseases had the strongest association with active TB (standardised incidence ratio 23.36, 95% CI 16.76-31.68) based on an unpublished study. Other conditions associated with increased risk of active TB included hepatitis C, malignancies, diabetes mellitus, rheumatoid arthritis and vitamin D deficiency. Corticosteroid use was also associated with increased risk in several studies, although heterogeneous definitions of exposure and indications for use challenge interpretation. Despite methodological limitations of the identified studies, expanding the recommendations for TBI screening and treatment to new risk groups such as those reported here should be considered. Further group-specific systematic reviews may provide additional data for decision-making.
Collapse
Affiliation(s)
- Jacob Bigio
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
| | - Angelo Viscardi
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Genevieve Gore
- Department of Infectious and Tropical Diseases, WHO Collaborating Centre for TB/HIV Co-infection and TB Elimination, University of Brescia, Brescia, Italy
| | - Alberto Matteelli
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- These authors contributed equally
| | - Giorgia Sulis
- McGill International TB Centre, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- These authors contributed equally
| |
Collapse
|
4
|
Singh S, Allwood BW, Chiyaka TL, Kleyhans L, Naidoo CC, Moodley S, Theron G, Segal LN. Immunologic and imaging signatures in post tuberculosis lung disease. Tuberculosis (Edinb) 2022; 136:102244. [PMID: 36007338 PMCID: PMC10061373 DOI: 10.1016/j.tube.2022.102244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022]
Abstract
Post Tuberculosis Lung Disease (PTLD) affects millions of tuberculosis survivors and is a global health burden. The immune mechanisms that drive PTLD are complex and have historically been under investigated. Here, we discuss two immune-mediated paradigms that could drive human PTLD. We review the characteristics of a fibrotic granuloma that favors the development of PTLD via an abundance of T-helper-2 and T-regulatory cells and an upregulation of TGF-β mediated collagen deposition. Next, we discuss the post-primary tuberculosis paradigm and the complex mixture of caseous pneumonia, cavity formation and fibrosis that can also lead to PTLD. We review the delicate balance between cellular subsets and cytokines of the innate and adaptive immune system in conjunction with host-derived proteases that can perpetuate the parenchymal lung damage seen in PTLD. Next, we discuss the role of novel host directed therapies (HDT) to limit the development of PTLD and in particular, the recent repurposing of established medications such as statins, metformin and doxycycline. Finally, we review the emerging role of novel imaging techniques as a non-invasive modality for the early recognition of PTLD. While access to computed tomography imaging is unlikely to be available widely in countries with a high TB burden, its use in research settings can help phenotype PTLD. Due to a lack of disease-specific biomarkers and controlled clinical trials, there are currently no evidence-based recommendations for the management of PTLD. It is likely that an integrated antifibrotic strategy that could simultaneously target inflammatory and pro-fibrotic pathways will probably emerge as a successful way to treat this complex condition. In a disease spectrum as wide as PTLD, a single immunologic or radiographic marker may not be sufficient and a combination is more likely to be a successful surrogate that could aid in the development of successful HDTs.
Collapse
Affiliation(s)
- S Singh
- NYU Langone Translational Lung Biology Laboratory, Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue, MSB 594, New York, NY, USA.
| | - B W Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University & Tygerberg Hospital, South Africa.
| | - T L Chiyaka
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - L Kleyhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - C C Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - S Moodley
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - G Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - L N Segal
- NYU Langone Translational Lung Biology Laboratory, Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue, MSB 594, New York, NY, USA.
| |
Collapse
|
5
|
Nienaber A, Hayford FEA, Variava E, Martinson N, Malan L. The Manipulation of the Lipid Mediator Metabolism as Adjunct Host-Directed Therapy in Tuberculosis. Front Immunol 2021; 12:623941. [PMID: 33777003 PMCID: PMC7994275 DOI: 10.3389/fimmu.2021.623941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Host-directed therapies (HDTs) enhance the host response to tuberculosis (TB) infection to reduce disease severity. For instance, the manipulation of lipid mediator production diminishes the hyperactive immune response which is a known pathological feature of TB that generates lung tissue damage. Non-steroidal anti-inflammatory drugs (NSAIDs) and omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) are examples of such HDTs. In this mini-review, we recapitulate the literature available on the effects of NSAIDs and n-3 LCPUFA in TB as well as the immunological pathways underpinning these effects. Many NSAIDs have a great deal of data describing their effects and safety and in many jurisdictions are inexpensive, and sold over the counter in neighborhood convenience stores and supermarkets. The potential benefits of NSAIDs in TB are well-documented in pre-clinical studies. The reduction of pro-inflammatory lipid mediator production by inhibiting cyclooxygenase (COX) pathways with NSAIDs has been found to improve lung histopathology, bacterial control, and survival. Additionally, n-3 LCPUFA and its novel bioactive metabolites produced by COX and lipoxygenase (LOX) have been identified as safe and effective pro-resolving and antibacterial pharmaconutrients. Nevertheless, heterogeneous results have been reported in pre-clinical TB studies. Recently, the importance of the correct timing of NSAIDs and n-3 LCPUFA administration in TB has also been highlighted. This mini-review will provide a better understanding of the potential contribution of these therapies toward reducing inflammatory lung damage and improving bactericidal activity, especially during later stages of TB infection. It further highlights that clinical trials are required to confirm benefit and safety in TB patients.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Frank E A Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Department of Nutrition and Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ebrahim Variava
- Perinatal HIV Research Unit, University of Witwatersrand, Soweto, South Africa.,Department of Internal Medicine, Klerksdorp Tshepong Hospital Complex, North West Department of Health, Klerksdorp, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of Witwatersrand, Soweto, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol 2020; 13:190-204. [PMID: 31772320 PMCID: PMC7039813 DOI: 10.1038/s41385-019-0226-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 02/04/2023]
Abstract
Bacille Calmette-Guérin (BCG) is the only licenced tuberculosis (TB) vaccine, but has limited efficacy against pulmonary TB disease development and modest protection against extrapulmonary TB. Preventative antibiotic treatment for Mycobacterium tuberculosis (Mtb) infections in high-prevalence settings is unfeasible due to unclear treatment durability, drug toxicity, logistical constraints related to directly observed treatment strategy (DOTS) and the lengthy treatment protocols. Together, these factors promote non-adherence, contributing to relapse and establishment of drug-resistant Mtb strains. Although antibiotic treatment of drug-susceptible Mtb is generally effective, drug-resistant TB has a treatment efficacy below 50% and can, in a proportion, develop into progressive, untreatable disease. Other immune compromising co-infections and/or co-morbidities require more complex prevention/treatment approaches, posing huge financial burdens to national health services. Novel TB treatment strategies, such as host-directed therapeutics, are required to complement pathogen-targeted approaches. Pre-clinical studies have highlighted promising candidates that enhance endogenous pathways and/or limit destructive host responses. This review discusses promising pre-clinical candidates and forerunning compounds at advanced stages of clinical investigation in TB host-directed therapeutic (HDT) efficacy trials. Such approaches are rationalized to improve outcome in TB and shorten treatment strategies.
Collapse
Affiliation(s)
- C Young
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology/DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - G Walzl
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology/DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - N Du Plessis
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology/DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
7
|
Mortensen R, Clemmensen HS, Woodworth JS, Therkelsen ML, Mustafa T, Tonby K, Jenum S, Agger EM, Dyrhol-Riise AM, Andersen P. Cyclooxygenase inhibitors impair CD4 T cell immunity and exacerbate Mycobacterium tuberculosis infection in aerosol-challenged mice. Commun Biol 2019; 2:288. [PMID: 31396568 PMCID: PMC6683187 DOI: 10.1038/s42003-019-0530-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023] Open
Abstract
Tuberculosis, caused by infection with Mycobacterium tuberculosis (Mtb), kills over 1.6 million people each year despite availability of antibiotics. The increase in drug resistant Mtb strains is a major public health emergency and host-directed therapy as adjunct to antibiotic treatment has gained increased interest. Cyclooxygenase inhibitors (COXi) are frequently used drugs to alleviate tuberculosis related symptoms. Mouse studies of acute intravenous Mtb infection have suggested a potential benefit of COXi for host-directed therapy. Here we show that COXi treatment (ibuprofen and celecoxib) is detrimental to Mtb control in different mouse models of respiratory infection. This effect links to impairments of the Type-1 helper (Th1) T-cell response as CD4 T-cells in COXi-treated animals have significantly decreased Th1 differentiation, reduced IFNγ expression and decreased protective capacity upon adoptive transfer. If confirmed in clinical trials, these findings could have major impact on global health and question the use of COXi for host-directed therapy.
Collapse
Affiliation(s)
- Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | | | - Joshua S. Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Marie Louise Therkelsen
- Department of Infectious Disease Immunology, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen & Department of Thoracic Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kristian Tonby
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Anne Ma Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, 2300 Copenhagen S, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Cantini F, Niccoli L, Capone A, Petrone L, Goletti D. Risk of tuberculosis reactivation associated with traditional disease modifying anti-rheumatic drugs and non-anti-tumor necrosis factor biologics in patients with rheumatic disorders and suggestion for clinical practice. Expert Opin Drug Saf 2019; 18:415-425. [PMID: 31066297 DOI: 10.1080/14740338.2019.1612872] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Two classes of biologics, anti-tumor necrosis factor (TNF) and non-anti-TNF targeted, are currently available for the treatment of rheumatic diseases. AREAS COVERED Discussion on the need for LTBI diagnosis in rheumatic patients treated csDMARDs and non-anti-TNFs through a review of the literature. The literature, updated to 15 April 2019, on tuberculosis (TB) reactivation risk in patients exposed to conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) and non-anti-TNF biologics was reviewed. EXPERT OPINION An increased risk of TB reactivation in patients receiving csDMARDs (except sulphasalazine) resulted, while a review of clinical trials, and Periodic Safety Update Reports from pharmaceutical Companies evidenced a very low or absent risk for non-anti-TNF biologics. Hence, a contradiction emerges considering that latent TB infection (LTBI) screening is recommended for non-anti-TNF candidates but not for csDMARDs. Concerning the low TB incidence countries, several actions could be undertaken, including to screen all patients independently on the treatment, to omit the procedure in non-anti-TNF candidates, or to perform the LTBI investigations only in high-risk patients. According to WHO guidelines, LTBI screening in low TB risk countries seems unnecessary, except in high TB risk subjects.
Collapse
Affiliation(s)
- Fabrizio Cantini
- a Department of Rheumatology , Hospital of Prato , Prato , Italy
| | - Laura Niccoli
- a Department of Rheumatology , Hospital of Prato , Prato , Italy
| | - Alessandro Capone
- b Clinical Department , National Institute for Infectious Diseases L. Spallanzani-IRCCS , Rome , Italy
| | - Linda Petrone
- c Translational Research Unit, Department of Epidemiology and Preclinical Research , "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS , Rome , Italy
| | - Delia Goletti
- c Translational Research Unit, Department of Epidemiology and Preclinical Research , "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS , Rome , Italy
| |
Collapse
|
9
|
Stek C, Allwood B, Walker NF, Wilkinson RJ, Lynen L, Meintjes G. The Immune Mechanisms of Lung Parenchymal Damage in Tuberculosis and the Role of Host-Directed Therapy. Front Microbiol 2018; 9:2603. [PMID: 30425706 PMCID: PMC6218626 DOI: 10.3389/fmicb.2018.02603] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022] Open
Abstract
Impaired lung function is common in people with a history of tuberculosis. Host-directed therapy added to tuberculosis treatment may reduce lung damage and result in improved lung function. An understanding of the pathogenesis of pulmonary damage in TB is fundamental to successfully predicting which interventions could be beneficial. In this review, we describe the different features of TB immunopathology that lead to impaired lung function, namely cavities, bronchiectasis, and fibrosis. We discuss the immunological processes that cause lung damage, focusing on studies performed in humans, and using chest radiograph abnormalities as a marker for pulmonary damage. We highlight the roles of matrix metalloproteinases, neutrophils, eicosanoids and cytokines, like tumor necrosis factor-α and interleukin 1β, as well as the role of HIV co-infection. Finally, we focus on various existing drugs that affect one or more of the immunological mediators of lung damage and could therefore play a role as host-directed therapy.
Collapse
Affiliation(s)
- Cari Stek
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Naomi F Walker
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College London, London, United Kingdom.,Francis Crick Institute, London, United Kingdom
| | - Lutgarde Lynen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Lee MC, Chiang CY, Lee CH, Ho CM, Chang CH, Wang JY, Chen SM. Metformin use is associated with a low risk of tuberculosis among newly diagnosed diabetes mellitus patients with normal renal function: A nationwide cohort study with validated diagnostic criteria. PLoS One 2018; 13:e0205807. [PMID: 30335800 PMCID: PMC6193668 DOI: 10.1371/journal.pone.0205807] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Human studies on the use of metformin as host-directed therapy (HDT) for tuberculosis (TB) are rare. We performed a nationwide cohort study to evaluate the effect of metformin on mitigating the risk of active TB among patients with diabetes mellitus (DM). Among newly diagnosed DM patients identified in the Taiwan National Health Insurance Research Database, metformin users, defined on the basis of >90 cumulative defined daily doses within 1 year, and propensity-score-matched metformin nonusers were selected. The primary outcome was incident TB, identified using diagnostic criteria validated by real patient data at a medical center. Independent predictors were investigated using Cox regression analysis. Similar analysis was performed in a subpopulation without a history of hypertensive nephropathy and renal replacement therapy. A total of 88,866 metformin users and 88,866 propensity-score-matched nonusers were selected. Validation results showed that the TB diagnostic criteria had a sensitivity of 99.13% and specificity of 99.90%. During follow-up, 707 metformin users and 807 nonusers developed active TB. Metformin use was independently associated with a lower risk of incident TB (hazard ratio [HR]: 0.84 [0.74-0.96]). TB risk was lower in high-dose metformin users than in low-dose users (HR: 0.83 [0.72-0.97]). The effect of metformin remained when analysis was restricted in the subpopulation without renal function impairment. Newly diagnosed diabetic patients without contraindication should receive metformin as an anti-diabetic medication, with potential additional benefit against TB.
Collapse
Affiliation(s)
- Ming-Chia Lee
- Department of Pharmacy, New Taipei City Hospital, New Taipei City, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yuan Chiang
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Union Against Tubercle and Lung Disease, Paris, France
| | - Chih-Hsin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Maw Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hao Chang
- Department of Internal Medicine, National Taiwan University Hospital, Hsinchu branch, Hsinchu, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|