1
|
Wu J, Qi Y, Zhang W, Liu L, Chen J, Yang Y, Zhang X, Liu X, Shi Y. Metagenomic next-generation sequencing for etiological diagnosis of an unexpected rabies case with unclear exposure history. BMC Infect Dis 2025; 25:258. [PMID: 39994640 PMCID: PMC11849319 DOI: 10.1186/s12879-025-10687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Rabies is an acute and lethal zoonotic disease caused by the rabies virus (RABV). After onset, there are no effective drugs or treatment methods. CASE PRESENTATION A 49-year-old female from Hefei, Anhui Province, China, presented to a local hospital with fever, pruritus, chest distress, and shortness of breath. During the consultation, the patient exhibited agitation and was later admitted to the intensive care unit (ICU) in the local hospital for endotracheal intubation and mechanical ventilation due to worsened agitation and dyspnea. Cerebrospinal fluid (CSF) and blood samples were collected and pathogenic microorganism identification was performed by culture and mNGS. However, all results were negative. In addition, the patient did not display typical rabies-specific symptoms such as aerophobia, hydrophobia or photophobia from onset to admission. Subsequently, saliva samples were collected for mNGS detection following consultation with experts at our hospital. Nucleic acid sequences uniquely aligned to the rabies virus (RABV) were identified in these samples. The result was further confirmed by local Center for Disease Control and Prevention (CDC) through RT-qPCR which detected part of the N gene of RABV in the saliva sample. The patient was then transferred to the ICU for isolation. Unfortunately, the patient died on the 10th day of admission due to multiple organ failure. The detection of human rabies virus IgG antibodies reported positive during the advanced stage of the disease during the hospitalization. We consistently verified with the patient's family member that there was no clear history of animal bites and no history of RABV vaccination. Furthermore, we performed phylogenetic analysis of partial L and G gene sequences of RABV obtained by mNGS (designated HFG23-L and HFG23-G, respectively), the results showed that both HFG23-L and HFG23-G belonged to the China I lineage, and shared 99.7% similarity with the Fengtai strain isolated from dogs in Beijing. CONCLUSIONS The identification of unique RABV sequence through mNGS in the patient's saliva sample suggested that mNGS could serve as a valuable screening tool for the etiological diagnosis of rabies, especially when timely laboratory testing was unavailable or when patients lacked non-specific prodromal symptom and clear exposure history.
Collapse
Affiliation(s)
- Jing Wu
- Department of Laboratory Medicine, Infection Hospital Area of the First Affiliated Hospital of University of Science and Technology of China (Hefei Infectious Disease Hospital), No. 218 Susong Road, Hefei, 230000, Anhui Province, People's Republic of China
| | - Yingjie Qi
- Department of Laboratory Medicine, Infection Hospital Area of the First Affiliated Hospital of University of Science and Technology of China (Hefei Infectious Disease Hospital), No. 218 Susong Road, Hefei, 230000, Anhui Province, People's Republic of China
| | - Wenyan Zhang
- The Center of Disease Control and Prevention in Hefei, 230001, Hefei, China
| | - Lixue Liu
- Clin Lab, BGI Genomics, Shanghai, 201321, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiangrong Chen
- Clin Lab, BGI Genomics, Shanghai, 201321, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yun Yang
- Department of Laboratory Medicine, Infection Hospital Area of the First Affiliated Hospital of University of Science and Technology of China (Hefei Infectious Disease Hospital), No. 218 Susong Road, Hefei, 230000, Anhui Province, People's Republic of China
| | - Xuanshun Zhang
- Department of Laboratory Medicine, Infection Hospital Area of the First Affiliated Hospital of University of Science and Technology of China (Hefei Infectious Disease Hospital), No. 218 Susong Road, Hefei, 230000, Anhui Province, People's Republic of China
| | - Xinru Liu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Yuru Shi
- Department of Laboratory Medicine, Infection Hospital Area of the First Affiliated Hospital of University of Science and Technology of China (Hefei Infectious Disease Hospital), No. 218 Susong Road, Hefei, 230000, Anhui Province, People's Republic of China.
| |
Collapse
|
2
|
Wu H, Cao H, Gao X, Shi C, Wang L, Gao B. The role of metagenomic next-generation sequencing in diagnosing and managing post-kidney transplantation infections. Front Cell Infect Microbiol 2025; 14:1473068. [PMID: 39839264 PMCID: PMC11747774 DOI: 10.3389/fcimb.2024.1473068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Kidney transplantation (KT) is a life-saving treatment for patients with end-stage renal disease, but post-transplant infections remain one of the most significant challenges. These infections, caused by a variety of pathogens, can lead to prolonged hospitalization, graft dysfunction, and even mortality, particularly in immunocompromised patients. Traditional diagnostic methods often fail to identify the causative organisms in a timely manner, leading to delays in treatment and poorer patient outcomes. This review explores the application of metagenomic next-generation sequencing (mNGS) in the diagnosis of post-KT infections. mNGS allows for the rapid, comprehensive detection of a wide range of pathogens, including bacteria, viruses, fungi, and parasites, without the need for culture-based techniques. We discuss the advantages of mNGS in early and accurate pathogen identification, its role in improving patient management, and the potential challenges in its clinical implementation. Additionally, we consider the future prospects of mNGS in overcoming current diagnostic limitations and its potential for guiding targeted therapies, particularly in detecting antimicrobial resistance and emerging pathogens. This review emphasizes the promise of mNGS as an essential tool in improving the diagnosis and treatment of infections in KT recipients.
Collapse
Affiliation(s)
| | | | | | | | | | - Baoshan Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Huang J, Weng H, Ye L, Jiang M, Chen L, Li Y, Li H. Bronchoalveolar lavage fluid and lung biopsy tissue metagenomic next-generation sequencing in the diagnosis of pulmonary cryptococcosis. Front Cell Infect Microbiol 2024; 14:1446814. [PMID: 39534702 PMCID: PMC11554620 DOI: 10.3389/fcimb.2024.1446814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Objective To evaluate the diagnostic value of metagenomic next-generation sequencing (mNGS) in pulmonary cryptococcosis (PC) using bronchoalveolar lavage fluid (BALF) and lung biopsy tissue specimens. Methods In this retrospective study, 321 patients diagnosed with lower respiratory tract diseases who underwent mNGS using BALF and LBT samples, between January 2021 and December 2023 were included. Individuals were classified into PC and non-PC groups according to the diagnostic criteria for PC, and conventional fungal cultures were performed. A serum/BALF cryptococcal antigen (CrAg) test was performed in some patients with PC. The diagnostic efficiencies of three methods for PC (mNGS, conventional culture, and CrAg) were compared. Additionally, two mNGS methods were used in this study: original mNGS (OmNGS, testing time from January 2021 to December 2022) and modified mNGS (MmNGS, testing time from January to December 2023). The diagnostic efficiency of the two mNGS methods on PC was simultaneously compared. Results Among the 321 patients, 23 (7.2%) had PC and 298 (92.8%) did not. Compared with the composite reference standard for PC diagnosis, the sensitivity, specificity, and accuracy of mNGS for PC were 78.3% (95% confidence interval [CI], 55.8%-91.7%), 98.7% (95% CI, 96.4%-99.6%), and 97.2% (95% CI, 94.7%-98.7%), respectively. The sensitivity of mNGS was similar to that of CrAg (80.0%, 12/15) (P > 0.05). The diagnostic sensitivity of both mNGS and CrAg was higher than that of conventional culture (35.0%, 7/20) (P = 0.006, P = 0.016), and the combined detection of mNGS and CrAg further improved the diagnostic sensitivity of PC (93.3%, 14/15). The area under the receiver operating characteristic curve of mNGS was superior to that of conventional culture (0.885 vs. 0.675). In addition, the diagnostic sensitivity of PC was higher than that of OmNGS (P = 0.046). Conclusion The sensitivity of mNGS is better than that of conventional culture. The combination of mNGS and CrAg improves the testing sensitivity of Cryptococcus. MmNGS could further improve the detection of Cryptococcus. Conventional PC detection methods are indispensable and mNGS can be used as a rapid and accurate auxiliary diagnostic method for PC.
Collapse
Affiliation(s)
- Jinbao Huang
- Department of Respiratory Medicine, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Heng Weng
- Department of Respiratory Medicine, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ling Ye
- Department of Respiratory Medicine, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Meiqin Jiang
- Department of Respiratory Medicine, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lulu Chen
- Department of Respiratory Medicine, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yangyu Li
- Department of Clinical Laboratory Medicine, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hongyan Li
- Department of Critical Care Medicine, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
4
|
Huang L, Jia L. Disseminated nocardiosis caused by Nocardia otitidiscaviarum-A case report. Diagn Microbiol Infect Dis 2024; 110:116347. [PMID: 38878341 DOI: 10.1016/j.diagmicrobio.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 07/30/2024]
Abstract
In this article we report a case of disseminated nocardiosis caused by Nocardia otitidiscaviarum in an immunocompetent patient with chronic obstructive pulmonary disease (COPD) who complained of a cough, followed by skin and intracranial lesions. On metagenomic next-generation sequencing (mNGS) technology of respiratory samples (bronchoalveolar lavage fluid, BALF) Nocardia otitidiscaviarum was identified. The patient was treated with therapy combined with a low dose of TMP-SMX and imipenem cilastatin sodium and had a favorable outcome. The timely diagnosis of Nocardia with the help of mNGS technology and early rational treatment of TMP-SMX can help improve the prognosis.
Collapse
Affiliation(s)
- Linyue Huang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu Sichuan 610041, PR China
| | - Lian Jia
- Pulmonary and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu Sichuan 610041, PR China; State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu Sichuan 610041, PR China.
| |
Collapse
|
5
|
Gao Q, Li L, Su T, Liu J, Chen L, Yi Y, Huan Y, He J, Song C. A single-center, retrospective study of hospitalized patients with lower respiratory tract infections: clinical assessment of metagenomic next-generation sequencing and identification of risk factors in patients. Respir Res 2024; 25:250. [PMID: 38902783 PMCID: PMC11191188 DOI: 10.1186/s12931-024-02887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION Lower respiratory tract infections(LRTIs) in adults are complicated by diverse pathogens that challenge traditional detection methods, which are often slow and insensitive. Metagenomic next-generation sequencing (mNGS) offers a comprehensive, high-throughput, and unbiased approach to pathogen identification. This retrospective study evaluates the diagnostic efficacy of mNGS compared to conventional microbiological testing (CMT) in LRTIs, aiming to enhance detection accuracy and enable early clinical prediction. METHODS In our retrospective single-center analysis, 451 patients with suspected LRTIs underwent mNGS testing from July 2020 to July 2023. We assessed the pathogen spectrum and compared the diagnostic efficacy of mNGS to CMT, with clinical comprehensive diagnosis serving as the reference standard. The study analyzed mNGS performance in lung tissue biopsies and bronchoalveolar lavage fluid (BALF) from cases suspected of lung infection. Patients were stratified into two groups based on clinical outcomes (improvement or mortality), and we compared clinical data and conventional laboratory indices between groups. A predictive model and nomogram for the prognosis of LRTIs were constructed using univariate followed by multivariate logistic regression, with model predictive accuracy evaluated by the area under the ROC curve (AUC). RESULTS (1) Comparative Analysis of mNGS versus CMT: In a comprehensive analysis of 510 specimens, where 59 cases were concurrently collected from lung tissue biopsies and BALF, the study highlights the diagnostic superiority of mNGS over CMT. Specifically, mNGS demonstrated significantly higher sensitivity and specificity in BALF samples (82.86% vs. 44.42% and 52.00% vs. 21.05%, respectively, p < 0.001) alongside greater positive and negative predictive values (96.71% vs. 79.55% and 15.12% vs. 5.19%, respectively, p < 0.01). Additionally, when comparing simultaneous testing of lung tissue biopsies and BALF, mNGS showed enhanced sensitivity in BALF (84.21% vs. 57.41%), whereas lung tissues offered higher specificity (80.00% vs. 50.00%). (2) Analysis of Infectious Species in Patients from This Study: The study also notes a concerning incidence of lung abscesses and identifies Epstein-Barr virus (EBV), Fusobacterium nucleatum, Mycoplasma pneumoniae, Chlamydia psittaci, and Haemophilus influenzae as the most common pathogens, with Klebsiella pneumoniae emerging as the predominant bacterial culprit. Among herpes viruses, EBV and herpes virus 7 (HHV-7) were most frequently detected, with HHV-7 more prevalent in immunocompromised individuals. (3) Risk Factors for Adverse Prognosis and a Mortality Risk Prediction Model in Patients with LRTIs: We identified key risk factors for poor prognosis in lower respiratory tract infection patients, with significant findings including delayed time to mNGS testing, low lymphocyte percentage, presence of chronic lung disease, multiple comorbidities, false-negative CMT results, and positive herpesvirus affecting patient outcomes. We also developed a nomogram model with good consistency and high accuracy (AUC of 0.825) for predicting mortality risk in these patients, offering a valuable clinical tool for assessing prognosis. CONCLUSION The study underscores mNGS as a superior tool for lower respiratory tract infection diagnosis, exhibiting higher sensitivity and specificity than traditional methods.
Collapse
Affiliation(s)
- Qinghua Gao
- Department of Pulmonary and Critical Care Medicine, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650302, China
| | - Lingyi Li
- Department of Medical, Hangzhou Matridx Biotechnology, Hangzhou, 311100, China
| | - Ting Su
- Department of Pulmonary and Critical Care Medicine, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650302, China
| | - Jie Liu
- Department of Pulmonary and Critical Care Medicine, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650302, China
| | - Liping Chen
- Department of Pulmonary and Critical Care Medicine, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650302, China
| | - Yongning Yi
- Department of Pulmonary and Critical Care Medicine, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650302, China
| | - Yun Huan
- Department of Pulmonary and Critical Care Medicine, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650302, China
| | - Jian He
- Department of Pulmonary and Critical Care Medicine, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650302, China.
| | - Chao Song
- Department of Medical Imaging, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650302, China.
| |
Collapse
|
6
|
Yuan H, Ma X, Xu J, Han P, Rao G, Chen G, Zhang K, Yang R, Han C, Jiang M. Application of metagenomic next-generation sequencing in the clinical diagnosis of infectious diseases after allo-HSCT: a single-center analysis. BMC Infect Dis 2024; 24:279. [PMID: 38438967 PMCID: PMC10910774 DOI: 10.1186/s12879-024-09153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND We investigated the value of metagenomic next-generation sequencing (mNGS) in diagnosing infectious diseases in patients receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS Fifty-four patients who had fever following allo-HSCT from October 2019 to February 2022 were enrolled. Conventional microbiological tests (CMTs) and mNGS, along with imaging and clinical manifestations, were used to diagnose infection following allo-HSCT. The clinical diagnostic value of mNGS was evaluated. RESULTS A total of 61 mNGS tests were performed, resulting in the diagnosis of 46 cases of infectious diseases. Among these cases, there were 22 cases of viral infection, 13 cases of fungal infection, and 11 cases of bacterial infection. Moreover, 27 cases (58.7%) were classified as bloodstream infections, 15 (32.6%) as respiratory infections, 2 (4.3%) as digestive system infections, and 2 (4.3%) as central nervous system infections. Additionally, there were 8 cases with non-infectious diseases (8/54, 14.81%), including 2 cases of interstitial pneumonia, 2 cases of bronchiolitis obliterans, 2 cases of engraftment syndrome, and 2 cases of acute graft-versus-host disease. The positive detection rates of mNGS and CMT were 88.9% and 33.3%, respectively, with significant differences (P < 0.001). The sensitivity of mNGS was 97.82%, the specificity was 25%, the positive predictive value was 93.75%, and the negative predictive value was 50%. Following treatment, 51 patients showed improvement, and 3 cases succumbed to multidrug-resistant bacterial infections. CONCLUSIONS mNGS plays an important role in the early clinical diagnosis of infectious diseases after allo-HSCT, which is not affected by immunosuppression status, empiric antibiotic therapy, and multi-microbial mixed infection.
Collapse
Affiliation(s)
- Hailong Yuan
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, No.137 Liyushan South Road, Urumqi, 830054, China
| | - Xiaolu Ma
- Department of Hematology, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Jianli Xu
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, No.137 Liyushan South Road, Urumqi, 830054, China
| | - Peng Han
- Genskey Medical Technology Co., Ltd, Beijing, China
| | - Guanhua Rao
- Genskey Medical Technology Co., Ltd, Beijing, China
| | - Gang Chen
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, No.137 Liyushan South Road, Urumqi, 830054, China
| | - Kaile Zhang
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, No.137 Liyushan South Road, Urumqi, 830054, China
| | - Ruixue Yang
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, No.137 Liyushan South Road, Urumqi, 830054, China
| | - Chuixia Han
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, No.137 Liyushan South Road, Urumqi, 830054, China
| | - Ming Jiang
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Institute of Hematology, No.137 Liyushan South Road, Urumqi, 830054, China.
| |
Collapse
|
7
|
Chen Y, Wang J, Niu T. Clinical and diagnostic values of metagenomic next-generation sequencing for infection in hematology patients: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:167. [PMID: 38326763 PMCID: PMC10848439 DOI: 10.1186/s12879-024-09073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVES This meta-analysis focused on systematically assessing the clinical value of mNGS for infection in hematology patients. METHODS We searched for studies that assessed the clinical value of mNGS for infection in hematology patients published in Embase, PubMed, Cochrane Library, Web of Science, and CNKI from inception to August 30, 2023. We compared the detection positive rate of pathogen for mNGS and conventional microbiological tests (CMTs). The diagnostic metrics, antibiotic adjustment rate and treatment effective rate were combined. RESULTS Twenty-two studies with 2325 patients were included. The positive rate of mNGS was higher than that of CMT (blood: 71.64% vs. 24.82%, P < 0.001; BALF: 89.86% vs. 20.78%, P < 0.001; mixed specimens: 82.02% vs. 28.12%, P < 0.001). The pooled sensitivity and specificity were 87% (95%CI: 81-91%) and 59% (95%CI: 43-72%), respectively. The reference standard/neutropenia and research type/reference standard may be sources of heterogeneity in sensitivity and specificity, respectively. The pooled antibiotic adjustment rate according to mNGS was 49.6% (95% CI: 41.8-57.4%), and the pooled effective rate was 80.9% (95% CI: 62.4-99.3%). CONCLUSION mNGS has high positive detection rates in hematology patients. mNGS can guide clinical antibiotic adjustments and improve prognosis, especially in China.
Collapse
Affiliation(s)
- Yuhui Chen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinjin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Zhou T, Zheng Y, Zhang H, Liu Y. A case report of diagnosis of cat-scratch disease using metagenomic next-generation sequencing. Front Cell Infect Microbiol 2024; 13:1322651. [PMID: 38287977 PMCID: PMC10822884 DOI: 10.3389/fcimb.2023.1322651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024] Open
Abstract
Cat-scratch disease (CSD) is an anthropozoonotic infection caused by Bartonella henselae, and it is one of the most common causes of lymph node infections in children and adolescents. B. henselae, belonging to the genus Bartonella, is a common human pathogen of human beings. CSD commonly develops as a result of cat scratches and bites or when injured skin comes into contact with cat saliva. The manifestation of CSD clinically differs for each patient based on their immune system. Individuals who have healthy immune systems generally manifest minimal clinical symptoms and do not necessitate any form of treatment. However, patients who have hypo-immunity require prompt medical attention due to the potential manifestation of severe symptoms that affect multiple systems of the body. Long latency and atypical clinical manifestations are characteristics of CSD. Bartonella isolation and identification are challenging procedures that require specialized equipment. There is no gold standard method for CSD diagnosis, and misdiagnosis and missed diagnosis rates are typically high. We present the case of a middle-aged male patient who developed fever, chills, anal distension, dizziness, and muscle pain for 10 days. The patient had a documented history of cat bites 1 month prior to the onset of symptoms. Following admission, he underwent an examination to determine superficial lymphadenopathy and hypoimmunity. Additionally, he had a fever during the disease. As the patient refused a needle biopsy of lymph nodes, metagenomic next-generation sequencing (mNGS) was employed and B. henselae was detected in the peripheral blood. The patient was diagnosed with CSD and treated with a combination of azithromycin and doxycycline. The fever symptoms were alleviated, and the patient was ultimately discharged. As a result of this case, we suggest that mNGS be used as a crucial supplementary diagnostic tool for individuals with compromised immune systems who may have CSD, especially when conventional diagnostic methods are inconclusive.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Infectious Disease Department, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yaqiu Zheng
- Digestive Endoscopy Center, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Huizi Zhang
- Department of Geriatric, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Yongfang Liu
- Department of Infectious Disease Department, The Third People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
9
|
Yang L, Wang K, Li Y, Li W, Liu D. Joint application of metagenomic next-generation sequencing and histopathological examination for the diagnosis of pulmonary infectious disease. Microbiol Spectr 2024; 12:e0058623. [PMID: 38038451 PMCID: PMC10783098 DOI: 10.1128/spectrum.00586-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/28/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE The diagnosis of some pulmonary infectious diseases and their pathogens is very difficult. A more precise diagnosis of pulmonary infectious diseases can help clinicians use proper antibiotics as well as reduce the development of drug-resistant bacteria. In this study, we performed both mNGS and pathology on lung puncture biopsy tissue from patients and found that combined mNGS and histopathology testing was significantly more effective than histopathology testing alone in detecting infectious diseases and identifying infectious diseases. In addition, the combined approach improves the detection rate of pathogenic microorganisms in infectious diseases and can be used to guide precision clinical treatment.
Collapse
Affiliation(s)
- Linhui Yang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kaige Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Wang ZY, Li LL, Cao XL, Li P, Du J, Zou MJ, Wang LL. Clinical application of amplification-based versus amplification-free metagenomic next-generation sequencing test in infectious diseases. Front Cell Infect Microbiol 2023; 13:1138174. [PMID: 38094744 PMCID: PMC10716234 DOI: 10.3389/fcimb.2023.1138174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Background Recently, metagenomic next-generation sequencing (mNGS) has been used in the diagnosis of infectious diseases (IDs) as an emerging and powerful tool. However, whether the complicated methodological variation in mNGS detections makes a difference in their clinical performance is still unknown. Here we conducted a method study on the clinical application of mNGS tests in the DNA detection of IDs. Methods We analyzed the effect of several potential factors in the whole process of mNGS for DNA detection on microorganism identification in 98 samples of suspected ID patients by amplification-based mNGS. The amplification-based and amplification-free mNGS tests were successfully performed in 41 samples. Then we compared the clinical application of the two mNGS methods in the DNA detection of IDs. Results We found that a higher concentration of extracted nucleic acid was more conducive to detecting microorganisms. Other potential factors, such as read depth and proportion of human reads, might not be attributed to microorganism identification. The concordance rate of amplification-based and amplification-free mNGS results was 80.5% (33/41) in the patients with suspected IDs. Amplification-based mNGS showed approximately 16.7% higher sensitivity than amplification-free mNGS. However, 4 cases with causative pathogens only detected by amplification-based mNGS were finally proved false-positive. In addition, empirical antibiotic treatments were adjusted in 18 patients following mNGS testing with unexpected pathogens. Conclusions Amplification-based and amplification-free mNGS tests showed their specific advantages and disadvantages in the diagnosis of IDs. The clinical application of mNGS still needs more exploration from a methodological perspective. With advanced technology and standardized procedure, mNGS will play a promising role in the diagnosis of IDs and help guide the use of antibiotics.
Collapse
Affiliation(s)
- Zhe-Ying Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, China
| | - Lu-Lu Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xue-Lei Cao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, China
| | - Ping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, China
| | - Jian Du
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Ming-Jin Zou
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Li-Li Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, China
| |
Collapse
|
11
|
Shimoda M, Morimoto K, Tanaka Y, Ito M, Moue I, Yoshimori K, Ohta K. Analysis of the utility of transbronchial lung biopsy culture under endobronchial ultrasonography with a guide-sheath. Sci Rep 2023; 13:16128. [PMID: 37752193 PMCID: PMC10522693 DOI: 10.1038/s41598-023-43078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Transbronchial lung biopsy (TBLB) culture is not common in clinical practice, and TBLB culture for patients with mycobacterial disease provide limited value because the diagnostic accuracy of TBLB culture is very low. Recently, bronchoscopic devices have been further developed, such as endobronchial ultrasonography with a guide-sheath (EBUS-GS). Therefore, this study investigated the utility of TBLB culture obtained by using EBUS-GS compared to washing cultures. A total of 31 patients who underwent TBLB culture by using EBUS-GS (GS-TBLB) were collected retrospectively at Fukujuji Hospital from January 2018 to December 2022. The diagnostic accuracies of GS-TBLB culture and bronchial and device washing cultures (namely, washing culture) were compared. The patients comprised 13 individuals with nontuberculous mycobacteriosis, 7 with pulmonary aspergillosis, 6 with lung abscess, and 5 with pulmonary tuberculosis. The diagnostic accuracy of GS-TBLB culture was lower to that of TBLB culture than those of washing culture (n = 11 [35.5%] vs. n = 20 [64.5%], p = 0.016), and there was only one patient with positive GS-TBLB culture results and negative washing culture results. Comparing between patients with mycobacteria and non-mycobacteria, GS-TBLB culture positivity were no significant difference between patients with mycobacteria and non-mycobacteria (n = 6 [33.3%] vs. n = 5 [38.5%], p = 1.000), however, patients with mycobacteria diagnosed by washing culture more than those with non-mycobacteria (n = 15 [83.3%] vs. n = 5 [38.5%], p = 0.021). Our results demonstrate that the utility of TBLB culture for the diagnosis of pulmonary infections might provide limited value even if EBUS-GS is performed and lung tissue is successfully obtained.
Collapse
Affiliation(s)
- Masafumi Shimoda
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), 3-1-24 Mastuyama, Kiyose, Tokyo, 204-8522, Japan.
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), 3-1-24 Mastuyama, Kiyose, Tokyo, 204-8522, Japan
- Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
- Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshiaki Tanaka
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), 3-1-24 Mastuyama, Kiyose, Tokyo, 204-8522, Japan
| | - Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), 3-1-24 Mastuyama, Kiyose, Tokyo, 204-8522, Japan
| | - Iori Moue
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), 3-1-24 Mastuyama, Kiyose, Tokyo, 204-8522, Japan
| | - Kozo Yoshimori
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), 3-1-24 Mastuyama, Kiyose, Tokyo, 204-8522, Japan
| | - Ken Ohta
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), 3-1-24 Mastuyama, Kiyose, Tokyo, 204-8522, Japan
| |
Collapse
|
12
|
Zhang C, Li Z, Wang M, Zhou J, Yu W, Liu H, Hu B, Wang S. High specificity of metagenomic next-generation sequencing using protected bronchial brushing sample in diagnosing pneumonia in children. Front Cell Infect Microbiol 2023; 13:1165432. [PMID: 37637461 PMCID: PMC10457156 DOI: 10.3389/fcimb.2023.1165432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Lower respiratory tract infections are the leading cause of morbidity and mortality in children worldwide. Timely and accurate pathogen detection is crucial for proper clinical diagnosis and therapeutic strategies. The low detection efficiency of conventional methods and low specificity using respiratory samples seriously hindered the accurate detection of pathogens. METHODS In this study, we retrospectively enrolled 1,032 children to evaluate the performance of metagenomics next-generation sequencing (mNGS) using bronchoalveolar lavage fluid (BALF) sample and protected bronchial brushing (BB) sample in diagnosing pneumonia in children. In addition, conventional tests (CTs) were also performed. RESULTS The specificity of BB mNGS [67.3% (95% CI 58.6%-75.9%)] was significantly higher than that of BALF mNGS [38.5% (95% CI 12.0%-64.9%)]. The total coincidence rate of BB mNGS [77.6% (95% CI 74.8%-80.5%)] was slightly higher than that of BALF mNGS [76.5% (95% CI 68.8%-84.1%)] and CTs [38.5% (95% CI 35.2%-41.9%)]. During the epidemics of Mycoplasma pneumoniae, the detection rate of M. pneumoniae in the >6-year group (81.8%) was higher than that in the 3-6-year (78.9%) and <3-year groups (21.5%). The highest detection rates of bacteria, fungi, and viruses were found in the <3-year, >6-year, and 3-6-year groups, respectively. mNGS detection should be performed at the duration of 5-7 days after the start of continuous anti-microbial therapy or at the duration of 6-9 days from onset to mNGS test. CONCLUSIONS This is the first report to evaluate the performance of BB mNGS in diagnosing pulmonary infections in children on a large scale. Based on our findings, extensive application of BB mNGS could be expected.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Microbiology Laboratory, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Clinical Microbiology, Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| | - Zheng Li
- Department of Microbiology Laboratory, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Clinical Microbiology, Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| | - Mengyuan Wang
- Department of Microbiology Laboratory, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Clinical Microbiology, Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| | - Jiemin Zhou
- Department of Scientific Affairs, Vision Medicals Center for Infectious Diseases, Guangzhou, China
| | - Wenwen Yu
- Department of Microbiology Laboratory, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Clinical Microbiology, Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| | - Huifang Liu
- Department of Scientific Affairs, Vision Medicals Center for Infectious Diseases, Guangzhou, China
| | - Bingxue Hu
- Department of Scientific Affairs, Vision Medicals Center for Infectious Diseases, Guangzhou, China
| | - Shifu Wang
- Department of Microbiology Laboratory, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Clinical Microbiology, Shandong Provincial Clinical Research Center for Children’s Health and Disease, Jinan, China
| |
Collapse
|
13
|
Zhong J, Liu Y, Luo N, Wei Q, Su Q, Zou J, Wu X, Huang X, Jiang Y, Liang L, Li H, Lin J. Metagenomic next-generation sequencing for rapid detection of pulmonary infection in patients with acquired immunodeficiency syndrome. Ann Clin Microbiol Antimicrob 2023; 22:57. [PMID: 37430367 DOI: 10.1186/s12941-023-00608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Acquired immunodeficiency syndrome (AIDS) is associated with a high rate of pulmonary infections (bacteria, fungi, and viruses). To overcome the low sensitivity and long turnaround time of traditional laboratory-based diagnostic strategies, we adopted metagenomic next-generation sequencing (mNGS) technology to identify and classify pathogens. RESULTS This study enrolled 75 patients with AIDS and suspected pulmonary infections who were admitted to Nanning Fourth People's Hospital. Specimens were collected for traditional microbiological testing and mNGS-based diagnosis. The diagnostic yields of the two methods were compared to evaluate the diagnostic value (detection rate and turn around time) of mNGS for infections with unknown causative agent. Accordingly, 22 cases (29.3%) had a positive culture and 70 (93.3%) had positive valve mNGS results (P value < 0.0001, Chi-square test). Meanwhile, 15 patients with AIDS showed concordant results between the culture and mNGS, whereas only one 1 patient showed concordant results between Giemsa-stained smear screening and mNGS. In addition, mNGS identified multiple microbial infections (at least three pathogens) in almost 60.0% of patients with AIDS. More importantly, mNGS was able to detect a large variety of pathogens from patient tissue displaying potential infection and colonization, while culture results remained negative. There were 18 members of pathogens which were consistently detected in patients with and without AIDS. CONCLUSIONS In conclusion, mNGS analysis provides fast and precise pathogen detection and identification, contributing substantially to the accurate diagnosis, real-time monitoring, and treatment appropriateness of pulmonary infection in patients with AIDS.
Collapse
Affiliation(s)
- Juan Zhong
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, China.
| | - Yanfen Liu
- The Fourth People's Hospital of Nanning, Nanning, China
| | - Na Luo
- NanNing Center for Disease Control and Prevention, Nanning, China
| | - Qiu Wei
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, China
| | - Qisi Su
- The Fourth People's Hospital of Nanning, Nanning, China
| | - Jun Zou
- The Fourth People's Hospital of Nanning, Nanning, China
| | - Xiaozhong Wu
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, China
| | | | - Yuting Jiang
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, China
| | - Lijuan Liang
- Nanning Yunju Biotechnology Co., Ltd, Nanning, China
| | - Hongmian Li
- The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Jianyan Lin
- The First People's Hospital of Nanning, Nanning, China.
| |
Collapse
|
14
|
Wen S, Peng S, Hu X, Jiang N, Li B, Chen B, Deng S, Yuan Y, Wu Q, Tao Y, Ma J, Li S, Lin T, Wen F, Li Z, Huang R, Feng Z, He C, Wang W, Liang X, Shi W, Xu L, Liu S. Validation of metagenomic next-generation sequencing of bronchoalveolar lavage fluid for diagnosis of suspected pulmonary infections in patients with systemic autoimmune rheumatic diseases receiving immunosuppressant therapy. Front Med (Lausanne) 2023; 10:1161661. [PMID: 37484860 PMCID: PMC10359889 DOI: 10.3389/fmed.2023.1161661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background The accuracy and sensitivity of conventional microbiological tests (CMTs) are insufficient to identify opportunistic pathogens in patients with systemic autoimmune rheumatic diseases (SARDs). The study aimed to assess the usefulness of metagenomic next-generation sequencing (mNGS) vs. CMTs for the diagnosis of pulmonary infections in patients with SARDs receiving immunosuppressant therapy. Methods The medical records of 40 patients with pulmonary infections and SARDs treated with immunosuppressants or corticosteroids were reviewed retrospectively. Bronchoalveolar lavage fluid (BALF) samples were collected from all patients and examined by mNGS and CMTs. Diagnostic values of the CMTs and mNGS were compared with the clinical composite diagnosis as the reference standard. Results Of the 40 patients included for analysis, 37 (92.5%) were diagnosed with pulmonary infections and 3 (7.5%) with non-infectious diseases, of which two were considered primary diseases and one an asthma attack. In total, 15 pathogens (7 bacteria, 5 fungi, and 3 viruses) were detected by CMTs as compared to 58 (36 bacteria, 12 fungi, and 10 viruses) by mNGS. Diagnostic accuracy of mNGS was superior to that of the CMTs for the detection of co-infections with bacteria and fungi (95 vs. 53%, respectively, p < 0.01), and for the detection of single infections with fungi (97.5 vs. 55%, respectively, p < 0.01). Of the 31 patients diagnosed with co-infections, 4 (12.9%) were positive for two pathogens and 27 (87.1%) for three or more. The detection rate of co-infection was significantly higher for mNGS than CMTs (95 vs. 16%, respectively, p < 0.01). Conclusion The accuracy of mNGS was superior to that of the CMTs for the diagnosis of pulmonary infections in patients with SARDs treated with immunosuppressants. The rapid diagnosis by mNGS can ensure timely adjustment of treatment regimens to improve diagnosis and outcomes.
Collapse
Affiliation(s)
- Sichun Wen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Siqi Peng
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xuejiao Hu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bohou Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Boxi Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shuting Deng
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ye Yuan
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiong Wu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yiming Tao
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianchao Ma
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Sijia Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ting Lin
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Feng Wen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhuo Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Renwei Huang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhonglin Feng
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chaosheng He
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wenjian Wang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei Shi
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lixia Xu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shuangxin Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Wei Y, Zhang T, Ma Y, Yan J, Zhan J, Zheng J, Xu Y. Clinical Evaluation of Metagenomic Next-Generation Sequencing for the detection of pathogens in BALF in severe community acquired pneumonia. Ital J Pediatr 2023; 49:25. [PMID: 36805803 PMCID: PMC9938609 DOI: 10.1186/s13052-023-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/12/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Rapid and accurate identification of pathogens is very important for the treatment of Severe community-acquired pneumonia (SCAP) in children. Metagenomic Next-generation sequencing (mNGS) has been applied in the detection of pathogenic bacteria in recent years, while the overall evaluation the application of SCAP in children is lacking. METHODS In our study, 84 cases of SCAP were enrolled. Bronchoalveolar lavage fluid (BALF) samples were analysed using mNGS; and sputum, blood, and BALF samples were analysed using conventional technology (CT). RESULTS Among the 84 children, 41 were boys, and 43 were girls, with an average age ranging from 2 months to 14 years. The pathogen detection rate of mNGS was higher than that of CT (83.3% [70/84] vs. 63.1% [53/84], P = 0.003). The mNGS was much greater than that of the CT in detecting Streptococcus pneumoniae (89.2% [25/29] vs. 44.8% [13/29], P = 0.001) and Haemophilus influenzae (91.7% [11/12] vs. 33.3% [4/12], P < 0.005). The mNGS also showed superior fungal detection performance compared with that of the CT (81.8% [9/11] vs. 18.2% [2/11], P = 0.004). The mNGS test can detect viruses, such as bocavirus, rhinovirus, and human metapneumovirus, which are not frequently recognised using CT. However, the mNGS detection rate was lower than that of the CT (52.4% [11/21] vs. 95.2% [20/21], P = 0.004) for Mycoplasma pneumoniae (MP). The detection rate of mNGS for mixed infection was greater than that of the CT, although statistical significance was not observed (26.3% [20/39] vs. 21.1% [16/39], P > 0.005). Treatment for 26 (31.0%) children was changed based on mNGS results, and their symptoms were reduced; nine patients had their antibiotic modified, five had antibiotics added, nine had their antifungal medication, and seven had their antiviral medication. CONCLUSION mNGS has unique advantages in the detection of SCAP pathogens in children, especially S. pneumoniae, H. influenzae, and fungi. However, the detection rate of MP using mNGS was lower than that of the CT. Additionally, mNGS can detect pathogens that are not generally covered by CT, which is extremely important for the modification of the treatment strategy.
Collapse
Affiliation(s)
- Yupeng Wei
- grid.265021.20000 0000 9792 1228Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China ,grid.417022.20000 0004 1772 3918Department of Respiratory Medicine, Tianjin Children’s Hospital (Tianjin University Children’s Hospital), Tianjin, China ,grid.410626.70000 0004 1798 9265Department of Neonatology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Tongqiang Zhang
- grid.265021.20000 0000 9792 1228Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China ,grid.417022.20000 0004 1772 3918Department of Respiratory Medicine, Tianjin Children’s Hospital (Tianjin University Children’s Hospital), Tianjin, China
| | - Yuting Ma
- grid.265021.20000 0000 9792 1228Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China ,grid.417022.20000 0004 1772 3918Department of Infection, Tianjin Children’s Hospital (Tianjin University Children’s Hospital), Tianjin, China
| | - Jisi Yan
- grid.265021.20000 0000 9792 1228Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China ,grid.417022.20000 0004 1772 3918Department of Respiratory Medicine, Tianjin Children’s Hospital (Tianjin University Children’s Hospital), Tianjin, China ,grid.410626.70000 0004 1798 9265Department of Neonatology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Jianghua Zhan
- Department of Pediatric Surgery, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.
| | - Jun Zheng
- Department of Neonatology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China.
| | - Yongsheng Xu
- Department of Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.
| |
Collapse
|
16
|
Wang H, Yan S, Liu Y, Li Y, Cui G, Ma X. Metagenomic next-generation sequencing assists in the diagnosis of Cryptococcus pneumonia: Case series and literature review. Front Public Health 2022; 10:971511. [PMID: 36408040 PMCID: PMC9672815 DOI: 10.3389/fpubh.2022.971511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background Pulmonary cryptococcosis (PC) was once thought to occur only in patients with immune deficiencies, such as tested positive for the Human Immunodeficiency Virus (HIV). However, in recent years, it has been discovered that more than half of the patients with PC in our nation are individuals with normal immune function. As more and more PC cases are recorded, our diagnosis and treatment approaches, as well as our understanding of PC, are gradually improving. In reality, most PC patients still have a high incidence of misdiagnosis on their initial visit. It is primarily linked to the diverse clinical manifestations, atypical imaging findings, and inaccurate diagnostic approaches. Methods The research was conducted from 2019 to 2020. We performed traditional microbiological testing and mNGS on sample from patients with fever of Pulmonary nodules or lung infections. Furthermore, we collected patients' baseline information, clinical features, laboratory and imaging examination results, diagnosis, treatment and outcome. In the end, we confirmed three cases of PC using biopsy and mNGS. Conclusion Our data demonstrates that mNGS can be utilized as an auxiliary method for PC diagnosis. Early mNGS aids in the identification of pathogens, enabling early diagnosis and treatment, as well as a reduction in the rate of misdiagnosis and illness progression.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaoguang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Guangying Cui
| | - Xiaoxu Ma
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Xiaoxu Ma
| |
Collapse
|
17
|
Ma W, Zhao Y, Lu X, Zhang L, Ma X, Gao J, Hou J, Liu Q, Zhao S, Yao M, Xing L. Negative results of bronchoalveolar lavage fluid metagenomic next-generation sequencing in critically ill patients. Front Cell Infect Microbiol 2022; 12:962283. [PMID: 36389134 PMCID: PMC9640831 DOI: 10.3389/fcimb.2022.962283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Reports on negative results of metagenomic next-generation sequencing (mNGS) are scarce. We aimed to explore the diagnostic value of negative results in bronchoalveolar lavage fluid (BALF) mNGS and how to deal with the negative results in patients with severe respiratory disease. Methods A retrospective analysis was performed on patients suspected severe community-acquired pneumonia who were admitted to the respiratory intensive care unit of the First Affiliated Hospital of Zhengzhou University from January 2020 to December 2021. According to the final diagnosis as the reference standard, the negative results of mNGS were divided into a true negative group and a false negative group. For enrolled patients, we recorded their demographic data, imaging results, laboratory results, therapeutic processes, and prognoses. Results A total of 21 patients were enrolled in this study, including 16 true negative patients and 5 false negative patients. In the true negative group, interstitial lung diseases were the most and neoplastic diseases were following. In addition to mNGS, 9 patients underwent pathological examination, 7 patients were finally diagnosed by medical history, autoantibodies, and point-of-care (POC) ultrasound. 14 patients eventually discontinued antibiotics, 2 patients underwent antibiotic de-escalation, the average interval time of treatment adjustment was 3.56 ± 2.00 days. In the false negative group, the leading missed pathogen was fungi, followed by tuberculosis bacilli. In contrast to 2 patients underwent pathological examination, 3 patients were confirmed by routine microbiological tests. Conclusions Negative results of BALF mNGS can help to rule out infection, but missed diagnoses may also exist. It should be re-evaluated with other clinical informations. Pathological examination or repeated mNGS may be viable options when the diagnosis cannot be confirmed.
Collapse
Affiliation(s)
- Wentao Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangchao Zhao
- Department of Extracorporeal Life Support Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxiao Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxu Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junna Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuhong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shilong Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengying Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Mengying Yao, ; Lihua Xing,
| | - Lihua Xing
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Mengying Yao, ; Lihua Xing,
| |
Collapse
|
18
|
Li M, Yan K, Jia P, Wei E, Wang H. Metagenomic next-generation sequencing may assist diagnosis of cat-scratch disease. Front Cell Infect Microbiol 2022; 12:946849. [PMID: 36189365 PMCID: PMC9524480 DOI: 10.3389/fcimb.2022.946849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Bartonella henselae, the pathogen that causes cat-scratch disease (CSD), is relatively rare in the clinic. CSD usually causes mild clinical manifestations, which self-heal in a matter of weeks. However, in immunocompromised patients, CSD may cause systemic disorders that can lead to critical illness. Due to the diversity of symptom signs and the lack of a golden standard for diagnosis, identifying atypical CSD in a timely manner presents a challenge. Metagenomic next-generation sequencing (mNGS), is a promising technology that has been widely used in the detection of pathogens in clinical infectious diseases in recent years. mNGS can detect multiple pathogens quickly and accurately from any given source. Here, we present a case of atypical CSD, which was diagnosed using mNGS. The patient manifested a fever of unknown infectious origin, and routine antibiotic treatment was ineffective. mNGS was employed to test the patient’s peripheral blood, which led to the detection of B. henselae. This was rarely seen in previous CSD reports. We surmised that the patient presented with atypical CSD and thus a targeted therapy was recommended. Crucially, the patient recovered rapidly. Based on this case study findings, we recommend that CSD should be included in the differential diagnosis for fever of unknown origin and that mNGS may be helpful in the diagnosis of CSD.
Collapse
|
19
|
Sun T, Liu Y, Cai Y, Zhai T, Zhou Y, Yang B, Wu X, Zhan Q. A Paired Comparison of Plasma and Bronchoalveolar Lavage Fluid for Metagenomic Next-Generation Sequencing in Critically Ill Patients with Suspected Severe Pneumonia. Infect Drug Resist 2022; 15:4369-4379. [PMID: 35971554 PMCID: PMC9375561 DOI: 10.2147/idr.s374906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Plasma metagenomic next-generation sequencing (mNGS) has emerged as an attractive and minimally invasive technique for pathogen detection. However, few studies have demonstrated the need for simultaneous plasma and bronchoalveolar lavage fluid (BALF) mNGS in patients with severe pneumonia. Patients and Methods This study retrospectively performed a paired comparison of BALF and plasma mNGS in critically ill patients with suspected severe pneumonia from April 2019 to December 2020. The diagnostic performance of BALF and plasma mNGS was compared using the clinical composite diagnosis as the reference standard. Results In total, 57 patients were included in this study. Patients with positive plasma mNGS had shorter hospital stay days at the time of specimen acquisition (4.5 vs 11, P = 0.028) and a higher positivity rate of BALF culture (50% vs 22.9%, P = 0.033) than patients with negative plasma mNGS. Fifty-three patients (93%) were finally diagnosed with severe pneumonia. Significant differences were observed in the sensitivity of BALF and plasma mNGS (100% vs 42%, P < 0.001), and the diagnostic accuracy was 96% and 46%, respectively. The proportion of virus in positive plasma mNGS results was higher than that in BALF mNGS (23% vs 11%, P = 0.173) without significant difference. Although plasma mNGS detected additional microorganisms in 11/53 patients, the beneficial effect was observed in only 5/53 (9%) patients. Conclusion In this study, the clinical effect of simultaneously conducting mNGS of BALF and plasma samples was found to be limited. For patients with the suspected virus infection, plasma mNGS may be a supplementary test. Further studies are needed to identify the optimal indications for plasma mNGS.
Collapse
Affiliation(s)
- Ting Sun
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
| | - Yijie Liu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ying Cai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Tianshu Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yun Zhou
- Laboratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Bin Yang
- Vision Medicals Center for Infection Diseases, Guangzhou, People's Republic of China
| | - Xiaojing Wu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Qingyuan Zhan
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
20
|
Chen S, Kang Y, Li D, Li Z. Diagnostic performance of metagenomic next-generation sequencing for the detection of pathogens in bronchoalveolar lavage fluid in patients with pulmonary infections: Systematic review and meta-analysis. Int J Infect Dis 2022; 122:867-873. [PMID: 35907477 DOI: 10.1016/j.ijid.2022.07.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022] Open
Abstract
BACKGROUND The identification of pathogens in patients with pulmonary infection has always been a major challenge in medicine. Compared with sputum and throat swabs, bronchoalveolar lavage fluid (BALF) can better reflect the actual state in the lungs. However, there has not been a meta-analysis of the diagnostic efficacy of metagenomic next-generation sequencing (mNGS) in detecting pathogens in BALF from patients with pulmonary infections. METHODS Data sources were PubMed, Web of Science, Embase, and the China National Knowledge Infrastructure. The pooled sensitivity and specificity were estimated by using random-effects or fixed-effect models. Subgroup analysis was performed to reveal the effect of potential explanatory factors on the diagnostic performance measures. RESULTS The pooled sensitivity was 78% (95% confidence interval: 67-87%; I2 = 92%) and the pooled specificity was 77% (95% confidence interval: 64-94%; I2 = 74%) for mNGS. Subgroup analyses for the sensitivity of mNGS revealed that patients with pulmonary infections who were severely ill or immunocompromised significantly affected heterogeneity (P < 0.001). The positive detection rate of mNGS for pathogens in BALF of severely or immunocompromised pulmonary-infected patients was 92% (95% confidence interval: 78-100%). CONCLUSION mNGS has high diagnostic performance for BALF pathogens in patients with pulmonary infections, especially in critically ill or immunocompromised patients.
Collapse
Affiliation(s)
- Shenglin Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing 102206, China; School of Public Health, Shanxi Medical University, 56 Xinjiannanlu Street, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing 102206, China
| | - Dan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing 102206, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing 102206, China; School of Public Health, Shanxi Medical University, 56 Xinjiannanlu Street, Taiyuan 030001, Shanxi, People's Republic of China.
| |
Collapse
|
21
|
Evaluation of Metagenomic and Targeted Next-Generation Sequencing Workflows for Detection of Respiratory Pathogens from Bronchoalveolar Lavage Fluid Specimens. J Clin Microbiol 2022; 60:e0052622. [PMID: 35695488 PMCID: PMC9297812 DOI: 10.1128/jcm.00526-22] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing (NGS) workflows applied to bronchoalveolar lavage (BAL) fluid specimens could enhance the detection of respiratory pathogens, although optimal approaches are not defined. This study evaluated the performance of the Respiratory Pathogen ID/AMR (RPIP) kit (Illumina, Inc.) with automated Explify bioinformatic analysis (IDbyDNA, Inc.), a targeted NGS workflow enriching specific pathogen sequences and antimicrobial resistance (AMR) markers, and a complementary untargeted metagenomic workflow with in-house bioinformatic analysis. Compared to a composite clinical standard consisting of provider-ordered microbiology testing, chart review, and orthogonal testing, both workflows demonstrated similar performances. The overall agreement for the RPIP targeted workflow was 65.6% (95% confidence interval, 59.2 to 71.5%), with a positive percent agreement (PPA) of 45.9% (36.8 to 55.2%) and a negative percent agreement (NPA) of 85.7% (78.1 to 91.5%). The overall accuracy for the metagenomic workflow was 67.1% (60.9 to 72.9%), with a PPA of 56.6% (47.3 to 65.5%) and an NPA of 77.2% (68.9 to 84.1%). The approaches revealed pathogens undetected by provider-ordered testing (Ureaplasma parvum, Tropheryma whipplei, severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], rhinovirus, and cytomegalovirus [CMV]), although not all pathogens detected by provider-ordered testing were identified by the NGS workflows. The RPIP targeted workflow required more time and reagents for library preparation but streamlined bioinformatic analysis, whereas the metagenomic assay was less demanding technically but required complex bioinformatic analysis. The results from both workflows were interpreted utilizing standardized criteria, which is necessary to avoid reporting nonpathogenic organisms. The RPIP targeted workflow identified AMR markers associated with phenotypic resistance in some bacteria but incorrectly identified blaOXA genes in Pseudomonas aeruginosa as being associated with carbapenem resistance. These workflows could serve as adjunctive testing with, but not as a replacement for, standard microbiology techniques.
Collapse
|
22
|
Qian M, Zhu B, Zhan Y, Wang L, Shen Q, Zhang M, Yue L, Wu D, Chen H, Wang X, Cheng Y. Analysis of Negative Results of Metagenomics Next-Generation Sequencing in Clinical Practice. Front Cell Infect Microbiol 2022; 12:892076. [PMID: 35651750 PMCID: PMC9149223 DOI: 10.3389/fcimb.2022.892076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundMetagenomics next-generation sequencing (mNGS) has been increasingly used in the clinic, which provides a powerful tool for the etiological diagnosis of infectious diseases. Precise treatment can be carried out according to the positive mNGS results. However, the role of negative results of mNGS remains poorly defined in clinical practice.MethodsThe results of 1,021 samples from patients who received the mNGS test at Zhongshan Hospital, Fudan University, between January 2019 and December 2019 were analyzed.ResultsThere were 308 samples (30.17%) of negative results included in the current study. The top 2 types of negative samples were blood (130/308) and tissue (63/308), which also accounted for the highest negative proportion in diseases. Sputum and bronchoalveolar lavage fluid (BALF) were more likely to have positive results. In false-negative results (defined as negative in mNGS test but reported positive in other sample types or assays), 118 samples were found when compared to regular microbiological assays. The negative predictive value (NPV) of mNGS was 95.79% [95%CI, 93.8%–97.8%] as compared to culture and smear. Mycobacterium, Aspergillus, and Mycoplasma ranked as the top 3 microorganisms on the undetected pathogen list.ConclusionsThe present data indicate that when the mNGS test is negative, the negative prediction accuracy rate of the original specimen is significant. However, other laboratory assays results and clinical presentations should always be carefully considered prior to drawing a diagnosis.
Collapse
Affiliation(s)
- Mengjia Qian
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bijun Zhu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Wang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Shen
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miaomiao Zhang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Yue
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Duojiao Wu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan Hospital Xuhui Branch, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yunfeng Cheng, ; Xiangdong Wang,
| | - Yunfeng Cheng
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
- *Correspondence: Yunfeng Cheng, ; Xiangdong Wang,
| |
Collapse
|
23
|
Qu Y, Ding W, Liu S, Wang X, Wang P, Liu H, Xia H, Chen Y, Jiang H. Metagenomic Next-Generation Sequencing vs. Traditional Pathogen Detection in the Diagnosis of Infection After Allogeneic Hematopoietic Stem Cell Transplantation in Children. Front Microbiol 2022; 13:868160. [PMID: 35509305 PMCID: PMC9058167 DOI: 10.3389/fmicb.2022.868160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Infection is a severe complication of allo-HSCT in children, however, the accurate detection of the infection is hard. In this study, we traced the records of 101 pediatric recipients with allo-HSCT to investigate the pathogens of infection, and collected 54 bronchoalveolar lavage fluid, 32 blood, and 15 cerebrospinal fluid samples. In these samples, 87 was with post-transplant infection and 14 without infection. Using the metagenomic next-generation sequencing (mNGS) and traditional pathogen detection, we compared their sensitivity and specificity to detect pathogens of infection. Our results showed that mNGS was more sensitive (89.7%) than conventional pathogen detection (21.8%), with a difference of 67.9% (P < 0.001), However, mNGS was less specific (78.5%) than traditional methods (92.9%), with a difference of 14.4% (P = 0.596). The sensitivity of mNGS for diagnosing pulmonary infections, bloodstream infections or viremia, and CNS infections post-transplant were 91.7, 85.7, and 90.9%, respectively. In contrast, the sensitivity of conventional testing for diagnosing pulmonary infections, bloodstream infections or viremia, and CNS infections post-transplant were 22.9, 21.4, and 18.2%, respectively. There were significant differences in the sensitivity of mNGS and conventional testing in BALF, blood, and CSF samples, with P values of 0.000, 0.000, and 0.002 respectively. Among the patients with pulmonary infection, 11 pathogens were both identified by mNGS and conventional testing, and 33 by mNGS only. The percentage with the mNGS-positive result was 44/48 (91.7%), including viruses (n = 12), bacteria (n = 17), fungi (n = 9) and mixed infections (n = 6). Among the patients diagnosed with fungal pneumonia (n = 9), the most prevalent pathogenic fungi were Pneumocystis jiroveci (n = 6), which were also detected in 4 patients with mixed infectious pneumonia. In the 28 blood specimens of patients with bloodstream infections or viremia, five patients were positive by both mNGS and conventional testing, 19 were positive by mNGS, and 1 was positive by traditional testing only. The percentage with the mNGS-positive results was 24/28 (85.7%), including viruses (n = 12), bacteria (n = 4), fungi (n = 3), and mixed infections (n = 5). Of the 15 CSF specimens enrolled, 11 patients were eventually diagnosed with CNS infections. Ten pathogens were identified by mNGS in the 11 patients, including viruses (n = 8), bacteria (n = 1), and fungi (n = 1). These results suggest that mNGS is more sensitive than conventional pathogen detection for diagnosing infections post HSCT in children which may help the clinic diagnosis. Pneumocystis jiroveci was the most frequent pathogen of pulmonary infections post-transplant, while viruses were the most common pathogens of CNS infections in allo-HSCT recipients.
Collapse
Affiliation(s)
- Yuhua Qu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Wenjiao Ding
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Sha Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Xiaojing Wang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Pengfei Wang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Haiyan Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Yong Chen
- Department of Scientific Affairs, BGI PathoGenesis Pharmaceutical Technology Co., Ltd., Shenzhen, China
| | - Hua Jiang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
24
|
郑 一, 林 威, 张 天, 房 宇, 陈 滨, 潘 国, 林 振. Value of metagenomic next-generation sequencing in children with severe infectious diseases. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:273-278. [PMID: 35351257 PMCID: PMC8974643 DOI: 10.7499/j.issn.1008-8830.2110003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To study the application value of metagenomic next-generation sequencing (mNGS) in children with severe infectious diseases. METHODS An analysis was performed on the clinical data and laboratory test results of 29 children with severe infection who were admitted to the Second Affiliated Hospital of Wenzhou Medical University from June 2018 to December 2020. Conventional pathogen culture was performed for the 29 specimens (27 peripheral blood specimens and 2 pleural effusion specimens) from the 29 children, and mNGS pathogen detection was performed at the same time. RESULTS Among the 29 children, 2 tested positive by conventional pathogen culture with 2 strains of pathogen, and the detection rate was 7% (2/29); however, 20 children tested positive by mNGS with 38 strains of pathogen, and the detection rate was 69% (20/29). The pathogen detection rate of mNGS was significantly higher than that of conventional pathogen culture (P<0.05), and mNGS could detect the viruses, fungi, and other special pathogens that conventional pathogen culture failed to detect, such as Orientia tsutsugamushi. The univariate analysis showed that gender, routine blood test results, C-reactive protein, procalcitonin, D-dimer, radiological findings, and whether antibiotics were used before admission did not affect the results of mNGS (P>0.05). CONCLUSIONS Compared with conventional pathogen culture, mNGS is more sensitive for pathogen detection, with fewer interference factors. Therefore, it is a better pathogenic diagnosis method for severe infectious diseases in children.
Collapse
Affiliation(s)
| | - 威 林
- 温州医科大学附属第二医院/育英儿童医院,急诊与重症医学科,浙江温州325000
| | | | | | | | - 国权 潘
- 温州医科大学附属第二医院/育英儿童医院,急诊与重症医学科,浙江温州325000
| | | |
Collapse
|
25
|
Chen H, Bai X, Gao Y, Liu W, Yao X, Wang J. Profile of Bacteria with ARGs Among Real-World Samples from ICU Admission Patients with Pulmonary Infection Revealed by Metagenomic NGS. Infect Drug Resist 2021; 14:4993-5004. [PMID: 34866919 PMCID: PMC8636693 DOI: 10.2147/idr.s335864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Background Treatment of pulmonary infections in the intensive care unit (ICU) represents a great challenge, especially infections caused by antibiotic resistance pathogens. A thorough and up-to-date knowledge of the local spectrum of antibiotic resistant bacteria can improve the antibiotic treatment efficiency. In this study, we aimed to reveal the profile of bacteria with antibiotic resistance genes (ARGs) in real-world samples from ICU admission patients with pulmonary infection in Mainland, China, by metagenomic next-generation sequencing (mNGS). Methods A total of 504 different types of clinical samples from 452 ICU admission patients with pulmonary infection were detected by mNGS analysis. Results A total of 485 samples from 434 patients got successful mNGS results. Among 434 patients, one or more bacteria with ARGs were detected in 192 patients (44.24%, 192/434), and ≥2 bacteria with ARGs were detected in 85 (19.59%, 85/434) patients. The predominant detected bacteria were Corynebacterium striatum (C. striatum) (11.76%, 51/434), Acinetobacter baumannii (A. baumannii) (11.52%, 50/434) and Enterococcus faecium (E. faecium) (8.99%, 39/434). ermX conferred resistance to MSLB and cmx to phenicol were the only two ARGs detected in C. striatum; in A. baumannii, most of ARGs were resistance-nodulation-division (RND)-type efflux pumps genes, which conferred resistance to multi-drug; ermB conferred resistance to MSLB and efmA to multi-drug were the predominant ARGs in E. faecium. Bacteria with ARGs were detected in 50% (140/280) bronchoalveolar lavage fluid (BALF) and 50.5% (48/95) sputum samples, which were significantly higher than in blood and cerebrospinal fluid (CSF) samples. Conclusion High level of bacteria with ARGs was observed in clinical samples, especially BALF and sputum samples from ICU admission patients with pulmonary infection in Mainland, China. And C. striatum resistant to MSLB and/or phenicol, multi-drug resistance A. baumannii and E. faecium were the lead bacteria.
Collapse
Affiliation(s)
- Huijuan Chen
- Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Xinhua Bai
- Department of Clinical Laboratory, Beijing Capitalbio Medlab, Beijing, People's Republic of China
| | - Yang Gao
- Department of Clinical Laboratory, Beijing Capitalbio Medlab, Beijing, People's Republic of China
| | - Wenxuan Liu
- Department of Clinical Laboratory, Beijing Capitalbio Medlab, Beijing, People's Republic of China
| | - Xuena Yao
- Department of Clinical Laboratory, Beijing Capitalbio Medlab, Beijing, People's Republic of China
| | - Jing Wang
- Department of Clinical Laboratory, Beijing Capitalbio Medlab, Beijing, People's Republic of China
| |
Collapse
|
26
|
Casto AM, Fredricks DN, Hill JA. Diagnosis of infectious diseases in immunocompromised hosts using metagenomic next generation sequencing-based diagnostics. Blood Rev 2021; 53:100906. [PMID: 34802773 DOI: 10.1016/j.blre.2021.100906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
The diagnosis of infectious diseases in immunocompromised hosts presents unique challenges for the clinician. Metagenomic next generation sequencing (mNGS) based diagnostics that identify microbial nucleic acids in clinical samples (mNGS for pathogen identification or mNGSpi) may be a useful tool in addressing some of these challenges. Studies of mNGSpi in immunocompromised hosts have demonstrated that these diagnostics are capable of identifying causative organisms in a subset of patients for whom conventional testing has been negative. While these studies provide proof of concept for mNGSpi utility, they have a number of limitations, which make it difficult to confidently assess test performance and clinical impact based on current data. Future studies will likely feature larger cohort sizes and controlled interventional study designs that assess the impact of mNGSpi on clinical endpoints. They will also likely include assessments of the clinical value of data generated by mNGS beyond pathogen identification.
Collapse
Affiliation(s)
- Amanda M Casto
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States of America; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America.
| | - David N Fredricks
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States of America; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America.
| | - Joshua A Hill
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States of America; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America.
| |
Collapse
|
27
|
Zheng Y, Qiu X, Wang T, Zhang J. The Diagnostic Value of Metagenomic Next-Generation Sequencing in Lower Respiratory Tract Infection. Front Cell Infect Microbiol 2021; 11:694756. [PMID: 34568089 PMCID: PMC8458627 DOI: 10.3389/fcimb.2021.694756] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Lower respiratory tract infections are associated with high morbidity and mortality and significant clinical harm. Due to the limited ability of traditional pathogen detection methods, anti-infective therapy is mostly empirical. Therefore, it is difficult to adopt targeted drug therapy. In recent years, metagenomic next-generation sequencing (mNGS) technology has provided a promising means for pathogen-specific diagnosis and updated the diagnostic strategy for lower respiratory tract infections. This article reviews the diagnostic value of mNGS for lower respiratory tract infections, the impact of different sampling methods on the detection efficiency of mNGS, and current technical difficulties in the clinical application of mNGS.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Respiratory and Critical Care, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Xiaojian Qiu
- Department of Respiratory and Critical Care, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Ting Wang
- Department of Respiratory and Critical Care, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Respiratory and Critical Care, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Jiao M, Deng X, Yang H, Dong J, Lv J, Li F. Case Report: A Severe and Multi-Site Nocardia farcinica Infection Rapidly and Precisely Identified by Metagenomic Next-Generation Sequencing. Front Med (Lausanne) 2021; 8:669552. [PMID: 34109198 PMCID: PMC8183679 DOI: 10.3389/fmed.2021.669552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/29/2021] [Indexed: 01/29/2023] Open
Abstract
Nocardia genus is an aerobic, gram-positive, and opportunistic pathogen, which mainly affects cell-mediated immunosuppressed patients. Early diagnosis and treatment greatly improve prognosis. However, the limitation of golden standard-bacterial culture exists. Here, we report a 61-year-old male with pneumonia, sepsis and intermuscular abscesses induced by Nocardia farcinica. Venous blood culture reported negative results. Former improper diagnosis and treatment did not improve his condition. With the assistant of metagenomic next-generation sequencing, the pathogen was identified as Nocardia farcinica. He was then applied with accurate treatment and had a remarkable clinical and radiological improvement.
Collapse
Affiliation(s)
- Mengfan Jiao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongfu Yang
- Department of Integrated Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqiang Dong
- Department of Imaging and Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Lv
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|