1
|
Barnett‐Itzhaki Z, Nir V, Kellner A, Biton O, Toledano S, Klein A. Machine Learning Models for Predicting Pediatric Hospitalizations Due to Air Pollution and Humidity: A Retrospective Study. Pediatr Pulmonol 2025; 60:e71106. [PMID: 40325948 PMCID: PMC12053113 DOI: 10.1002/ppul.71106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Exposure to air pollution and meteorological conditions, such as humidity, has been linked to adverse respiratory health outcomes in children. This study aims to develop predictive models for pediatric hospitalizations based on both environmental exposures and clinical features. METHODS We conducted a retrospective analysis of 2500 children (aged 1-18) who presented with respiratory symptoms at the emergency department, during 2016-2017. Air pollution data, including NOx and NO2 concentrations, and relative humidity (RH) were collected from nine monitoring stations and were cross-referenced with the children's residential locations to assess their specific exposure level. Statistical tests, including Chi-square and Wilcoxon tests, were used to analyze the data. Machine learning models, specifically Random Forest (RF) and eXtreme Gradient Boosting (XGBoost), were developed to predict the children's hospitalizations. RESULTS Boys were more likely to be hospitalized than girls (60.6% vs. 39.4%, p = 4.31e-06). Hospital visits peaked during winter (p = 3.56e-37). Increased emergency room visits were statistically significantly associated with highly polluted days (p = 0.038). Hospitalized children were exposed to lower RH (median 64.9%) compared to nonhospitalized children (median 69.4%, p = 0.005). The RF and XGBoost models were reliable, with accuracy rates of 0.7-0.98, Precision scores of 0.88-0.99, and AUC scores of 81%-99%. Key features included temperature, NOx levels, RH, and exposure to SO2. CONCLUSION This study investigates the effects of air pollution and humidity on pediatric respiratory health. The models developed offer valuable tools for predicting hospitalizations and are intended to support public health planning and resource allocation.
Collapse
Affiliation(s)
- Zohar Barnett‐Itzhaki
- Ruppin Research Group in Environmental and Social Sustainability, Ruppin Academic CenterEmek HeferIsrael
- Faculty of Engineering, Ruppin Academic CenterEmek HeferIsrael
| | - Vered Nir
- Department of PediatricsHillel Yaffe Medical CenterHaderaIsrael
- Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of TechnologyHaifaIsrael
| | - Almog Kellner
- Faculty of Engineering, Ruppin Academic CenterEmek HeferIsrael
| | - Ofir Biton
- Faculty of Engineering, Ruppin Academic CenterEmek HeferIsrael
| | - Shir Toledano
- Faculty of Engineering, Ruppin Academic CenterEmek HeferIsrael
| | - Adi Klein
- Department of PediatricsHillel Yaffe Medical CenterHaderaIsrael
- Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
2
|
de Souza AP, Souza Gomez CC, Gonçalves de Oliveira Ribeiro MA, Dornhofer Paro Costa P, Ribeiro JD. Correlations between ambient air pollution and the prevalence of hospitalisations and emergency room visits for respiratory diseases in children: a systematic review. Arch Dis Child 2024; 109:980-987. [PMID: 38811054 DOI: 10.1136/archdischild-2023-326214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/27/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE It is known that exposure to air pollution is associated with an increased risk for cardiovascular and respiratory diseases. This review aimed to summarise observational studies on the impact of short and long-term exposure to ambient air pollution on prevalence of hospitalisations and/or emergency department visits caused by respiratory diseases in children and adolescents. SOURCES Pubmed, Scopus, Embase and Cochrane Library databases were searched for the years 2018 to December 2022, including studies in any language. SUMMARY OF THE FINDINGS A total of 15 studies published between 2018 and 15 January 2022 were included in this review. PM2.5 was the most type of particulate matter studied. Short-term exposure to PM2,5, PM10, NO2, SO2 and O3, even at concentrations less than the current health-based guidelines, was significantly correlated with increased risk of outpatient/hospital visits and hospitalisations for respiratory diseases by children. CONCLUSIONS Our findings emphasise the importance and urgency of long-term control of air pollution and pollution-related diseases, especially among children and adolescents. There is a need for further research employing more homogeneous methodologies for assessing exposure and outcome measurements, in order to enable systematic reviews with meta-analysis.
Collapse
Affiliation(s)
- Aline Priscila de Souza
- Child and Adolescent Health, State University of Campinas Faculty of Medical Sciences, Campinas, Sao Paulo, Brazil
| | | | | | | | - José Dirceu Ribeiro
- Pediatrics, Universidade Estadual de Campinas Faculdade de Ciencias Medicas, Campinas, Brazil
| |
Collapse
|
3
|
An Z, Shen L, Lu Y, Yao B, Wu H, Niu T, Wu W, Song J. Acute effects of ambient nitrogen dioxide pollution on outpatient visits for neurological diseases in Xinxiang, China. BMC Public Health 2024; 24:2648. [PMID: 39334108 PMCID: PMC11437807 DOI: 10.1186/s12889-024-19907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that exposure to air pollution acts as a potential trigger for neurological diseases (NDs), yet the current knowledge regarding the impact of ambient nitrogen dioxide (NO2) on the patients with NDs remains limited. In this study, we conducted a time-series study to evaluate the association between short-term exposure to NO2 and hospital visits for NDs in Xinxiang, China. METHODS An over-dispersed Poisson generalized additive model was used to analyze the association between ambient NO2 concentrations and daily outpatient visits for NDs from January 1, 2015 to December 31, 2017. The model adjusted for meteorological factors, temporal trends, day of the week, and public holidays. The concentrations of air pollutants were collected from four air quality stations in Xinxiang. RESULTS A total of 38, 865 outpatient visits for NDs were retrieved during the study period. 86.5% of the patients were below the age of 65 years. It was revealed that a 10 µg/m3 increase in NO2 at lag 0 was associated with a significant rise of 1.50% (95% CI: 0.45-2.56%) in outpatient visits for NDs, which was stronger during the cold season. However, the overall results from stratified analyses did not reach statistical significance. CONCLUSIONS Short-term exposure to NO2 is associated with increased outpatient visits for NDs. These findings underscore the need for implementing mitigating measures to reduce the neurological health effects of air pollutants.
Collapse
Affiliation(s)
- Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- College of Life Sciences, Henan Normal University, 453003, Xinxiang, Henan, China
| | - Lingling Shen
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yuanyuan Lu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Bin Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Tianqi Niu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
4
|
Mizal AAK, Mohammed AQ. Comparison of sleep quality between outpatient and hospitalized children with respiratory tract dysfunction. Curr Probl Cardiol 2024; 49:102639. [PMID: 38754755 DOI: 10.1016/j.cpcardiol.2024.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES The main objective of the study to compare the effect of hospitalized and outpatient settings on quality of sleep in children with respiratory tract dysfunction. METHODOLOGY A descriptive correlational study was carried out at Dhi-Qar Health Directorate pediatric hospitals. The period of the study was from the November 19, 2023 to March 10, 2024. Purposive sample (non-probability) of 250 children (male and female). A total of (125) children were chosen from the children whose admitted to the hospitals, and a total of (125) children were chosen from the outpatient settings. The study instrument consisted of three parts: the sociodemographic sheet, clinical diagnosis sheet, and sleep quality scale. The questionnaire was modified according to experts' recommendation to use it for children with respiratory tract dysfunction. The questionnaire was evaluated by a panel of 15 experts from diverse medical and nursing professions. Both descriptive and inferential statistics were used to analyze the data. RESULTS The study findings that effect outpatient settings have more effect from hospitalized settings on quality of sleep in children with respiratory tract dysfunction (M ± SD = 1.322 ± 0.1522). CONCLUSION A study showed that the quality of sleep in children with respiratory tract dysfunction was generally average, whether in hospitalized or outpatient settings, outpatient settings had greater difficulties falling asleep and waking than children in hospitalized.
Collapse
|
5
|
Yildirim J, Alpaslan B, Karakas-Aydinbakar A, Hibiki A. The effect of environmental degradation on self-reported health: the role of renewable energy consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:343-356. [PMID: 38015397 DOI: 10.1007/s11356-023-30981-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Although there are a number of studies in the literature that have explored the effect of environmental degradation on the subjective well-being and life satisfaction, no previous study has addressed the role of renewable energy consumption in examining the effect of environmental degradation on self-reported health. To this end, we employ a conditional mixed process (CMP) model, using a unique dataset that combines both micro-level data from the 6th (2010-2014) and 7th (2017-2022) Waves of the World Values Survey (WVS) database and macro-level data from the World Bank. Our study has several important empirical findings. First, while environmental degradation deteriorates self-reported health, social capital and health expenditure have a positive impact on self-reported health. Second, the share of renewable energy consumption in total final energy consumption has a statistically significant negative impact on environmental degradation. Third, urbanization has a deteriorating effect on environmental quality and the total number of people increases environmental degradation.
Collapse
Affiliation(s)
- Julide Yildirim
- Department of Economics, TED University, Ankara, 06420, Turkey
| | - Barış Alpaslan
- Department of Economics, Social Sciences University of Ankara, Ankara, 06050, Turkey.
- Graduate School of Economics and Management, Tohoku University, Sendai, 980-8576, Japan.
| | - Aysenur Karakas-Aydinbakar
- Department of Economics, Social Sciences University of Ankara, Ankara, 06050, Turkey
- Graduate School of Economics and Management, Tohoku University, Sendai, 980-8576, Japan
| | - Akira Hibiki
- Graduate School of Economics and Management, Tohoku University, Sendai, 980-8576, Japan
| |
Collapse
|
6
|
Wang D, Wang Y, Liu Q, Sun W, Wei L, Ye C, Zhu R. Association of Air Pollution with the Number of Common Respiratory Visits in Children in a Heavily Polluted Central City, China. TOXICS 2023; 11:815. [PMID: 37888666 PMCID: PMC10610878 DOI: 10.3390/toxics11100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Children's respiratory health is vulnerable to air pollution. Based on data collected from June 2019 to June 2022 at a children's hospital in Zhengzhou, China, this study utilized Spearman correlation analysis and a generalized additive model (GAM) to examine the relationship between daily visits for common respiratory issues in children and air pollutant concentrations. Results show that the number of upper respiratory tract infection (URTI), pneumonia (PNMN), bronchitis (BCT), and bronchiolitis (BCLT) visits in children showed a positive correlation with PM2.5, PM10, NO2, SO2, and CO while exhibiting a negative correlation with temperature and relative humidity. The highest increases in PNMN visits in children were observed at lag 07 for NO2, SO2, and CO. A rise of 10 μg/m3 in NO2, 1 μg/m3 in SO2, and 0.1 mg/m3 in CO corresponded to an increase of 9.7%, 2.91%, and 5.16% in PNMN visits, respectively. The effects of air pollutants on the number of BCT and BCLT visits were more pronounced in boys compared to girls, whereas no significant differences were observed in the number of URTI and PNMN visits based on sex. Overall, air pollutants significantly affect the prevalence of respiratory diseases in children, and it is crucial to improve air quality to protect the children's respiratory health.
Collapse
Affiliation(s)
- Dan Wang
- Emergency Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; (D.W.); (Q.L.); (C.Y.)
- Emergency Department, Maternal and Child Care Service Centre of Henan, Zhengzhou 450014, China
| | - Yanan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (W.S.)
| | - Qianqian Liu
- Emergency Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; (D.W.); (Q.L.); (C.Y.)
- Emergency Department, Maternal and Child Care Service Centre of Henan, Zhengzhou 450014, China
| | - Wenxin Sun
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (W.S.)
| | - Liangkui Wei
- Emergency Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; (D.W.); (Q.L.); (C.Y.)
- Emergency Department, Maternal and Child Care Service Centre of Henan, Zhengzhou 450014, China
| | - Chengxin Ye
- Emergency Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; (D.W.); (Q.L.); (C.Y.)
- Emergency Department, Maternal and Child Care Service Centre of Henan, Zhengzhou 450014, China
| | - Rencheng Zhu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (W.S.)
| |
Collapse
|
7
|
Zhang Y, Zhang S, Xin J, Wang S, He X, Zheng C, Li S. Short-term joint effects of ambient PM 2.5 and O 3 on mortality in Beijing, China. Front Public Health 2023; 11:1232715. [PMID: 37608983 PMCID: PMC10441666 DOI: 10.3389/fpubh.2023.1232715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction In recent years, air pollution caused by co-occurring PM2.5 and O3, named combined air pollution (CAP), has been observed in Beijing, China, although the health effects of CAP on population mortality are unclear. Methods We employed Poisson generalized additive models (GAMs) to evaluate the individual and joint effects of PM2.5 and O3 on mortality (nonaccidental, respiratory, and cardiovascular mortality) in Beijing, China, during the whole period (2014-2016) and the CAP period. Adverse health effects were assessed for percentage increases (%) in the three mortality categories with each 10-μg/m3 increase in PM2.5 and O3. The cumulative risk index (CRI) was adopted as a novel approach to quantify the joint effects. Results The results suggested that both PM2.5 and O3 exhibited the greatest individual effects on the three mortality categories with cumulative lag day 01. Increases in the nonaccidental, cardiovascular, and respiratory mortality categories were 0.32%, 0.36%, and 0.43% for PM2.5 (lag day 01) and 0.22%, 0.37%, and 0.25% for O3 (lag day 01), respectively. There were remarkably synergistic interactions between PM2.5 and O3 on the three mortality categories. The study showed that the combined effects of PM2.5 and O3 on nonaccidental, cardiovascular, and respiratory mortality were 0.34%, 0.43%, and 0.46%, respectively, during the whole period and 0.58%, 0.79%, and 0.75%, respectively, during the CAP period. Our findings suggest that combined exposure to PM2.5 and O3, particularly during CAP periods, could further exacerbate their single-pollutant health risks. Conclusion These findings provide essential scientific evidence for the possible creation and implementation of environmental protection strategies by policymakers.
Collapse
Affiliation(s)
- Ying Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Shaobo Zhang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China
| | - Jinyuan Xin
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Shigong Wang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China
| | - Xiaonan He
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Canjun Zheng
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Shihong Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Zhang Y, Yin X, Zheng X. The relationship between PM2.5 and the onset and exacerbation of childhood asthma: a short communication. Front Pediatr 2023; 11:1191852. [PMID: 37593445 PMCID: PMC10429171 DOI: 10.3389/fped.2023.1191852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Much is known about the link between air pollution and asthma in adults, particularly fine particulate matter (PM2.5). Studies have found that certain levels of fine PM2.5 can increase airway responsiveness and worsen asthma. PM2.5 may play a role in the onset and exacerbation of childhood asthma. However, there is little in the literature on how PM2.5 affects asthma attacks and exacerbations in children. Asthma is a common chronic disease in children, and air pollution can aggravate it. The effect of PM2.5 on childhood asthma needs further research. By evaluating, reviewing, and collating existing results in this area, this paper aims to explore the relationship between PM2.5 and asthma onset and exacerbation in children.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- The Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Zheng J, Xu M, Xu H, Ye F, Liu X, Liu Y, Jin X. Acute effects of ambient air pollution on daily neurology clinic visits for vertigo: a time-series study in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57707-57716. [PMID: 36971932 DOI: 10.1007/s11356-023-26575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
This study aimed to disclose the relationship between ambient air pollution and neurology clinic visits (NCVs) for vertigo. A time-series study was conducted to examine relationships between six different criteria air pollutants (SO2, NO2, PM2.5, PM10, CO, and O3) and daily NCVs for vertigo in Wuhan, China, from January 1st, 2017 to November 30th, 2019. Stratified analyses were computed according to gender, age, and season. A total of 14,749 records of NCVs for vertigo were enrolled in this study. Data showed that the increase in daily NCVs for vertigo corresponding to 10 μg/m3 increase of respective pollutants are: SO2 (- 7.60%; 95% CI: - 14.25 to - 0.44%), NO2 (3.14%; 95% CI: 0.23 to 6.13%), PM2.5 (0.53%; 95% CI: - 0.66 to 1.74%), PM10 (1.32%; 95% CI: - 0.36 to 3.06%), CO (0.00%; 95% CI: - 0.12 to 0.13%), and O3 (0.90%; 95% CI: - 0.01% to 1.83%). Males were more susceptible to acute exposure to SO2 and NO2, compared to females (SO2: - 11.91% vs. - 4.16%; NO2: 3.95% vs. 2.92%), whereas the acute effect of O3 exposure was more significantly obvious in females than males (0.94% vs. 0.87%). Moreover, correlations between daily NCVs for vertigo and acute exposure to SO2, NO2, and O3 were all stronger in individuals under 50 years old (SO2: - 12.75% vs. - 4.41%; NO2: 4.55% vs. 2.75%; O3: 1.27% vs. 0.70%). Short-term exposure to PM2.5 was more significantly associated with daily NCVs for vertigo in cool seasons (1.62% vs. - 0.68%), while the correlation between CO exposure and daily NCVs for vertigo was stronger in warm seasons (0.21% vs. - 0.03%). Our study demonstrated acute exposure to ambient NO2 and O3 positively associated with daily NCVs for vertigo. Acute effects of air pollution on daily NCVs for vertigo varied according to gender, age, and season.
Collapse
Affiliation(s)
- Jiachen Zheng
- Emergency Center, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- The Second Clinical School, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Xu
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Haoyue Xu
- The Second Clinical School, Wuhan University, Wuhan, 430071, Hubei, China
| | - Fei Ye
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, Hubei, China
| | - Xiaozhou Liu
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, Hubei, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoqing Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China.
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
10
|
Chen S, Xu B, Shi T, Yang Q. Short-term effect of ambient air pollution on outpatient visits for children in Guangzhou, China. Front Public Health 2023; 11:1058368. [PMID: 36741946 PMCID: PMC9895100 DOI: 10.3389/fpubh.2023.1058368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
This study examined the short-term relationship between ambient air pollutants and children's outpatient visits, and identified the effect of modifications by season. Daily recordings of air pollutants (CO, NO2, O3, SO2, PM10, and PM2.5) and children's outpatient visit data were collected in Guangzhou from 2015 to 2019. A generalized additive model adjusted for potential confounding was introduced to verify the association between ambient air pollution and outpatient visits for children. Subgroup analysis by season was performed to evaluate the potential effects. A total of 5,483,014 children's outpatient visits were recorded. The results showed that a 10 μg/m3 increase in CO, NO2, O3, SO2, PM10, and PM2.5 corresponded with a 0.19% (95% CI: 0.15-0.24%), 2.46% (2.00-2.92%), 0.27% (0.07-0.46%), 7.16% (4.80-9.57%), 1.16% (0.83-1.49%), and 1.35% (0.88-1.82%) increase in children's outpatient visits on the lag0 of exposure, respectively. The relationships were stronger for O3, PM10, and PM2.5 in the warm seasons, and for CO, NO2, and SO2 in the cool seasons. When adjusting for the co-pollutants, the effects of CO, NO2, and PM10 were robust. The results of this study indicate that six air pollutants might increase the risk of children's outpatient visits in Guangzhou, China, especially in the cool season.
Collapse
Affiliation(s)
- Sili Chen
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Binhe Xu
- Department of Clinical Medicine, Basic Medicine College, Zunyi Medical University, Zunyi, China
| | - Tongxing Shi
- Department of Environmental Hygiene, Guangzhou Center for Disease Control and Prevention, Guangzhou, China,Department of Environmental Health, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Qiaoyuan Yang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China,Department of Environmental Health, Institute of Public Health, Guangzhou Medical University, Guangzhou, China,*Correspondence: Qiaoyuan Yang ✉
| |
Collapse
|
11
|
Nie Y, Liu L, Xue S, Yan L, Ma N, Liu X, Liu R, Wang X, Wang Y, Zhang X, Zhang X. The association between air pollution, meteorological factors, and daily outpatient visits for urticaria in Shijiazhuang, Hebei Province, China: a time series analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10664-10682. [PMID: 36076138 DOI: 10.1007/s11356-022-22901-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The associations of air pollution and meteorological factors with the outpatient visits of urticaria remain poorly studied. This study aimed to assess the association between air pollution, meteorological factors, and daily outpatient visits for urticaria in Shijiazhuang, China, during 2014-2019. Daily recordings of air pollutant concentrations, meteorological data, and outpatient visits data for urticaria were collected during the 6 years. Descriptive research methods were used to describe the distribution characteristics and demographic features of urticaria. A combination of the generalized linear regression model (GLM) and distribution lag nonlinear model (DLNM) was used to evaluate the lag association between environmental factors and daily outpatient visits for urticaria. Stratified analyses by gender (male; female) and age (< 18 years; 18-39 years; > 39 years) were further conducted. The dose-response relationship between daily urticaria visits and CO, NO2, O3, temperature, and relative humidity was nonlinear. High concentrations of CO, NO2, O3, and high temperatures increased the risk of urticaria outpatient visits. The maximum cumulative association of high concentrations of CO, NO2, and O3 was lag 0-14 days (CO: RR = 1.10, 95%CI: 1.06, 1.31; NO2: RR = 1.09, 95%CI: 1.01, 1.08; O3: RR = 1.16, 95%CI: 1.08, 1.25), and high temperatures was lag 0-7 days (RR = 1.27, 95%CI: 1.14, 1.41). Low concentrations of NO2, O3, and high humidity, on the other hand, act as protective factors for urticaria outpatient. The maximum cumulative association of low concentrations of NO2 was the 0-day lag (RR = 0.97, 95%CI: 0.95, 0.99), O3 was lag 0-5 days (RR = 0.94, 95%CI: 0.88, 0.99), and high humidity was lag 0-10 days (RR = 0.93, 95%CI: 0.89, 0.98). Stratified analyses showed that the risk of urticaria outpatient visits was higher for the males and in the < 18 years age group. In conclusion, we found that the development of urticaria in Shijiazhuang has a distinct seasonal and cyclical nature. Air pollutants and meteorological factors had varying degrees of influence on the risk of urticaria outpatient visits. This study provides indirect evidence for a link between air pollution, meteorological factors, and urticaria outpatient visits.
Collapse
Affiliation(s)
- Yaxiong Nie
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Lijuan Liu
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shilin Xue
- School of Basic Medical Sciences, Peking University, Peking University Health Science Center, Beijing, China
| | - Lina Yan
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Ning Ma
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Xuehui Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Ran Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Xue Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Yameng Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Xinzhu Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Xiaolin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China.
| |
Collapse
|
12
|
Assessing the Impact of Meteorological Conditions on Outpatient Visits for Childhood Respiratory Diseases in Urumqi, China. J Occup Environ Med 2022; 64:e598-e605. [DOI: 10.1097/jom.0000000000002640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Liu L, Wang B, Qian N, Wei H, Yang G, Wan L, He Y. Association between ambient PM 2.5 and outpatient visits of children's respiratory diseases in a megacity in Central China. Front Public Health 2022; 10:952662. [PMID: 36249195 PMCID: PMC9561247 DOI: 10.3389/fpubh.2022.952662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023] Open
Abstract
Objective To explore the relationship between ambient PM2.5 level and outpatient visits of children with respiratory diseases in a megacity, Zhengzhou, in central China. Methods We collected daily outpatient visit data, air pollutant data, and meteorological data at the monitoring points of Zhengzhou from the time period 2018 to 2020 and used Spearman's rank correlation to analyze the correlation between children's respiratory outpatient visits and air pollutants and meteorological factors. Generalized additive models were used to analyze the association between PM2.5 exposures and children's respiratory outpatient visits. A stratified analysis was further carried out for the seasons. Results From 2018 to 2020, the total number of outpatients with children's respiratory diseases was 79,1107, and the annual average concentrations of PM2.5, PM10, SO2, NO2, CO, and O3-8h in Zhengzhou were respectively 59.48 μg/m3, 111.12 μg/m3, 11.10 μg/m3, 47.77 μg/m3, 0.90 mg/m3 and 108.81 μg/m3. The single-pollutant model showed that the risk of outpatient visits for children with respiratory disease increased by 0.341% (95%CI: 0.274-0.407%), 0.532% (95%CI: 0.455-0.609%) and 0.233% (95%CI: 0.177-0.289%) for every 10 μg/m3 increase in PM2.5 with a 3-day lag, 1-day lag, and 1-day lag respectively for the whole year, heating period, and non-heating period. The multi-pollutant model showed that the risk of PM2.5 on children's respiratory disease visits was robust. The excess risk of PM2.5 on children's respiratory disease visits increased by 0.220% (95%CI: 0.147-0.294%) when SO2 was adjusted. However, the PM2.5 effects were stronger during the heating period than during the non-heating period. Conclusion The short-term exposure to PM2.5 was significantly associated with outpatient visits for children's respiratory diseases. It is therefore necessary to strengthen the control of air pollution so as to protect children's health.
Collapse
Affiliation(s)
- Le Liu
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bingya Wang
- Department of Nutrition, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Nana Qian
- Department of Radiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiyan Wei
- Department of Social Medicine and Health Administration, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangmei Yang
- Department of Social Medicine and Health Administration, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Leping Wan
- Department of Social Medicine and Health Administration, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yan He
- Department of Social Medicine and Health Administration, School of Public Health, Zhengzhou University, Zhengzhou, China,*Correspondence: Yan He
| |
Collapse
|
14
|
Air pollution in Delhi, India: It’s status and association with respiratory diseases. PLoS One 2022; 17:e0274444. [PMID: 36126064 PMCID: PMC9488831 DOI: 10.1371/journal.pone.0274444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
The policymakers need research studies indicating the role of different pollutants with morbidity for polluted cities to install a strategic air quality management system. This study critically assessed the air pollution of Delhi for 2016–18 to found out the role of air pollutants in respiratory morbidity under the ICD-10, J00-J99. The critical assessment of Delhi air pollution was done using various approaches. The mean PM2.5 and PM10 concentrations during the measurement period exceeded both national and international standards by a wide margin. Time series charts indicated the interdependence of PM2.5 and PM10 and connection with hospital visits due to respiratory diseases. Violin plots showed that daily respiratory disease hospital visits increased during the winter and autumn seasons. The winter season was the worst from the city’s air pollution point of view, as revealed by frequency analyses. The single and multi-pollutant GAM models indicated that short-term exposure to PM10 and SO2 led to increased hospital visits due to respiratory diseases. Per 10 units increase in concentrations of PM10 brought the highest increase in hospital visits of 0.21% (RR: 1.00, 95% CI: 1.001, 1.002) at lag0-6 days. This study found the robust effect of SO2 persisted in Delhi from lag0 to lag4 days and lag01 to lag06 days for single and cumulative lag day effects, respectively. While every 10 μg m-3 increase of SO2 concentrations on the same day (lag0) led to 32.59% (RR: 1.33, 95% CI: 1.09, 1.61) rise of hospital visits, the cumulative concentration of lag0-1 led to 37.21% (RR: 1.37, 95% CI:1.11, 1.70) rise in hospital visits which further increased to even 83.33% (RR: 1.83, 95% CI:1.35, 2.49) rise at a lag0-6 cumulative concentration in Delhi. The role of SO2 in inducing respiratory diseases is worrying as India is now the largest anthropogenic SO2 emitter in the world.
Collapse
|
15
|
He M, Zhong Y, Chen Y, Zhong N, Lai K. Association of short-term exposure to air pollution with emergency visits for respiratory diseases in children. iScience 2022; 25:104879. [PMID: 36065191 PMCID: PMC9440288 DOI: 10.1016/j.isci.2022.104879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/07/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Ambient air pollutants are health hazards to children. This study comprised 773,504 emergency department visits (EDVs) at 0–14 years of age with respiratory diseases in southern China. All air pollutants were positively associated with EDVs of total respiratory diseases, especially pneumonia. NO2, PM10, and PM2.5 had intraday effects and cumulative effects on asthma EDVs. The effect of SO2, PM10, and PM2.5 on pneumonia EDVs was stronger in girls than in boys. The effect of NO2 on acute upper respiratory tract infection EDVs was greater in children aged 0–5 years old; however, the effect of PM10 on acute upper respiratory tract infection EDVs was greater in the 6–14 years group. In a two-pollutant model, NO2 was associated with bronchitis and pneumonia, and PM10 was associated with acute upper respiratory tract infection. In this time-series study, NO2 and PM10 were risk indicators for respiratory diseases in children. Air pollution associates with children emergency visits for respiratory diseases NO2 and PM10 are risk indicators for respiratory diseases in children Young children are more sensitive to gaseous pollutants School-age children are more sensitive to PM10
Collapse
|
16
|
Chao L, Lu M, Gao W, An Z, Li J, Liu Y, Wu W, Song J. Ambient temperature exposure and risk of outpatient visits for dermatologic diseases in Xinxiang, China: a time-series analysis. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1487-1493. [PMID: 35522347 DOI: 10.1007/s00484-022-02297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The effect of ambient temperature on dermatologic diseases has received widespread attention. Previous studies have shown that ambient temperature might affect specific dermatologic diseases, but results were inconsistent. This study aims to assess the short-term effect of ambient temperature on outpatient visits due to dermatologic diseases (DMs) in Xinxiang, China. Daily DMs outpatient visits, mean temperature, mean relative humidity, and air pollution data of Xinxiang were retrieved from January 1, 2015, to December 31, 2018. A distributed lag nonlinear model (DLNM) was applied to analyze the effect of ambient temperature on DMs outpatients. We controlled several potential confounding factors such as the long-term trend, public holiday, day of the week, humidity, and air pollutants (NO2, PM2.5). Finally, two more stratification analysis was conducted by age and gender. A total of 164,270 outpatients of DMs were enrolled during our study, and the daily mean visits were 113. The estimated effect of temperature on DMs was nonlinear. Heat temperature would exacerbate outpatients of dermatologic diseases. With a reference median temperature (17 °C), the effect of temperature on DMs was most pronounced at lag0-14; exposure to heat (32 °C, 99th) was associated with 1.565 (95% CI: 1.266-1.934) increased risk of outpatients for DMs. Stratification analysis showed that citizens of young ages were susceptive to heat; both genders had a similar relationship between temperature and DMs risk. This study highlights that ambient temperature was associated with DMs outpatients; heat temperature might aggravate DMs risk. The health hazards of heat temperature required more attention, and more effective prevention measurements should be designed and implemented to curb global warming.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Mengxue Lu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Wenshan Gao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yue Liu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
17
|
Ziou M, Tham R, Wheeler AJ, Zosky GR, Stephens N, Johnston FH. Outdoor particulate matter exposure and upper respiratory tract infections in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 210:112969. [PMID: 35183515 DOI: 10.1016/j.envres.2022.112969] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND While the relationship between outdoor particulate matter (PM) and lower respiratory tract infections in children and adolescents is accepted, we know little about the impacts of outdoor PM on the risk of developing or aggravating upper respiratory tract infections (URTIs). METHODS We aimed to review the literature examining the relationship between outdoor PM exposure and URTIs in children and adolescents. A systematic search of EMBASE, MEDLINE, PubMed, Scopus, CINAHL and Web of Science databases was undertaken on April 3, 2020 and October 27, 2021. Comparable short-term studies of time-series or case-crossover designs were pooled in meta-analyses using random-effects models, while the remainder of studies were combined in a narrative analysis. Quality, risk of bias and level of evidence for health effects were appraised using a combination of emerging frameworks in environmental health. RESULTS Out of 1366 articles identified, 34 were included in the systematic review and 16 of these were included in meta-analyses. Both PM2.5 and PM10 levels were associated with hospital presentations for URTIs (PM2.5: RR = 1.010, 95%CI = 1.007-1.014; PM10: RR = 1.016, 95%CI = 1.011-1.021) in the meta-analyses. Narrative analysis found unequivocally that total suspended particulates were associated with URTIs, but mixed results were found for PM2.5 and PM10 in both younger and older children. CONCLUSION This study found some evidence of associations between PM and URTIs in children and adolescents, the relationship strength increased with PM10. However, the number of studies was limited and heterogeneity was considerable, thus there is a need for further studies, especially studies assessing long-term exposure and comparing sources.
Collapse
Affiliation(s)
- Myriam Ziou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Rachel Tham
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicola Stephens
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
18
|
Ibrahim MF, Hod R, Ahmad Tajudin MAB, Wan Mahiyuddin WR, Mohammed Nawi A, Sahani M. Children's exposure to air pollution in a natural gas industrial area and their risk of hospital admission for respiratory diseases. ENVIRONMENTAL RESEARCH 2022; 210:112966. [PMID: 35202623 DOI: 10.1016/j.envres.2022.112966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The rapid expansion of the natural gas industry to meet the global demand have raised environmental health concerns. Few studies have found that areas with natural gas industrial activity have poor air quality. However, the negative health impacts of ambient air pollution in a natural gas industrial area remain unclear. This study aimed to explore the relationship between short-term exposure to air pollution and hospital admissions for respiratory diseases among children in a natural gas industrial area in Bintulu, Malaysia. Daily hospital admissions for respiratory diseases among children were collected from a hospital in Bintulu from 2010 to 2019. Data on six air pollutants (PM10, PM2.5, SO2, NO2, O3, and CO) in the study area were obtained from the Department of Environment Malaysia. Quasi-Poisson time series regressions with distributed lag non-linear models (DLNM) were applied to explore the associations between ambient air pollution and childhood hospitalisations for respiratory diseases. Stratification analyses were performed by gender and age group to identify the vulnerable populations. A 10 μg/m3 increased PM2.5 and SO2 was associated with hospital admissions for respiratory diseases among children with the greatest relative risk of RR 1.089 (95% CI 1.001-1.183) at cumulative lag 0-2 days and RR 1.229 (95% CI 1.073-1.409) at cumulative lag 0-6 days, respectively. There was no significant association between short-term exposure of PM10, NO2, CO, and O3 with childhood respiratory hospitalisation. The association between PM2.5 and SO2 exposure and hospital admissions for childhood respiratory diseases in the two pollutants model remained statistically significant. There were stronger associations in younger children aged 0-4 years and girls. This study reveals that short-term exposure to SO2 was associated with a higher risk of respiratory hospitalisations among children in Bintulu than PM2.5. Better air quality control is necessary for children's health living in the natural gas industrial area.
Collapse
Affiliation(s)
- Mohd Faiz Ibrahim
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
| | | | - Wan Rozita Wan Mahiyuddin
- Institute for Medical Research, National Institutes of Health, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, 40170, Shah Alam, Selango, Shah Alam, Selangor, Malaysia
| | - Azmawati Mohammed Nawi
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Mazrura Sahani
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Liu Y, Jiang Y, Wu M, Muheyat S, Yao D, Jin X. Short-term effects of ambient air pollution on daily emergency room visits for abdominal pain: a time-series study in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40643-40653. [PMID: 35084676 DOI: 10.1007/s11356-021-18200-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Short-term exposure to ambient air pollution has been proven to result in respiratory, cardiovascular, and digestive diseases, leading to increased emergency room visits (ERVs). Abdominal pain complaints provide a large proportion of the ERVs, as yet few studies have focused on the correlations between ambient air pollution and abdominal pain, especially in emergency departments within China. Daily data for daily ERVs were collected in Wuhan, China (from January 1, 2016 to December 31, 2018), including air pollution concentration (SO2, NO2, PM2.5, PM10, CO, and O3), and meteorological variables. We conducted a time-series study to investigate the potential correlation between six ambient air pollutants and ERVs for abdominal pain and their effects, in different genders, ages, and seasons. A total of 16,318 abdominal pain ERVs were identified during the study period. A 10-μg/m3 increase in concentration of SO2, NO2, PM2.5, PM10, CO, and O3 corresponded respectively to incremental increases in abdominal pain of 4.89% (95% confidence interval [CI]: - 1.50-11.70), 1.85% (95% CI: - 0.29-4.03), 0.83% (95% CI: - 0.05-1.72), - 0.22% (95% CI: - 0.73-0.30), 0.24% (95% CI: 0.08-0.40), and 0.86% (95% CI: 0.04 - 1.69). We observed significant correlations between CO and O3 and increases in daily abdominal pain ERVs and positive but insignificant correlations between the other pollutants and ERVs (except PM10). The effects were stronger for females (especially SO2 and O3: 13.53% vs. - 2.46%; 1.20% vs. 0.47%, respectively) and younger people (especially CO and O3: 0.25% vs. 0.01%; 1.36% vs. 0.15%, respectively). Males (1.38% vs. 0.87%) and elders (1.27% vs. 0.99%) were more likely to be affected by PM2.5. The correlations with PM2.5 were stronger in cool seasons (1.25% vs. - 0.07%) while the correlation with CO was stronger in warm seasons (0.47% vs. 0.14%). Our time-series study suggests that short-term exposure to air pollution (especially CO and O3) was positively correlated with ERVs for abdominal pain in Wuhan, China, and that the effects varied by season, gender and age. These data can add evidence on how air pollutants affect the human body and may prompt hospitals to take specific precautions on polluted days and maintain order in emergency departments made busier due to the pollution.
Collapse
Affiliation(s)
- Yaqi Liu
- The Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yi Jiang
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Manyi Wu
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Sunghar Muheyat
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Dongai Yao
- Physical Examination Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoqing Jin
- The Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
20
|
Liu WY, Yi JP, Shi L, Tung TH. Association Between Air Pollutants and Pediatric Respiratory Outpatient Visits in Zhoushan, China. Front Public Health 2022; 10:865798. [PMID: 35444995 PMCID: PMC9014799 DOI: 10.3389/fpubh.2022.865798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aimed to explore the time-series relationship between air pollutants and the number of children's respiratory outpatient visits in coastal cities. METHODS We used time series analysis to investigate the association between air pollution levels and pediatric respiratory outpatient visits in Zhoushan city, China. The population was selected from children aged 0-18 who had been in pediatric respiratory clinics for eight consecutive years from 2014 to 2020. After describing the population and weather characteristics, a lag model was used to explore the relationship between outpatient visits and air pollution. RESULTS We recorded annual outpatient visits for different respiratory diseases in children. The best synergy lag model found a 10 μg/m3 increase in PM2.5 for every 4-10% increase in the number of pediatric respiratory outpatient visits (P < 0.05). The cumulative effect of an increase in the number of daily pediatric respiratory clinics with a lag of 1-7 days was the best model. CONCLUSIONS PM2.5 is significantly related to the number of respiratory outpatient visits of children, which can aid in formulating policies for health resource allocation and health risk assessment strategies.
Collapse
Affiliation(s)
- Wen-Yi Liu
- Department of Health Policy Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
- Shanghai Bluecross Medical Science Institute, Shanghai, China
| | - Jing-Ping Yi
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, China
| | - Leiyu Shi
- Department of Health Policy Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
21
|
Liu Y, Wang Y, Dong J, Wang J, Bao H, Zhai G. Association between air pollution and emergency department visits for upper respiratory tract infection inLanzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28816-28828. [PMID: 34989991 DOI: 10.1007/s11356-021-17932-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
There is limited evidence regarding the associations between air pollution and emergency hospital visits for upper respiratory tract infection (URTI) in the arid regions of northwest China. We collected daily emergency department (ED) visits for URTI from three hospitals in Lanzhou during January 2014 and December 2018, as well as daily air pollutants and meteorological factors. In the present study, generalized additive model with quasi-Poisson regression was used to evaluate the relationship between short-term exposure to ambient pollutants and daily emergency hospital visits for URTI in Lanzhou, China. Furthermore, subgroup analyses were conducted by gender (male and female), age (0-14, 15-64, and ≥ 65 years)), and season (cold season, warm season). The results of the single-pollutant model show that the associations of PM2.5, PM10, SO2, NO2, and CO with URTI ED visits were all statistically significant, whereas we observed insignificant associations of O38h. The highest association of each pollutant with hospital emergency visits was observed with PM2.5 (5.302% (95% CI: 3.202, 7.445)), PM10 (0.808% (95% CI: 0.291, 1.328)), SO2 (10.607% (95% CI: 5.819, 15.611)), and NO2 (5.325% (95% CI: 2.379, 8.357)) at lag 07 for an increase of 10 ug/m3 in concentrations of the pollutants. Percentage increase for each 1-mg/m3 increase in CO was 20.799% (95% CI: 11.834, 30.482) at lag 07. In the stratification analyses, females were more susceptible to PM2.5 and PM10, while males were more sensitive to the effects of SO2, NO2, and CO, and the higher association effect of four pollutants (PM2.5, SO2, NO2, and CO) on hospital visits for URTI among children (0-14 years). The associations appeared to be stronger in the cool season than in the warm season. This study suggests that short-term exposure to air pollution, especially to SO2 and CO, was associated with increased risk of hospital emergency visits for URTI in Lanzhou, China. Relevant strategies and health interventions should be strengthened to reduce the air pollution level in the future.
Collapse
Affiliation(s)
- Yurong Liu
- School of Public Health, Lanzhou University, Lanzhou 730000, Lanzhou, People's Republic of China
| | - Yanru Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, Lanzhou, People's Republic of China
| | - Jiyuan Dong
- School of Public Health, Lanzhou University, Lanzhou 730000, Lanzhou, People's Republic of China.
| | - Jiancheng Wang
- Gansu Provincial Hospital, Lanzhou, 730050, People's Republic of China
| | - Hairong Bao
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Guangyu Zhai
- School of Economics and Management, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| |
Collapse
|
22
|
Cao D, Zheng D, Qian ZM, Shen H, Liu Y, Liu Q, Sun J, Zhang S, Jiao G, Yang X, Vaughn MG, Wang C, Zhang X, Lin H. Ambient sulfur dioxide and hospital expenditures and length of hospital stay for respiratory diseases: A multicity study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113082. [PMID: 34929503 DOI: 10.1016/j.ecoenv.2021.113082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ambient sulfur dioxide (SO2) has been associated with morbidity and mortality of respiratory diseases, however, its effect on length of hospital stays (LOS) and cost for these diagnoses remain unclear. METHODS We collected hospital admission information for respiratory diseases from all 11 cities in the Shanxi Province of China during 2017-2019. We assessed individual-level exposure by using an inverse distance weighting approach based on geocoded residential addresses. A generalized additive model was built to delineate city-specific effects of SO2 on hospitalization, hospital expenditure, and length of hospital stay for respiratory diseases. The overall effects were obtained by random-effects meta-analysis. We further estimated the respiratory burden attributable to SO2 by comparing different reference concentrations. RESULTS We observed significant effects of SO2 exposure on respiratory diseases. At the provincial level, each 10 μg/m3 increase in SO2 on lag03 was associated with a 0.63% (95% CI: 0.14-0.11) increase in hospital admission, an increase of 4.56 days (95% CI: 1.16-7.95) of hospital stay, and 3647.97 renminbi (RMB, Chinese money) (95% CI: 1091.05-6204.90) in hospital cost. We estimated about 6.13 (95% CI: 1.33-11.10) thousand hospital admissions, 65.77 million RMB (95% CI: 19.67-111.87) in hospital expenditure, and 82.13 (95% CI: 20.87-143.40) thousand days of hospital stay could have potentially been avoided had the daily SO2 concentrations been reduced to WHO's reference concentration (40 µg/m3). Variable values in correspondence with this reference concentration could reduce the hospital cost and LOS of each case by 52.67 RMB (95% CI: 15.75-89.59) and 0.07 days (95% CI: 0.02-0.117). CONCLUSION This study provides evidence that short-term ambient SO2 exposure is an important risk factor of respiratory diseases, indicating that continually tightening policies to reduce SO2 levels could effectively reduce respiratory disease burden in Shanxi Province.
Collapse
Affiliation(s)
- Dawei Cao
- Department of Respiration, Key Laboratory of Respiratory Disease Prevention and Control of Shanxi Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dashan Zheng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, 3545 Lafayette Avenue, Saint Louis, MO 63104, USA
| | - Huiqing Shen
- Department of Respiration, Key Laboratory of Respiratory Disease Prevention and Control of Shanxi Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi Liu
- Department of Respiration, Key Laboratory of Respiratory Disease Prevention and Control of Shanxi Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiyong Liu
- Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jimin Sun
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Shiyu Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Guangyuan Jiao
- Department of Ideological and Political Education, School of Marxism, Capital Medical University, Beijing, China
| | - Xiaoran Yang
- Department of Standards and Evaluation, Beijing Municipal Health Commission Policy Research Center, Beijing Municipal health Commission Information Center, Beijing, China
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Tegeler Hall, 3550 Lindell Boulevard, St. Louis, MO 631034, USA
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinri Zhang
- Department of Respiration, Key Laboratory of Respiratory Disease Prevention and Control of Shanxi Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Hualiang Lin
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China.
| |
Collapse
|
23
|
Li Y, Li C, Liu J, Meng C, Xu C, Liu Z, Wang Q, Liu Y, Han J, Xu D. An association between PM 2.5 and pediatric respiratory outpatient visits in four Chinese cities. CHEMOSPHERE 2021; 280:130843. [PMID: 34162098 DOI: 10.1016/j.chemosphere.2021.130843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The effects of exposure to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) on children's respiratory system were investigated in numerous epidemiological literatures. However, studies on the association between PM2.5 and pediatric outpatient visits for respiratory diseases, especially considering the multicenter studies were limited in China. OBJECTIVES To study the association between the short-term exposure to PM2.5 and the number of children's outpatient visits for respiratory diseases in four Chinese cities as well as the pooled health effects. METHODS Data of pediatric outpatient visits for respiratory diseases (RD, ICD: J00-J99) from representative hospitals in Shijiazhuang (SJZ), Xi'an (XA), Nanjing (NJ) and Guangzhou (GZ) in China from 2015 to 2018 were collected and the air quality data for the same period were collected from environmental protection departments. Generalized additive model (GAM) with quasi-Poisson regression was conducted to analyze the effects of PM2.5 on the number of pediatric outpatient visits in each city. Single-day lag model (lag0 to lag7) and moving average lag model (lag01 and lag07) were used to examine the lag effects and cumulative effects. Random-effects meta-analysis was used to pool the estimated risks of four cities. The interactions between PM2.5 and temperature were also explored. RESULTS The average daily/total outpatient visits for RD, in SJZ, XA, NJ and GZ from 2015 to 2018 were 854.2/1,245,384, 2353.9/3,439,025, 1267.2/1,851,438 and 1399.5/2,044,740 respectively. The percentages of acute upper respiratory infections (URD, ICD: J00-J06) and other acute lower respiratory infections (LRD, ICD: J20-J22) in RD were 33%, 13% (SJZ), 43%, 32% (XA), 26%, 21% (NJ) and 54%, 26% (GZ). The largest pooled estimates of single-day lag effects for RD, URD, and LRD were at lag0, lag0 and lag1. Every 10 μg/m3 increase in PM2.5 concentration was associated with a 0.46% (95%CI: 0.21%-0.70%), 0.50% (95%CI: 0.19%-0.81%) and 0.42% (95%CI: 0.06%-0.79%) increased number of outpatient visits significantly. While max cumulative effects which were all at lag 07 were 1.10% (95%CI: 0.46%-1.74%), 0.96% (95%CI: 0.20%-1.73%) and 1.06% (95%CI: 0.12%-2.00%). Less polluted cities (GZ and NJ) showed greater city-specific excess risks, but the excess risks significantly decreased after adjusting for NO2 in two-pollutant models. Generally, PM2.5 showed larger health hazards on lower temperature days. CONCLUSIONS Our study showed that exposure to the ambient PM2.5 was associated with the increase of the number of outpatient visits with pediatric respiratory diseases in four Chinese cities. The health effects of PM2.5 may not be independent of other air pollutants and could be modified by temperature.
Collapse
Affiliation(s)
- Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Chengcheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Jingyi Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Congshen Meng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Chunyu Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Zhe Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Qin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Yue Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China
| | - Jingxiu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China.
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, China.
| |
Collapse
|
24
|
Yadav R, Nagori A, Mukherjee A, Singh V, Lodha R, Kabra SK, Yadav G, Saini JK, Singhal KK, Jat KR, Madan K, George MP, Mani K, Mrigpuri P, Kumar R, Guleria R, Pandey RM, Sarin R, Dhaliwal RS. Effects of ambient air pollution on emergency room visits of children for acute respiratory symptoms in Delhi, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45853-45866. [PMID: 33881691 DOI: 10.1007/s11356-021-13600-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The present study explored the association between daily ambient air pollution and daily emergency room (ER) visits due to acute respiratory symptoms in children of Delhi. The daily counts of ER visits (ERV) of children (≤15 years) having acute respiratory symptoms were obtained from two hospitals of Delhi for 21 months. Simultaneously, data on daily concentrations of particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3) and weather variables were provided by the Delhi Pollution Control Committee. K-means clustering with time-series approach and multi-pollutant generalized additive models with Poisson link function was used to estimate the 0-6-day lagged change in daily ER visits with the change in multiple pollutants levels. Out of 1,32,029 children screened, 19,120 eligible children having acute respiratory symptoms for ≤2 weeks and residing in Delhi for the past 4 weeks were enrolled. There was a 29% and 21% increase in ERVs among children on high and moderate level pollution cluster days, respectively, compared to low pollution cluster days on the same day and previous 1-6 days of exposure to air pollutants. There was percentage increase (95% CI) 1.50% (0.76, 2.25) in ERVs for acute respiratory symptoms for 10 μg/m3 increase of NO2 on previous day 1, 46.78% (21.01, 78.05) for 10 μg/m3 of CO on previous day 3, and 13.15% (9.95, 16.45) for 10 μg/m3 of SO2 on same day of exposure. An increase in the daily ER visits of children for acute respiratory symptoms was observed after increase in daily ambient air pollution levels in Delhi.
Collapse
Affiliation(s)
- Rashmi Yadav
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditya Nagori
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aparna Mukherjee
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Varinder Singh
- Kalawati Saran Children Hospital and Lady Harding Medical College, New Delhi, ,110001, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Geetika Yadav
- Indian Council of Medical Research, New Delhi, 110029, India
| | - Jitendra Kumar Saini
- National Institute of Tuberculosis and Respiratory Diseases, New Delhi, 110030, India
| | - Kamal Kumar Singhal
- Kalawati Saran Children Hospital and Lady Harding Medical College, New Delhi, ,110001, India
| | - Kana Ram Jat
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Karan Madan
- Pulmonology, Critical Care and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, 10029, India
| | - Mohan P George
- Delhi Pollution Control Committee, Kashmere Gate, New Delhi, 110006, India
| | - Kalaivani Mani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Parul Mrigpuri
- Vallabhbhai Patel Chest Institute, New Delhi, 110007, India
| | - Raj Kumar
- Vallabhbhai Patel Chest Institute, New Delhi, 110007, India
| | - Randeep Guleria
- Pulmonology, Critical Care and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, 10029, India
| | - Ravindra Mohan Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rohit Sarin
- National Institute of Tuberculosis and Respiratory Diseases, New Delhi, 110030, India
| | | |
Collapse
|
25
|
Chao L, Lu M, An Z, Li J, Li Y, Zhao Q, Wang Y, Liu Y, Wu W, Song J. Short-term effect of NO 2 on outpatient visits for dermatologic diseases in Xinxiang, China: a time-series study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1-11. [PMID: 33559783 PMCID: PMC7871127 DOI: 10.1007/s10653-021-00831-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/23/2021] [Indexed: 05/10/2023]
Abstract
OBJECTIVES As the largest organ of the human body, the skin is the major exposure route of NO2. However, the evidence for a relationship between NO2 exposure and dermatologic diseases (DMs) is limited. This time-series study was conducted to assess the short-term effect of nitrogen dioxide (NO2) exposure on DMs outpatient visits in Xinxiang, China. METHODS Daily recordings of NO2 concentrations, meteorological data, and the outpatient visits data for DMs were collected in Xinxiang from January 1st, 2015, to December 31st, 2018. The analysis method used was based on the generalized additive model (GAM) with quasi-Poisson regression to investigate the relationship between NO2 exposure and DMs outpatient visits. Several covariates, such as long-term trends, seasonality, and weather conditions were controlled. RESULTS A total of 164,270 DMs outpatients were recorded. A 10 μg/m3 increase in NO2 concentrations during the period was associated with a 1.86% increase in DMs outpatient visits (95% confidence intervals [Cl]: 1.06-2.66%). The effect was stronger (around 6 times) in the cool seasons than in warmer seasons and younger patients (< 15 years of age) appeared to be more vulnerable. CONCLUSIONS The findings of this study indicate that short-term exposure to NO2 increases the risk of DMs in Xinxiang, China, especially in the cool seasons. Policymakers should implement more stringent air quality standards to improve air quality.
Collapse
Affiliation(s)
- Ling Chao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Mengxue Lu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yuchun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Qian Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yue Liu
- Chinese Center for Disease Control and Prevention, National Institute of Environmental Health, Beijing, 100021, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
26
|
Cheng B, Ma Y, Wang H, Shen J, Zhang Y, Guo L, Guo Y, Li M. Particulate matter pollution and emergency room visits for respiratory diseases in a valley Basin city of Northwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3457-3468. [PMID: 33559782 DOI: 10.1007/s10653-021-00837-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/23/2021] [Indexed: 05/25/2023]
Abstract
Epidemiological studies have suggested that particulate matter (PM) pollution seriously affects human health, particularly it is closely associated with respiratory diseases. The aim of this study is to quantitatively evaluate the effect of PMs (PM10 and PM2.5) on emergency room (ER) visits for respiratory diseases in Lanzhou, a valley basin city in northwest China. Based on the data of the ER visits, daily concentration of particulate matters and daily meteorological elements from January 1, 2013, to July 31, 2017, we used a generalized additive model (GAM) of time series to evaluate the exposure-response relationship between PMs and respiratory ER visits. Seasonal modified effects of PM2.5 and PM10 on different age and gender groups were also performed. Results showed that the highest incidence of respiratory diseases occurred in winter. Respiratory ER visits for the total were significantly associated with PM2.5 (at lag 0 day) and PM10 (at lag 3 days), with relative risks (RRs) of 1.042 (95%CI: 1.036 -1.047) and 1.013 (95%CI: 1.011-1.016), respectively. Effects of PM pollutants on respiratory diseases are different among different age and gender groups. Children under 15 years and the elders over 60 years were the most sensitive to PM pollution, and males were more sensitive than females. The results obtained in the current study would provide a scientific evidence for local government to make policy decision for prevention of respiratory diseases.
Collapse
Affiliation(s)
- Bowen Cheng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Ma
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Hang Wang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jiahui Shen
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yifan Zhang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Lingyun Guo
- The Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Yongtao Guo
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Mingji Li
- Resource and Environment Department, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
27
|
Elemental and isotopic compositions in blank filters collecting atmospheric particulates. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The atmospheric particulates can be harmful to human health due to toxic substances sorbed onto particulates. Although the atmospheric particulates have been collected using different types of filters, few studies have reported background contents of major and trace element, and isotopic compositions in the blank filters used for collecting the particulates yet. Here, we first report background contents of major and trace elements, and isotopic compositions (Zn and Pb isotopes) in the blank filters. Then, we evaluate the best type of filter for elemental and isotope analyses in the particulates.
Findings
The contents of major elements are the lowest in the PTFE filter and become higher in the order of the Nylon, NC, and GF filters, indicating that either PTFE and/or Nylon filters are the most suitable for major element analysis in the atmospheric particulates. Likewise, the contents of trace elements are the lowest in the PTFE filter and become much higher in the order of the Nylon, NC, and GF filters, indicating that PTFE filter is the most suitable for trace element analysis in the atmospheric particulates. Otherwise, background elemental contents result in overestimating their concentrations in the atmospheric particulates. All δ66ZnJMC-Lyon values in two GF filters are within those from samples of the Chinese deserts and of the Chinese Loess Plateau. Likewise, their 206Pb/204Pb ratios are similar with those of samples from Xi’an and Beijing, indicating that the GF filter is not suitable for Zn and Pb isotope study in the atmospheric particulates.
Conclusions
This study suggests that the PTFE filter is the most suitable for elemental and isotope study in the atmospheric particulates and that the GF filter cannot be used for source identification in the atmospheric particulates using Zn and Pb isotopes.
Collapse
|
28
|
Dong J, Wang Y, Wang J, Bao H. Association between atmospheric PM 2.5 and daily outpatient visits for children's respiratory diseases in Lanzhou. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:989-999. [PMID: 33587184 DOI: 10.1007/s00484-021-02080-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 05/21/2023]
Abstract
The relationship between fine particulate matter (PM2.5) and respiratory disease outcomes among children aged 0 to 14 years in Lanzhou, China, was evaluated. We utilized a generalized additive model linked by a quasi-Poisson distribution to examine the associations between PM2.5 and paediatric respiratory outpatient visits for time lags of 0 up to 7 days, and stratified by gender, age, and season. Cases of respiratory disease in children were collected from 3 large hospitals for the years 2014-2017 and then linked with air pollutant concentrations from 4 air quality monitoring stations by date. We observed positive and significant associations between PM2.5 and respiratory disease from the lag to lag 7, and from lag01 to lag07, with ER reaching the maximum value at lag07. For each 10 μg/m3 increase in PM2.5 (lag07), the associated increment in respiratory diseases was 2.83% (95% CI 1.80%-3.86%). Males were more sensitive to the adverse effects, and the association was more significant in spring (from March to May) and winter (from December to the next February). Overall, the child group (age 3-6 years) demonstrated a higher risk of respiratory disease after PM2.5 exposure. The associations between ambient PM2.5 and respiratory hospital outpatients among young children became partially attenuated after the adjustment for gaseous pollutants in subgroups. The exposure-response curves were positive and generally nonlinear but flatted at concentrations over 60 μg/m3. This research found a significant association between ambient PM2.5 levels and hospital outpatient visits in child with respiratory diseases in Lanzhou, China.
Collapse
Affiliation(s)
- Jiyuan Dong
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| | - Yanru Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiancheng Wang
- Gansu Provincial Hospital, Lanzhou, 730050, People's Republic of China
| | - Hairong Bao
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, 730050, China
| |
Collapse
|
29
|
Gao J, Lu M, Sun Y, Wang J, An Z, Liu Y, Li J, Jia Z, Wu W, Song J. Changes in ambient temperature increase hospital outpatient visits for allergic rhinitis in Xinxiang, China. BMC Public Health 2021; 21:600. [PMID: 33771145 PMCID: PMC8004401 DOI: 10.1186/s12889-021-10671-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The effect of ambient temperature on allergic rhinitis (AR) remains unclear. Accordingly, this study aimed to explore the relationship between ambient temperature and the risk of AR outpatients in Xinxiang, China. METHOD Daily data of outpatients for AR, meteorological conditions, and ambient air pollution in Xinxiang, China were collected from 2015 to 2018. The lag-exposure-response relationship between daily mean temperature and the number of hospital outpatient visits for AR was analyzed by distributed lag non-linear model (DLNM). Humidity, long-time trends, day of the week, public holidays, and air pollutants including sulfur dioxide (SO2), and nitrogen dioxide (NO2) were controlled as covariates simultaneously. RESULTS A total of 14,965 AR outpatient records were collected. The relationship between ambient temperature and AR outpatients was generally M-shaped. There was a higher risk of AR outpatient when the temperature was 1.6-9.3 °C, at a lag of 0-7 days. Additionally, the positive association became significant when the temperature rose to 23.5-28.5 °C, at lag 0-3 days. The effects were strongest at the 25th (7 °C) percentile, at lag of 0-7 days (RR: 1.32, 95% confidence intervals (CI): 1.05-1.67), and at the 75th (25 °C) percentile at a lag of 0-3 days (RR: 1.15, 95% CI: 1.02-1.29), respectively. Furthermore, men were more sensitive to temperature changes than women, and the younger groups appeared to be more influenced. CONCLUSIONS Both mild cold and mild hot temperatures may significantly increase the risk of AR outpatients in Xinxiang, China. These findings could have important public health implications for the occurrence and prevention of AR.
Collapse
Affiliation(s)
- Jianhui Gao
- Xinxiang Medical University, Xinxiang, 453003, China
| | - Mengxue Lu
- Xinxiang Medical University, Xinxiang, 453003, China
| | - Yinzhen Sun
- Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang, 453003, China
| | - Jingyao Wang
- Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhen An
- Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang, 453003, China
| | - Yue Liu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Juan Li
- Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang, 453003, China
| | - Zheng Jia
- Xinxiang Central Hospital, Xinxiang, 453001, China
| | - Weidong Wu
- Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang, 453003, China
| | - Jie Song
- Xinxiang Medical University, Xinxiang, 453003, China.
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang, 453003, China.
| |
Collapse
|
30
|
Zhang K, Wang H, He W, Chen G, Lu P, Xu R, Yu P, Ye T, Guo S, Li S, Xie Y, Hao Z, Wang H, Guo Y. The association between ambient air pollution and blood lipids: A longitudinal study in Shijiazhuang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141648. [PMID: 32889259 DOI: 10.1016/j.scitotenv.2020.141648] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Few studies have explored the associations between ambient air pollution and blood lipid levels. This study aimed to fill this knowledge gap based on a routine health examination cohort in Shijiazhuang, China. METHODS We included 7063 participants who took the routine health examination for 2-3 times at Hebei General Hospital from January 2016 to December 2018. Individual serum levels of cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured. Their three-month average exposure to air pollution prior to the routine health examinations was estimated using inverse distance weighted method. We used linear mixed-effects regression models to examine the associations between air pollution and levels of blood lipids while controlling for age, gender, body mass index (BMI), smoking, alcohol drinking, temperature, humidity, with a random effect for each individual. RESULTS Particles with diameters ≤2.5 μm and ≤10 μm (PM2.5 and PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2) and ozone (O3) were all positively associated with TC, TG, and LDL-C and negatively associated with HDL-C, in single pollutant models. Each 10 μg/m3 increment of 3-month average PM2.5 was associated with 0.65% [95% confidence interval (CI): 0.03%-1.28%], 0.56% (95%CI: 0.33%-0.79%) and 0.63% (95%CI: 0.35%-0.91%) increment in TG, TC, and LDL-C, and 0.91% (95%CI: 0.68%-1.13%) decrease in HDL-C. In two-pollutant models, the effects of gaseous pollutants on blood lipids were weakened, while those of PMs were strengthened. Stronger associations were presented in the elderly (≥60 years) and overweight/obese (BMI ≥ 24) participants. CONCLUSIONS Ambient air pollution had significantly adverse effects on blood lipid levels, especially in overweight/obese and elderly individuals. CAPSULE Significant associations between increased air pollution and worse blood lipid levels were found, especially in overweight/obese and elderly individuals.
Collapse
Affiliation(s)
- Kaihua Zhang
- Hebei Medical University, Shijiazhuang, Hebei, China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Haoyuan Wang
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Peng Lu
- Department of Epidemiology, School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Rongbin Xu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Pei Yu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tingting Ye
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Suying Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yinyu Xie
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Zhihua Hao
- Physical Examination Center of Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Hebo Wang
- Hebei Medical University, Shijiazhuang, Hebei, China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
31
|
Li M, Nabi G, Sun Y, Wang Y, Wang L, Jiang C, Cao P, Wu Y, Li D. The effect of air pollution on immunological, antioxidative and hematological parameters, and body condition of Eurasian tree sparrows. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111755. [PMID: 33396078 DOI: 10.1016/j.ecoenv.2020.111755] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
Air pollution constitutes potential threats to wildlife and human health; therefore, it must be monitored accurately. However, little attention has been given to understanding the toxicological effects induced by air pollution and the suitability of bird species as bioindicators. The Eurasian tree sparrow (Passer montanus), a human commensal species, was used as a study model to examine toxic metal accumulation, retention of particulate matter (PM), immunological and antioxidant capacities, and hematological parameters in birds inhabiting those areas with relatively higher (Shijiazhuang city) or lower (Chengde city) levels of PM2.5 and PM10 in China. Our results showed that Shijiazhuang birds had significantly more particle retention in the lungs and toxic metal (including aluminum, arsenic, cadmium, iron, manganese, and lead) accumulation in the feathers relative to Chengde birds. They also had lower superoxide dismutase, albumin, immunoglobulin M concentrations in the lung lavage fluid, and total antioxidant capacity (T-AOC) in the lungs and hearts. Furthermore, although they had higher proportions of microcytes, hypochromia, and polychromatic erythrocytes in the peripheral blood (a symptom of anemia), both populations exhibited comparable body conditions, white cell counts, heterophil and lymphocyte ratios, and plasma T-AOC and corticosterone levels. Therefore, our results not only confirmed that Shijiazhuang birds experienced a greater burden from environmental PM and toxic metals but also identified a suite of adverse effects of environmental pollution on immunological, antioxidative, and hematological parameters in multiple tissues. These findings contribute to our understanding of the physiological health consequences induced by PM exposure in wild animals. They suggest that free-living birds inhabiting urban areas could be used as bioindicators for evaluating the adverse effects induced by environmental pollution.
Collapse
Affiliation(s)
- Mo Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China; Life Sciences College of Cangzhou Normal University, Cangzhou, China
| | - Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanfeng Sun
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China; Ocean College of Hebei Agricultural University, Qinhuangdao, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Limin Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuan Jiang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuefeng Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
32
|
Cheng J, Su H, Xu Z. Intraday effects of outdoor air pollution on acute upper and lower respiratory infections in Australian children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115698. [PMID: 33049483 DOI: 10.1016/j.envpol.2020.115698] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Children's respiratory health are particularly vulnerable to outdoor air pollution, but evidence is lacking on the very acute effects of air pollution on the risk of acute upper respiratory infections (AURI) and acute lower respiratory infections (ALRI) in children. This study aimed to evaluate the risk of cause-specific AURI and ALRI, in children within 24 h of exposure to air pollution. We obtained data on emergency cases, including 11,091 AURI cases (acute pharyngitis, acute tonsillitis, acute obstructive laryngitis and epiglottitis, and unspecified acute upper respiratory infections) and 11,401 ALRI cases (pneumonia, acute bronchitis, acute bronchiolitis, unspecified acute lower respiratory infection) in Brisbane, Australia, 2013-2015. A time-stratified case-crossover analysis was used to examine the hourly association of AURI and ALRI with high concentration (95th percentile) of four air pollutants (particulate matters with aerodynamic diameter <10 μm (PM10) and <2.5 μm (PM2.5), ozone (O3), nitrogen dioxide (NO2)). We observed increased risk of acute tonsillitis associated with PM2.5 within 13-24 h (odds ratio (OR), 1.45; 95% confidence interval [CI], 1.02-2.06) and increased risk of unspecified acute upper respiratory infections related to O3 within 2-6 h (OR, 1.38, 95%CI, 1.12-1.70), NO2 within 1 h (OR, 1.19; 95%CI, 1.01-1.40), and PM2.5 within 7-12 h (OR, 1.21; 95%CI, 1.02-1.43). Cold season and nigh-time air pollution has greater effects on AURI, whereas greater risk of ALRI was seen in warm season and daytime. Our findings suggest exposures to particulate and gaseous air pollution may transiently increase risk of AURI and ALRI in children within 24 h. Prevention measures aimed at protecting children's respiratory health should consider the very acute effects of air pollution.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, China; School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia.
| |
Collapse
|
33
|
Silva LFO, Pinto D, Enders MSP, Hower JC, Flores EMM, Müller EI, Dotto GL. Portable dehumidifiers as an original matrix for the study of inhalable nanoparticles in school. CHEMOSPHERE 2021; 262:127295. [PMID: 32536422 DOI: 10.1016/j.chemosphere.2020.127295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Good air quality is documented as a significant factor of social justice. The human health hazards associated with air pollution are not distributed equally across cities; the most vulnerable people are more exposed to ambient air as they commute to work and wait for buses or trains at the stations. Aerosols play important roles in atmosphere quality and the climate; their oxidation at the nanoscale level may possibly increase the reactivity and toxicity of atmospheric particulates. Indoor school environments are characterized by high concentrations of different airborne particulate and gaseous pollutants. The documentation of nanoparticles (NPs), ultra-fine particles (UFPs), and micron-size particle species present in indoor primary schools are an important aspect in the recognition of their influence in respirational difficulties and decreased cognitive progress in children. This work utilizes the study of condensed water, sampled with portable dehumidifiers (PD), to describe NPs and UFPs in the vapor stage of enclosed zones. The acquired extracts were analyzed by advanced electron microscopy techniques. A total of 392 NPs and 251 UFPs were examined in a set of 22 samples acquired in moderately limited or inadequately ventilated indoor areas from several schools. Noting that NPs-related disorders happen at particular places of respirational structure, identification of site-specific NPs accumulation should be anticipated in direction to better verify the corresponding human health outcomes resulting from respirable NPs.
Collapse
Affiliation(s)
- Luis F O Silva
- Department of Civil and Environmental. Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Diana Pinto
- Department of Civil and Environmental. Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Michele S P Enders
- Universidade Federal de Santa Maria, Chemistry Department, Avenida Roraima 1000, Santa Maria, RS, Brazil
| | - James C Hower
- University of Kentucky, Department of Earth & Environmental Sciences, Lexington, KY, 40506, USA; University of Kentucky, Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY, 40511, USA
| | - Erico M M Flores
- Universidade Federal de Santa Maria, Chemistry Department, Avenida Roraima 1000, Santa Maria, RS, Brazil
| | - Edson I Müller
- Universidade Federal de Santa Maria, Chemistry Department, Avenida Roraima 1000, Santa Maria, RS, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria - UFSM, 1000, Roraima Avenue, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
34
|
Li M, Tang J, Yang H, Zhao L, Liu Y, Xu H, Fan Y, Hong J, Long Z, Li X, Zhang J, Guo W, Liu M, Yang L, Lai X, Zhang X. Short-term exposure to ambient particulate matter and outpatient visits for respiratory diseases among children: A time-series study in five Chinese cities. CHEMOSPHERE 2021; 263:128214. [PMID: 33297172 DOI: 10.1016/j.chemosphere.2020.128214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
There was limited evidence regarding the association between short-term exposure to ambient particulate matter (PM) and respiratory outpatient visits among children at a multicity level. In this study, a time-series study was conducted among children aged 0-14 years in five Chinese cities from 2013 to 2018. City-specific effects of fine particles (PM2.5), inhalable particles (PM10) and coarse particles (PM10-2.5) were estimated for time lags of zero up to seven previous days using the overdispersed generalized additive models after adjusting for time trends, meteorological variables, day of the week and holidays. Meta-analyses were applied to pool the overall effects, while the exposure-response (E-R) curves were evaluated using a cubic regression spline. The overall effects of PM were significantly associated with total and cause-specific respiratory outpatients among children, even at PM2.5 and PM10 levels below the current Chinese Ambient Air Quality Standards (CAAQS) Grade II. Each 10 μg/m3 increment in PM2.5, PM10 and PM10-2.5 at lag 07 was associated with a 1.39% (95% CI: 0.38%, 2.40%), 1.10% (95% CI: 0.38%, 1.83%) and 2.93% (95% CI: 1.05%, 4.84%) increase in total respiratory outpatients, respectively. An E-R relationship was observed except for PM2.5 in Beijing and PM10 and PM10-2.5 in Shanghai. The effects of PM were stronger in cold season in 3 southern cities, while it was stronger in transition season in 2 northern cities. In conclusion, short-term PM exposures were dose-responsive associated with increased respiratory outpatient visits among children, even for PM2.5 and PM10 levels below current CAAQS II in certain cities.
Collapse
Affiliation(s)
- Meng Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jie Tang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ya Liu
- Department of Medical Record, Beijing Hospital, Beijing, China
| | - Haoli Xu
- Department of Healthcare, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yali Fan
- Qinghai Provincial Women and Children's Hospital, Xining, China
| | - Jun Hong
- Qinghai Provincial Women and Children's Hospital, Xining, China
| | - Zhen Long
- Department of Pediatric respiratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, HUST, Wuhan, China
| | - Xiaojuan Li
- Department of Medical Record and Statistics, Emergency General Hospital, Beijing, China
| | - Jianduan Zhang
- Department of Woman and Child's Care and Adolescence Health, School of Public Health, Tongji Medical College, HUST, Wuhan, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
35
|
Lee JT. Review of epidemiological studies on air pollution and health effects in children. Clin Exp Pediatr 2021; 64:3-11. [PMID: 32517422 PMCID: PMC7806407 DOI: 10.3345/cep.2019.00843] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
There is a growing body of literature on the adverse health effects of ambient air pollution. Children are more adversely affected by air pollution due to their biological susceptibility and exposure patterns. This review summarized the accumulated epidemiologic evidence with emphasis on studies conducted in Korea and heterogeneity in the literature. Based on systematic reviews and meta-analyses, there is consistent evidence on the association between exposure to ambient air pollution and children's health, especially respiratory health and adverse birth outcomes, and growing evidence on neurodevelopmental outcomes. Despite these existing studies, the mechanism of the adverse health effects of air pollution and the critical window of susceptibility remain unclear. There is also a need to identify causes of heterogeneity between studies in terms of measurement of exposure/outcome, study design, and the differential characteristics of air pollutants and population.
Collapse
Affiliation(s)
- Jong-Tae Lee
- Division of Health Policy and Management, College of Health Science, Korea University, Seoul, Korea
| |
Collapse
|
36
|
Li Z, Liu Q, Xu Z, Guo X, Wu S. Association between short-term exposure to ambient particulate air pollution and biomarkers of oxidative stress: A meta-analysis. ENVIRONMENTAL RESEARCH 2020; 191:110105. [PMID: 32835677 DOI: 10.1016/j.envres.2020.110105] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure to ambient particulate air pollution contributes substantially to the mortality and morbidity due to cardiovascular diseases (CVD), respiratory diseases and neurodegenerative diseases. Several hypothetical mechanisms have been proposed to explain these associations, particularly oxidative stress. Malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and Superoxide Dismutase (SOD) are typical biomarkers of oxidative stress and have been frequently investigated. However, the association between exposure to ambient particulate matter (PM) and these biomarkers has not been well established. OBJECTIVES Evaluate the association between ambient particulate air pollution and biomarkers of oxidative stress based on existing epidemiological studies. METHODS A systematic literature search was conducted in databases of Science Direct, PubMed, Web of Science, and Scopus up to April 24, 2020 to summarize epidemiological studies reporting the association between exposure to ambient PM (PM2.5, PM10, or both) and biomarkers of oxidative stress, and a meta-analysis was performed for the associations reported in individual studies using a random-effect model. RESULTS This meta-analysis included 23 epidemiological studies (13 identified for 8-OHdG, 11 identified for MDA and 5 identified for SOD). A 10 μg/m3 increase in short-term exposure to ambient PM2.5 was associated with pooled percent changes of 2.10% (95% CIs: -0.13%, 4.38%), 1.60% (95% CIs: 0.21%, 3.01%) and -0.61% (95% CIs: -1.92%, 0.72%) in 8-OHdG, MDA and SOD, respectively. CONCLUSION Short-term exposure to ambient PM2.5 was associated with a significantly increased level of MDA, indicating that ambient particulate air pollution may contribute to increased oxidative stress.
Collapse
Affiliation(s)
- Zichuan Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zhouyang Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, China.
| |
Collapse
|
37
|
Zhao X, Lu M, An Z, Li J, Li H, Zhao Q, Wu Z, Wu W, Liu Y, Song J. Acute effects of ambient air pollution on hospital outpatients with chronic pharyngitis in Xinxiang, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:1923-1931. [PMID: 32780156 DOI: 10.1007/s00484-020-01980-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/19/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
We present results on a time-series study that analyzed the acute effects of six criteria air pollutants on hospital outpatient with chronic pharyngitis (CP) in Xinxiang, China. Data on the concentration of air pollutants and CP outpatient records were collected daily in Xinxiang, China, from January 1, 2015 to December 31, 2018. This study identified 62,823 outpatients with CP. The annual average concentrations of PM2.5, PM10, SO2, NO2, CO, and O3 are 75.7, 132.1, 33.2, 48.4, 1377, and 59.4 μg/m3, respectively. Further, a 10 μg/m3 increment in the concentration of PM10, SO2, NO2, and CO corresponds to an increase of 0.28% (95% confidence interval (CI): 0.03-0.53%), 1.10% (95% CI: 0.09-2.11%), 1.82% (95% CI: 0.84-2.80%), and 0.03% (95% CI: 0.01-0.06%) in daily CP hospital outpatients, respectively. Furthermore, results indicated that outpatients under the age of 15 are more susceptible to the air pollutants, excluding O3. Meanwhile, males might be more susceptible, and effect estimates appear slightly stronger in the cool season. Therefore, we should implement effective measures to manage air pollutants and reinforce protection of the high-risk population.
Collapse
Affiliation(s)
- Xiangmei Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Mengxue Lu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Qian Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhineng Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yue Liu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
38
|
Yang H, Yan C, Li M, Zhao L, Long Z, Fan Y, Zhang Z, Chen R, Huang Y, Lu C, Zhang J, Tang J, Liu H, Liu M, Guo W, Yang L, Zhang X. Short term effects of air pollutants on hospital admissions for respiratory diseases among children: A multi-city time-series study in China. Int J Hyg Environ Health 2020; 231:113638. [PMID: 33080524 DOI: 10.1016/j.ijheh.2020.113638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Evidence concerning short-term acute association between air pollutants and hospital admissions for respiratory diseases among children in a multi-city setting was quite limited. We conducted a time-series analysis to evaluate the association of six common air pollutants with hospital admissions for respiratory diseases among children aged 0-14 years in 4 cities (Guangzhou, Shanghai, Wuhan and Xining), China during 2013-2018. We used generalized additive models incorporating penalized smoothing splines and random-effect meta-analysis to calculate city-specific and pooled estimates, respectively. The exposure-response relationship curves were fitted using the cubic spline regression. Subgroup analyses by gender, age, season and disease subtype were also performed. A total of 183,036 respiratory diseases hospitalizations were recorded during the study period, and 94.1% of the cases were acute respiratory infections. Overall, we observed that increased levels of air pollutants except O3, were significantly associated with increased hospital admissions for respiratory disease. Each 10 μg/m3 increase in PM2.5, SO2 and NO2 at lag 07, PM10 at lag 03 and per 1 mg/m3 increase in CO at lag 01 corresponded to increments of 1.19%, 3.58%, 2.23%, 0.51% and 6.10% in total hospitalizations, respectively. Generally, exposure-response relationships of PM2.5 and SO2 in Guangzhou, SO2, NO2 and CO in Wuhan, as well as SO2 and NO2 in Xining with respiratory disease hospitalizations were also found. Moreover, the adverse effects of these pollutants apart from PM2.5 in certain cities remained significant even at exposure levels below the current Chinese Ambient Air Quality Standards (CAAQS) Grade II. Children aged 4-14 years appeared to be more vulnerable to the adverse effects of PM2.5, SO2 and NO2. Furthermore, with the exception of O3, the associations were stronger in cold season than in warm season. Short-term exposure to PM2.5, SO2, NO2 and CO were associated, in dose-responsive manners, with increased risks of hospitalizations for childhood respiratory diseases, and adverse effects of air pollutants except PM2.5 held even at exposure levels below the current CAAQS Grade II in certain cities.
Collapse
Affiliation(s)
- Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chunxiang Yan
- Wuhan Children's Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Meng Li
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhen Long
- Department of Pediatric Respiratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, HUST, Wuhan, China
| | - Yali Fan
- Qinghai Provincial Women and Children's Hospital, Xining, China
| | - Zhonggang Zhang
- Qinghai Provincial Women and Children's Hospital, Xining, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yihui Huang
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Congbin Lu
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jianduan Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jie Tang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hua Liu
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
39
|
Lu M, Ding S, Wang J, Liu Y, An Z, Li J, Jiang J, Wu W, Song J. Acute effect of ambient air pollution on hospital outpatient cases of chronic sinusitis in Xinxiang, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110923. [PMID: 32800210 DOI: 10.1016/j.ecoenv.2020.110923] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Many studies have reported that exposure to ambient air pollution has adverse effects on health. However, there are little researches to explore the relationship between ambient air pollution and chronic sinusitis (CS). From January 1 2015 to December 31 2018, a time-series study were carried out to investigate the acute adverse roles of six criteria ambient air pollutants (fine particulate matter [PM2.5], inhalable particulate matter [PM10], nitrogen dioxide [NO2], sulfur dioxide [SO2], ozone [O3], and carbon monoxide [CO]) in hospital outpatients with CS in Xinxiang, China. Then, an over-dispersed Poisson generalized additive model was utilized to analyzed the relationships. In total, 183,943 hospital outpatient cases of CS were identified during the study period. We found that a 10 μg/m3 increase in PM2.5, PM10, SO2, NO2, and CO corresponded to 0.48% (95% confidence interval: 0.22-0.74%), 0.33% (0.16-0.50%), 0.88% (0.13-1.62%), 1.98% (1.31-2.64%), and 0.05% (0.03-0.07%) increments, respectively, in CS outpatients on the current day. The young group (<15 years of age) was more susceptible than the adult or elderly groups. These results suggested that outdoor air pollutants might increase CS outpatient, especially among youth in Xinxiang. Precautions and protective measures should be strengthened to reduce the air pollution level in the future.
Collapse
Affiliation(s)
- Mengxue Lu
- Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Shuren Ding
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jingyao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Yue Liu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China.
| |
Collapse
|
40
|
An B, Chen L, Li S, Zhang L. Application of early warning scoring mechanism in nursing of hospitalized children with critical respiratory diseases. Minerva Med 2020; 113:206-207. [PMID: 32696630 DOI: 10.23736/s0026-4806.20.06648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baili An
- Department of General Medicine, People's Hospital of Rizhao, Rizhao, China
| | - Lingyu Chen
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao, China
| | - Shuxin Li
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao, China
| | - Li Zhang
- Department of General Medicine, People's Hospital of Rizhao, Rizhao, China -
| |
Collapse
|
41
|
Wang J, Lu M, An Z, Jiang J, Li J, Wang Y, Du S, Zhang X, Zhou H, Cui J, Wu W, Liu Y, Song J. Associations between air pollution and outpatient visits for allergic rhinitis in Xinxiang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23565-23574. [PMID: 32291645 DOI: 10.1007/s11356-020-08709-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/01/2020] [Indexed: 05/23/2023]
Abstract
Several epidemiological studies have investigated the adverse health effects of air pollution, but studies reporting its effects on allergic rhinitis (AR) are limited, especially in developing countries having the most severe pollution. Limited studies have been conducted in China, but their results were inconsistent. So, we conducted a time-series study to evaluate the acute effect of six air pollutants (fine particulate matter [PM2.5], particulate matter with diameter less than 10 μm [PM10], sulfur dioxide [SO2], nitrogen dioxide [NO2], ozone [O3], and carbon monoxide [CO]) on hospital outpatient visits for AR in Xinxiang, China from January 1, 2015, to December 31, 2018. An over-dispersed Poisson generalized additive model adjusting for weather conditions, long-term trends, and day of the week was used. In total, 14,965 AR outpatient records were collected during the study period. Results found that each 10 μg/m3 increase in PM2.5, PM10, SO2, NO2, O3, and CO corresponded to 0.70% (95% confidence interval 0.00-1.41%), 0.79% (0.35-1.23%), 3.43% (1.47-5.39%), 4.54% (3.01-6.08%), 0.97% (- 0.11-2.05%), and 0.07% (0.02-0.12%) increments in AR outpatients on the current day, respectively. In the stratification analyses, statistically stronger associations were observed with PM2.5, PM10, SO2, NO2, and CO for AR outpatients < 15 years of age than in those 15-65 and ≥ 65 years of age, whereas the opposite result was found with O3. Associations between PM10, SO2, NO2, O3, and AR outpatients were higher in the warm season than those in the cool season. This study suggests that exposure to PM2.5, PM10, SO2, NO2, and CO was associated with increased AR risk and children younger than 15 years might be more vulnerable.
Collapse
Affiliation(s)
- Jingyao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mengxue Lu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Air Pollution Health Effects and Intervention, Xinxiang, 453003, China
| | - Jing Jiang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Air Pollution Health Effects and Intervention, Xinxiang, 453003, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Air Pollution Health Effects and Intervention, Xinxiang, 453003, China
| | - Yinbiao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuang Du
- Xinxiang First People's Hospital, Xinxiang, 453000, China
| | - Xuexing Zhang
- Xinxiang Second People's Hospital, Xinxiang, 453002, China
| | - Haofeng Zhou
- Xinxiang First People's Hospital, Xinxiang, 453000, China
| | - Juan Cui
- Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Collaborative Laboratory for Air Pollution Health Effects and Intervention, Xinxiang, 453003, China
| | - Yue Liu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Henan International Collaborative Laboratory for Air Pollution Health Effects and Intervention, Xinxiang, 453003, China.
| |
Collapse
|
42
|
Ma Y, Yue L, Liu J, He X, Li L, Niu J, Luo B. Association of air pollution with outpatient visits for respiratory diseases of children in an ex-heavily polluted Northwestern city, China. BMC Public Health 2020; 20:816. [PMID: 32487068 PMCID: PMC7265648 DOI: 10.1186/s12889-020-08933-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/17/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND A great number of studies have confirmed that children are a particularly vulnerable population to air pollution. METHODS In the present study, 332,337 outpatient visits of 15 hospitals for respiratory diseases among children (0-13 years), as well as the simultaneous meteorological and air pollution data, were obtained from 2014 to 2016 in Lanzhou, China. The generalized additive model was used to examine the effects of air pollutants on children's respiratory outpatient visits, including the stratified analysis of age, gender and season. RESULTS We found that PM2.5, NO2 and SO2 were significantly associated with the increased total respiratory outpatient visits. The increments of total respiratory outpatient visits were the highest in lag 05 for NO2 and SO2, a 10 μg/m3 increase in NO2 and SO2 was associated with a 2.50% (95% CI: 1.54, 3.48%) and 3.50% (95% CI: 1.51, 5.53%) increase in total respiratory outpatient visits, respectively. Those associations remained stable in two-pollutant models. Through stratification analysis, all air pollutants other than PM10 were significantly positive associated with the outpatients of bronchitis and upper respiratory tract infection. Besides, both NO2 and SO2 were positively related to the pneumonia outpatient visits. PM2.5 and SO2 were significantly related to the outpatient visits of other respiratory diseases, while only NO2 was positively associated with the asthma outpatients. We found these associations were stronger in girls than in boys, particularly in younger (0-3 years) children. Interestingly, season stratification analysis indicated that these associations were stronger in the cold season than in the transition or the hot season for PM10, PM2.5 and SO2. CONCLUSIONS Our results indicate that the air pollution exposure may account for the increased risk of outpatient visits for respiratory diseases among children in Lanzhou, particularly for younger children and in the cold season.
Collapse
Affiliation(s)
- Yueling Ma
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Li Yue
- Gansu Provincial Maternity and Child Health Care Hospital, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jiangtao Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xiaotao He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Lanyu Li
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China. .,Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, 200030, China. .,Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, 200030, China.
| |
Collapse
|
43
|
Associations between ambient air pollution and daily incidence of pediatric hand, foot and mouth disease in Ningbo, 2014-2016: a distributed lag nonlinear model. Epidemiol Infect 2020; 148:e46. [PMID: 32127063 PMCID: PMC7058833 DOI: 10.1017/s0950268820000321] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) has high prevalence around the world, with serious consequences for children. Due to the long survival period of HFMD virus in ambient air, air pollutants may play a critical role in HFMD epidemics. We collected data on daily cases of HFMD among children aged 0–14 years in Ningbo City between 2014 and 2016. Distributed lag nonlinear models were used to assess the effects of particulate matter (PM2.5), sulphur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) on the daily incidence of HFMD among children, with analyses stratified by gender and age. Compared with moderate levels of air pollution, high SO2 levels had a relative risk (RR) of 2.32 (95% CI 1.42–3.79) and high NO2 levels had a RR of 2.01 (95% CI 1.22–3.31). The RR of O3 was 2.12 (95% CI 1.47–3.05) and that of PM2.5 was 0.77 (95% CI 0.64–0.92) at moderate levels of air pollution. Specifically, high levels of SO2 and NO2 had RRs of 2.39 (95% CI 1.44–3.96) and 2.02 (95% CI 1.21–3.39), respectively, among 0–4-year-old children, while high O3 had an RR of 2.31 (95% CI 1.09–4.89) among 5–14-year-old children. Our findings suggest significant associations of high SO2 and NO2 levels and moderate O3 levels in HFMD epidemics, and also indicate that air pollution causes lagged effects on HFMD epidemics. Our study provides practical and useful data for targeted prevention and control of HMFD based on environmental evidence.
Collapse
|
44
|
Ma H, Wang H, Zhang H, Guo H, Zhang W, Hu F, Yao Y, Wang D, Li C, Wang J. Effects of phenanthrene on oxidative stress and inflammation in lung and liver of female rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:37-46. [PMID: 31456356 DOI: 10.1002/tox.22840] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Phenanthrene (Phe) female rat model was established to explore the effects of Phe on oxidative stress and inflammation. The rats were randomly divided into three groups including control (C), low (L), and high (H) group. Phe was supplied to L and H groups at the dosage of 180 mg/kg and 900 mg/kg orally at first day, and with the dose 90 mg/kg and 450 mg/kg by intraperitoneal injection at the last 2 days. The C group was enriched with the same volume of corn oil. The blood, lung, and liver tissues were collected. The superoxide dismutase (SOD), malonaldehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) were detected to evaluate oxidative stress. The protein and mRNA expressions of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and interleukin 10 (IL-10) were detected to evaluate inflammation. Further, the forkhead box transcription factor 3 (Foxp3) was analyzed to hint the injury mechanism of inflammation. The results showed SOD and MDA in lung and liver, and serum 8-OHdG elevated significantly in H groups (P < .05). Meanwhile, there were significant increases in the protein and mRNA expression of TNF-α and IL-6 in lung and liver of H groups (P < .05). In addition, the protein and mRNA expressions of TGF-β and Foxp3 were all decreased significantly in both lung and liver of H groups (P < .05). Results demonstrated that an obvious change of Phe exposure could induce oxidative stress and inflammation in female rats. This is a first pilot study to explore the association between Phe exposure and oxidative stress and inflammation using a female rat model.
Collapse
Affiliation(s)
- Haitao Ma
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Haojun Zhang
- Department of Hospital Infection, People's Hospital of Gansu Province, Lanzhou, China
| | - Huizhen Guo
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Wenwen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Fengjing Hu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yueli Yao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Dong Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
45
|
Ai S, Wang C, Qian ZM, Cui Y, Liu Y, Acharya BK, Sun X, Hinyard L, Jansson DR, Qin L, Lin H. Hourly associations between ambient air pollution and emergency ambulance calls in one central Chinese city: Implications for hourly air quality standards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133956. [PMID: 31450053 DOI: 10.1016/j.scitotenv.2019.133956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Most studies on the short-term health effects of air pollution have been conducted on a daily time scale, while hourly associations remain unclear. METHODS We collected the hourly data of emergency ambulance calls (EACs), ambient air pollution, and meteorological variables from 2014 to 2016 in Luoyang, a central Chinese city in Henan Province. We used a generalized additive model to estimate the hourly effects of ambient air pollutants (PM2.5, PM10, SO2, and NO2) on EACs for all natural causes and cardiovascular and respiratory morbidity, with adjustment for potential confounding factors. We further examined the effect modification by temperature, relative humidity, wind speed, and atmospheric pressure using stratified analyses. RESULTS In the single-pollutant models, PM2.5, PM10, SO2, and NO2 were associated with an immediate increase in all-cause morbidity at 0, 0, 12, 10 h, separately, after exposure to these pollutants (excess risks: 0.19% (95% confidence interval (CI): 0.03%, 0.35%), 0.13% (95% CI: 0.02%, 0.24%), 0.28% (95% CI: 0.01%, 0.54%) and 0.52% (95% CI: 0.06%, 0.99%), respectively). These effects remained generally stable in two-pollutant models. SO2 and NO2 were significantly associated with an immediate increase in risk of cardiovascular morbidity, but the effects on respiratory morbidity were relatively more delayed. The stratified analyses suggested that temperature could modify the association between PM2.5 and EACs, humidity and atmospheric pressure could modify the association between SO2 and EACs. CONCLUSIONS Our study provides new evidence that higher concentrations of PM2.5, PM10, SO2, and NO2 may have transiently acute effects on all-cause morbidity and subacute effects on respiratory morbidity. SO2 and NO2 may also have immediate effects on cardiovascular morbidity. Findings of this study have important implications for the formation of hourly air quality standards.
Collapse
Affiliation(s)
- Siqi Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Changke Wang
- National Climate Center, China Meteorological Administration, Beijing, China
| | - Zhengmin Min Qian
- College for Public Health & Social Justice, Saint Louis University, St. Louis, MO, USA
| | - Yingjie Cui
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuying Liu
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bipin Kumar Acharya
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiangyan Sun
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Leslie Hinyard
- Center for Health Outcomes Research, Saint Louis University, St. Louis, MO, USA
| | - Daire R Jansson
- College for Public Health & Social Justice, Saint Louis University, St. Louis, MO, USA
| | - Lijie Qin
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
46
|
Zhou H, Wang T, Zhou F, Liu Y, Zhao W, Wang X, Chen H, Cui Y. Ambient Air Pollution and Daily Hospital Admissions for Respiratory Disease in Children in Guiyang, China. Front Pediatr 2019; 7:400. [PMID: 31681705 PMCID: PMC6797835 DOI: 10.3389/fped.2019.00400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
Objectives: To investigate the association between ambient air pollutant exposure and daily hospital admissions for respiratory diseases in children in Guiyang. Methods: Clinical data of pediatric inpatients with respiratory disease from 2009 to 2016 in Guizhou Provincial People's Hospital and PM2.5, NO2, PM10, and SO2 concentration data were retrieved. A canonical correlation analysis (CCA) was applied to analyse the association between air pollutants and daily hospital admissions for respiratory diseases. A reproducibility analysis was applied to analyse the association between air pollution and the duration and direct cost of hospitalization. The support vector regression (SVR) method was applied to determine whether air pollution data could predict the daily hospital admissions for the upcoming day. Results: A total of 10,876 inpatients with respiratory diseases were included between January 1, 2009 and December 31, 2016. The CCA showed significant correlations between air pollution and daily hospital admissions (r = 0.3564, p < 0.001), the duration of hospitalization (r = 0.2911, p < 0.001) and the economic cost of hospitalization (r = 0.2933, p < 0.001) for respiratory disease. PM10 contributed most to daily hospital admissions for respiratory disease; the concentration the day before hospitalization contributed most to the daily hospital admissions for respiratory disease. There was a slightly stronger correlation between air pollution and respiratory disease in children aged 2-18 years (R = 0.36 vs. R = 0.31 in those under 2 years old). No significant difference was found between male and female patients. The prediction analysis showed that air pollution could successfully predict daily pediatric inpatient hospital admissions (R = 0.378, permutation p < 0.001). Conclusions: Air pollution was significantly associated with hospital admissions, hospitalization duration and the economic cost of hospitalization in children with respiratory diseases. The maximum effect occurred on the day before hospitalization. The effect of PM10 on daily pediatric inpatient hospital admissions for respiratory disease was the greatest among the pollutants evaluated.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Tianqi Wang
- Neurology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Ye Liu
- Otolaryngological Department, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Weiqing Zhao
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Xike Wang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Heng Chen
- Medical College of Guizhou University, Guiyang, China
| | - Yuxia Cui
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| |
Collapse
|