1
|
Xie X, Guo Z, Chen B, Lin L, Liu H, Xiao G, Wang Q. Surface display and characterization of recombinant α-l-Rhamnosidase from Emiliania huxleyi on Pichia pastoris. Bioorg Chem 2025; 155:108121. [PMID: 39764918 DOI: 10.1016/j.bioorg.2025.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/21/2025]
Abstract
An α-l-Rhamnosidase gene with an open reading frame of 3192 bp encoding a 1036-amino acid protein (EhRha) was cloned from Emiliania huxleyi for flavonoid hydrolysis on the cell surface of Pichia pastoris (P. pastoris) strain GS115 by fusing with the anchor protein (AGα1) from Saccharomyces cerevisiae. Fluorescence microscopy and flow cytometry assays revealed that EhRha was successfully displayed on the cell surface of P. pastoris GS115. The enzyme activity assay and substrate specificity analysis showed that the enzyme activity of displayed EhRha was 78 U/g (cell wet weight). EhRha demonstrated a preference for the α-1,6 linkage l-rhamnose in hesperidin and rutin as its optimal substrates, while showing low activity towards the α-1,2 linkage l-rhamnose in naringin. Furthermore, EhRha demonstrated optimal activity at pH 7.0 and 30 °C, maintaining stability within a pH range of 4.5-9.0 at temperatures below 50 °C, and remained functional at temperatures ranging from 15 °C-30 °C. The enzyme activity was significantly enhanced by the presence of 10 mM Mn2+ and Fe3+, whereas 10 mM Ca2+ and 1 mM Fe3+ had an inhibitory effect. These findings suggested that displayed EhRha holds promise for enhancing the bioavailability of health-beneficial polyphenols in low-temperature processing applications.
Collapse
Affiliation(s)
- Xi Xie
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Department of Education of Medicinal and Edible Food Intensive Processing Engineering Technology Research Center, Guangzhou 510225, China.
| | - Ziwei Guo
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand
| | - Bihan Chen
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Huifan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Department of Education of Medicinal and Edible Food Intensive Processing Engineering Technology Research Center, Guangzhou 510225, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
2
|
Lu M, Liu S, Liu J, Zhao L, Pei J. A sustainable and efficient strategy for bioconverting naringin to L-rhamnose, 2R-naringenin, and kaempferol. Food Chem 2024; 447:138942. [PMID: 38484542 DOI: 10.1016/j.foodchem.2024.138942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/01/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
The development of a sustainable and efficient bioconversion strategy is crucial for the full-component utilization of naringin. In this study, an engineering Pichia pastoris co-culture system was developed to produce L-rhamnose and 2S/2R-naringenin. By optimizing transformation conditions, the co-culture system could completely convert naringin while fully consuming glucose. The production of 2S/2R-naringenin reached 59.5 mM with a molar conversion of 99.2%, and L-rhamnose reached 59.1 mM with a molar conversion of 98.5%. In addition, an engineering Escherichia coli co-culture system was developed to produce 2R-naringenin and kaempferol from 2S/2R-naringenin. Maximal kaempferol production reached 1050 mg/L with a corresponding molar conversion of 99.0%, and 996 mg/L 2R-naringenin was accumulated. Finally, a total of 17.4 g 2R-naringenin, 18.0 g kaempferol, and 26.1 g L-rhamnose were prepared from 100 g naringin. Thus, this study provides a novel strategy for the production of value-added compounds from naringin with an environmentally safe process.
Collapse
Affiliation(s)
- Mengfan Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Simin Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Jiamei Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
3
|
Altuntas S, Korukluoglu M. Biological activity of optimized phenolic extracts of quince (Cydonia oblonga Miller) parts before and after simulated in vitro gastrointestinal digestion. Food Chem 2024; 437:137846. [PMID: 37924760 DOI: 10.1016/j.foodchem.2023.137846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
In this study, the phenolic extracts of Eşme quince parts (pulp, peel, seed, juice, and leaf) were obtained under optimized extraction conditions. Then, the total phenolic content (TPC), the quantities of main phenolic compounds, antioxidant, and antimicrobial activity and the change in bioactivity properties (TPC, antioxidant capacity, and antimicrobial activity on the same sixteen microorganisms) after in vitro digestion of each quince part were evaluated. The order of TPC and antioxidant activity was determined as leaf > peel > juice > pulp > seed. After in vitro gastrointestinal digestion, a decrease was observed for the TPC (average 5-fold reduction) and antioxidant activity (more than 2.5-fold reduction) in all quince parts except quince seed than their extract forms. The quince leaf extract exhibited the highest antibacterial activity. Overall, this study exhibited that the quince leaf was considered a promising, cheap, and natural source for nutritional or pharmaceutical applications with biological activity properties.
Collapse
Affiliation(s)
- Seda Altuntas
- Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, 16330 Bursa, Turkey.
| | - Mihriban Korukluoglu
- Bursa Uludağ University, Faculty of Agriculture, Department of Food Engineering, 16059 Bursa, Turkey
| |
Collapse
|
4
|
Ge L, Liu Y, Zhou F, Zhan L, Zhao L. Heterologous Expression and Characterization of a Thermostable α-L-Rhamnosidase from Thermoclostridium stercorarium subsp. thermolacticum DSM 2910 and Its Application in the Biotransformation of Rutin. J Microbiol Biotechnol 2023; 33:1521-1530. [PMID: 37644729 DOI: 10.4014/jmb.2305.05032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023]
Abstract
An α-L-rhamnosidase gene from Thermoclostridium. stercorarium subsp. thermolacticum DSM 2910 (TstRhaA) was cloned and expressed. The maximum TstRhaA activity of the protein reached 25.2 U/ml, and the molecular mass was approximately 106.6 kDa. The protein was purified 8.0-fold by Ni-TED affinity with an overall recovery of 16.6% and a specific activity of 187.9 U/mg. TstRhaA activity was the highest at 65°C and pH 6.5. In addition, it exhibited excellent thermal stability, better pH stability, good tolerance to low concentrations of organic reagents, and high catalytic activity for p-nitrophenyl-α-L-rhamnopyranoside (pNPR). Substrate specificity studies showed that TstRhaA exhibited a high specific activity for rutin. At 60°C, pH 6.5, and 0.3 U/ml enzyme dosage, 60 g/l rutin was converted to 45.55 g/l isoquercitrin within 150 min. The molar conversion rate of rutin and the yield of isoquercitrin were 99.8% and 12.22 g/l/h, respectively. The results suggested that TstRhaA could be used for mass production of isoquercitrin.
Collapse
Affiliation(s)
- Lin Ge
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, 1 Jian Xiong Road, Taicang 215411, P.R. China
| | - Yingying Liu
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, 1 Jian Xiong Road, Taicang 215411, P.R. China
| | - Fangming Zhou
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, 1 Jian Xiong Road, Taicang 215411, P.R. China
| | - Lingling Zhan
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, 1 Jian Xiong Road, Taicang 215411, P.R. China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P.R. China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China
| |
Collapse
|
5
|
Zhang S, Lu C, Cao S, Li Q, Wu G, Zhao L. Efficient production of icariin and baohuoside I from Epimedium Folium flavonoids by fungal α-L-rhamnosidase hydrolysing regioselectively the terminal rhamnose of epimedin C. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:107. [PMID: 37386510 DOI: 10.1186/s13068-023-02348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
Industrial application of icariin and baohuoside I has been hindered by the short supply to a great extent. In this work, a novel GH78 α-L-rhamnosidase AmRha catalyzed the bioconversion of low-value epimedin C in crude Epimedium Folium flavonoids (EFs) to icariin and baohuoside I was developed. Firstly, the high-level expression of AmRha in Komagataella phaffii GS115 attained an enzyme activity of 571.04 U/mL. The purified recombinant AmRha could hydrolyze α-1,2-rhamnoside bond between two rhamnoses (α-Rha(2 → 1)α-Rha) in epimedin C to produce icariin with a molar conversion rate of 92.3%, in vitro. Furtherly, the biotransformation of epimedin C to icariin by the recombinant Komagataella phaffii GS115 cells was also investigated, which elevated the EFs concentration by fivefold. In addition, biotransformation of epimedins A-C and icariin in the raw EFs to baohuoside I was fulfilled by a collaboration of AmRha and β-glucosidase/β-xylosidase Dth3. The results obtained here provide a new insight into the preparation of high-value products icariin and baohuoside I from cheap raw EFs.
Collapse
Affiliation(s)
- Shanshan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Changning Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Shiping Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Guangwei Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.
| |
Collapse
|
6
|
Pan L, Zhang Y, Zhang F, Wang Z, Zheng J. α-L-rhamnosidase: production, properties, and applications. World J Microbiol Biotechnol 2023; 39:191. [PMID: 37160824 DOI: 10.1007/s11274-023-03638-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
α-L-rhamnosidase [EC 3.2.1.40] belongs to glycoside hydrolase (GH) families (GH13, GH78, and GH106 families) in the carbohydrate-active enzymes (CAZy) database, which specifically hydrolyzes the non-reducing end of α-L-rhamnose. Αccording to the sites of catalytic hydrolysis, α-L-rhamnosidase can be divided into α-1, 2-rhamnosidase, α-1, 3-rhamnosidase, α-1, 4-rhamnosidase and α-1, 6-rhamnosidase. α-L-rhamnosidase is an important enzyme for various biotechnological applications, especially in food, beverage, and pharmaceutical industries. α-L-rhamnosidase has a wide range of sources and is commonly found in animals, plants, and microorganisms, and its microbial source includes a variety of bacteria, molds and yeasts (such as Lactobacillus sp., Aspergillus sp., Pichia angusta and Saccharomyces cerevisiae). In recent years, a series of advances have been achieved in various aspects of α-validates the above-described-rhamnosidase research. A number of α-L-rhamnosidases have been successfully recombinant expressed in prokaryotic systems as well as eukaryotic systems which involve Pichia pastoris, Saccharomyces cerevisiae and Aspergillus niger, and the catalytic properties of the recombinant enzymes have been improved by enzyme modification techniques. In this review, the sources and production methods, general and catalytic properties and biotechnological applications of α-L-rhamnosidase in different fields are summarized and discussed, concluding with the directions for further in-depth research on α-L-rhamnosidase.
Collapse
Affiliation(s)
- Lixia Pan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yueting Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Fei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Lu M, Liu S, Zhao L, Pei J. Screening β-glucosidase and α-rhamnosidase for biotransformation of naringin to naringenin by the one-pot enzymatic cascade. Enzyme Microb Technol 2023; 167:110239. [PMID: 37043891 DOI: 10.1016/j.enzmictec.2023.110239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Naringenin is a kind of flavonoid with many kinds of pharmacological activities, and is also a key intermediate metabolite in the flavonoid synthesis pathway. In this study, three α-rhamnosidases from Thermotoga petrophia DSM 13995 (TpeRha), Alternaria sp. L1 (AsRha), and Aspergillus mulundensis (AmRha), and three β-glucosidases from T. thermarum DSM 5069 T (BGLI-Tt and BGLII-Tt), and A. niger NL-1 (BGL-NL) were cloned, expressed, and characterized. The Kcat/Km value of AmRha for naringin was 2.389 s-1mM-1 which was 796-fold and 26-fold of TpeRha and AsRha. The Kcat/Km value of BGL-NL for prunin was 0.946 s-1mM-1, which was about 4.4-fold and 4.6-fold of BGLI-Tt and BGLII-Tt. According to the catalytic efficiency, expression level, and reaction condition compatibility, AmRha was coupled with BGL-NL to construct a one-pot enzymatic cascade for preparing naringenin from naringin. The effects of the ratio and dosage of the enzyme, the naringin concentration, and reaction conditions on naringenin production were optimized. At a dosage of 200 U/L AmRha and 1000 U/L BGL-NL, a temperature of 50 °C and pH 5.0, 30 mM naringin was transformed into 29.3 mM naringenin for 24 h reaction with a corresponding molar conversion of 97.6%. Therefore, this study provides an efficient enzymatic cascade to meet the large-scale and low cost preparation of naringenin from naringin.
Collapse
Affiliation(s)
- Mengfan Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Simin Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
8
|
Lu C, Zou K, Guo B, Li Q, Wang Z, Xiao W, Zhao L. Linker-peptide-mediated one-step purification and immobilization of α-L-rhamnosidase from Bacteroides thetaiotaomicron for direct biotransformation from epimedin C to icariin. Enzyme Microb Technol 2023; 162:110131. [DOI: 10.1016/j.enzmictec.2022.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
|
9
|
Akram F, Haq IU, Shah FI, Aqeel A, Ahmed Z, Mir AS, Qureshi SS, Raja SI. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability. Bioorg Chem 2022; 127:105942. [PMID: 35709577 DOI: 10.1016/j.bioorg.2022.105942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Nature is a dexterous and prolific chemist for cataloging a number of hostile niches that are the ideal residence of various thermophiles. Apart from having other species, these subsurface environments are considered a throne of bacterial genus Thermotoga. The genome sequence of Thermotogales encodes complex and incongruent clusters of glycoside hydrolases (GHs), which are superior to their mesophilic counterparts and play a prominent role in various applications due to their extreme intrinsic stability. They have a tremendous capacity to use a wide variety of simple and multifaceted carbohydrates through GHs, formulate fermentative hydrogen and bioethanol at extraordinary yield, and catalyze high-temperature reactions for various biotechnological applications. Nevertheless, no stringent rules exist for the thermo-stabilization of biocatalysts present in the genus Thermotoga. These enzymes endure immense attraction in fundamental aspects of how these polypeptides attain and stabilize their distinctive three-dimensional (3D) structures to accomplish their physiological roles. Moreover, numerous genome sequences from Thermotoga species have revealed a significant fraction of genes most closely related to those of archaeal species, thus firming a staunch belief of lateral gene transfer mechanism. However, the question of its magnitude is still in its infancy. In addition to GHs, this genus is a paragon of encapsulins which carry pharmacological and industrial significance in the field of life sciences. This review highlights an intricate balance between the genomic organizations, factors inducing the thermostability, and pharmacological and industrial applications of GHs isolated from genus Thermotoga.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Azka Shahzad Mir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Sumbal Sajid Qureshi
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Saleha Ibadat Raja
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
10
|
Borzova N, Gudzenko O, Varbanets L. α-L-rhamnosidase from Penicillium tardum and Its Application for Biotransformation of Citrus Rhamnosides. Appl Biochem Biotechnol 2022; 194:4915-4929. [PMID: 35670906 DOI: 10.1007/s12010-022-04008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Enzymatic deramnosylation of flavonoids is a convenient tool for improving the quality of citrus juices. α-L-rhamnosidase with a specific activity of 33.1 units/mg was isolated and characterized from the culture liquid of Penicillium tardum. The molecular weight of the enzyme was 95 kDa according to the data of gel filtration on Sepharose 6B and gel electrophoresis in SDS-PAGE. The pH optimum of the enzyme activity was 5.0, and the thermo optimum was 60 °C. Enzyme showed high stability in the temperature range of 45-50 and at 60-70 °C. It retained 80 to 50% of the initial activity for 90 min. The half-life of α-L-rhamnosidase at 70 °C increased twofold in the presence of 20-40% glycerol and 2.3-fold in the presence of 4 M sorbitol. The enzyme was completely inhibited in the presence of 10-3 M Ag+ and Cd2+ and approximately by 90% in the presence of Fe2+, Fe3+, and Al3+ ions. More than 60%, the enzyme activity was inhibited by Hg2+, Co2+, and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide. Activating effect of Ca2+ ions was also noted. Km and Vmax for the hydrolysis of p-nitrophenyl-α-L-rhamnopyranoside and naringin were 0.7 mM and 38.3 µM/min/mg and 1.34 mM and 43.7 µM/min/mg, respectively. Penicillium tardum α-L-rhamnosidase hydrolyzed naringin, neohesperidin, hesperidin, rutin, and narirutin at high rate, which allowed us to consider it as an effective tool for transformation of bioflavonoids in food industry.
Collapse
Affiliation(s)
- Nataliya Borzova
- Department of Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny st, Kyiv, 03143, Ukraine.
| | - Olena Gudzenko
- Department of Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny st, Kyiv, 03143, Ukraine
| | - Lyudmila Varbanets
- Department of Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny st, Kyiv, 03143, Ukraine
| |
Collapse
|
11
|
Li Q, Wang L, Fang X, Zhao L. Highly Efficient Biotransformation of Notoginsenoside R1 into Ginsenoside Rg1 by Dictyoglomus thermophilum β-xylosidase Xln-DT. J Microbiol Biotechnol 2022; 32:447-457. [PMID: 35131955 PMCID: PMC9628812 DOI: 10.4014/jmb.2111.11020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
Notoginsenoside R1 and ginsenoside Rg1 are the main active ingredients of Panax notoginseng, exhibiting anti-fatigue, anti-tumor, anti-inflammatory, and other activities. In a previous study, a GH39 β-xylosidase Xln-DT was responsible for the bioconversion of saponin, a natural active substance with a xylose group, with high selectivity for cleaving the outer xylose moiety of notoginsenoside R1 at the C-6 position, producing ginsenoside Rg1 with potent anti-fatigue activity. The optimal bioconversion temperature, pH, and enzyme dosage were obtained by optimizing the transformation conditions. Under optimal conditions (pH 6.0, 75°C, enzyme dosage 1.0 U/ml), 1.0 g/l of notoginsenoside R1 was converted into 0.86 g/l of ginsenoside Rg1 within 30 min, with a molar conversion rate of approximately 100%. Furthermore, the in vivo anti-fatigue activity of notoginsenoside R1 and ginsenoside Rg1 were compared using a suitable rat model. Compared with the control group, the forced swimming time to exhaustion was prolonged in mice by 17.3% in the Rg1 high group (20 mg/kg·d). Additionally, the levels of hepatic glycogen (69.9-83.3% increase) and muscle glycogen (36.9-93.6% increase) were increased. In the Rg1 group, hemoglobin levels were also distinctly increased by treatment concentrations. Our findings indicate that treatment with ginsenoside Rg1 enhances the anti-fatigue effects. In this study, we reveal a GH39 β-xylosidase displaying excellent hydrolytic activity to produce ginsenoside Rg1 in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Qi Li
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China
| | - Lei Wang
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China
| | - Xianying Fang
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P.R. China,Corresponding authors X. Fang Phone : +86-025-85427962 Fax : +86-025-85418873 E-mail :
| | - Linguo Zhao
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,
L. Zhao Phone : +86-025-85427962 Fax : +86-025-85418873 E-mail :
| |
Collapse
|
12
|
Xie J, Zhao J, Zhang N, Xu H, Yang J, Ye J, Jiang J. Efficient Production of Isoquercitin, Icariin and Icariside II by A Novel Thermostable α-l-Rhamnosidase PodoRha from Paenibacillus odorifer with High α-1, 6- / α-1, 2- Glycoside Specificity. Enzyme Microb Technol 2022; 158:110039. [DOI: 10.1016/j.enzmictec.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
|
13
|
Lu C, Dong Y, Ke K, Zou K, Wang Z, Xiao W, Pei J, Zhao L. Modification to increase the thermostability and catalytic efficiency of α-L-rhamnosidase from Bacteroides thetaiotaomicron and high-level expression. Enzyme Microb Technol 2022; 158:110040. [DOI: 10.1016/j.enzmictec.2022.110040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 01/13/2023]
|
14
|
|
15
|
Sun J, Li W, Liao H, Li L, Ni H, Chen F, Li Q. Adding sorbitol improves the thermostability of α-l-rhamnosidase from Aspergillus niger and increases the conversion of hesperidin. J Food Biochem 2021; 46:e14055. [PMID: 34967461 DOI: 10.1111/jfbc.14055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
In this study, we found the addition of sorbitol could improve the thermostability of α-l-rhamnosidase from Aspergillus niger. When α-l-rhamnosidase with sorbitol was heat-treated at 60°C, 65°C, and 70°C, the half-life t1/2 increased by 28-, 18-, and 9-fold, respectively. Inactivation thermodynamic analysis showed that both Ea and ΔG≠ of α-l-rhamnosidase increased. Through the response surface methodology (RSM) analysis, the higher hesperidin conversion (63.26%) by α-l-rhamnosidase was attained with 0.7 M sorbitol at 60°C and pH 4.5 for 10 min. Furthermore, hesperidin could be completely hydrolyzed after 10 hr of reaction. Overall, the results indicated that the addition of sorbitol improved the thermostability of α-l-rhamnosidase and increased the enzymatic conversion of hesperidin to hesperetin-7-O-glucoside (HMG). It also provided a simple and efficient way to increase enzymatic conversion of other valuable flavonoid monomers due to the broad substrate specificities of α-l-rhamnosidase from A. niger. PRACTICAL APPLICATIONS: Hesperetin-7-O-glucoside (HMG), a derhamnosylation product of hesperidin, is considered as a synthetic precursor for novel and efficient sweeteners and is important in food, functional food, and nutraceutical industries. Compared to chemical hydrolysis methods, the enzymatic conversion of hesperidin is milder and has the advantages of high specificity. Adding sorbitol can improve the thermostability of α-l-rhamnosidase and increase the enzyme efficacy against hesperidin. This study gave more evidence that adding sorbitol could improve the thermostability of enzymes and provide a better choice for improving biotransformation potency of enzymes.
Collapse
Affiliation(s)
- Jiang Sun
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Wenjing Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Hui Liao
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Lijun Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Feng Chen
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Qingbiao Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| |
Collapse
|
16
|
Li Q, Ge L, Zheng D, Zhang X, Zhao L. Screening and characterization of a GH78 α-l-rhamnosidase from Aspergillus terreus and its application in the bioconversion of icariin to icaritin with recombinant β-glucosidase. Enzyme Microb Technol 2021; 153:109940. [PMID: 34781207 DOI: 10.1016/j.enzmictec.2021.109940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
In this study, a GH78 α-L-rhamnosidase AtRha from Aspergillus terreus CCF3059 was screened and expressed in Pichia pastoris KM71H. The maximum enzyme activity of AtRha was 1000 U/mL after 12 days. AtRha was most active at 65 °C and pH 6.5, displaying excellent thermal stability and pH stability. The kinetic parameters Km, Vmax, kcat and kcat/Km values for pNPR were 0.481 mM, 659 μmol/min·mg, 1065 s-1 and 2214 s-1mM-1, respectively. AtRha could be inhibited by Fe2+, Hg2+ and Cu2+. Moreover, it displayed good tolerance to organic reagents with 52.6% activity in 15%(w/v) methanol. AtRha can hydrolyze icariin containing the α-1 rhamnoside linkage. Furthermore, AtRha and β-glucosidase TthBg3 showed excellent selectivity to cleave the rhamnose at the 3rd position and the glucosyl at the C-7 group of icariin, which established an effective and green method to produce the more pharmacological active icaritin. In addition, the optimal enzyme addition schemes and the reaction conditions were screened and optimized. After a two-stage transformation under optimized conditions, 0.5 g/L of icariin was transformed into 0.25 g/L of icaritin, with a corresponding molar conversion rate of 91.2%. Our findings provide a new, specific and cost-effective method for the production of icaritin in the industry.
Collapse
Affiliation(s)
- Qi Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Lin Ge
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Biomedicine, Suzhou Chien-Shiung Institute of Technology, 1 Jiang Xiong Road, Taicang 215411, China
| | - Daiyi Zheng
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xiaomeng Zhang
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| |
Collapse
|
17
|
Li DD, Jiang YP, Wang ZZ, Xiao W, Zhao LG. Molecular insights into catalytic specificity of α-L-rhamnosidase from Bacteroides thetaiotaomicron by molecular docking and dynamics. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Biochemical characterization of a novel hyperthermophilic α-l-rhamnosidase from Thermotoga petrophila and its application in production of icaritin from epimedin C with a thermostable β-glucosidase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Sun Z, Lu X, Zhang W, Hou C, Xu J, Ren Q. Cloning and identification of rutin‐degrading enzyme genes from
Aspergillus niger
in wheat Qu. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhan‐Bin Sun
- Beijing Advanced innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
| | - Xin Lu
- Beijing Advanced innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
- State Key Laboratory for Infectious Disease Prevention and Control National Institute for Communicable Disease Control and Prevention Chinese Center for Disease Control and Prevention Beijing 102206 China
| | - Wei Zhang
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
| | - Chang Hou
- Beijing Advanced innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
| | - Jia‐Liang Xu
- Beijing Advanced innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
| | - Qing Ren
- Beijing Advanced innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
20
|
Interaction Analysis of Commercial Graphene Oxide Nanoparticles with Unicellular Systems and Biomolecules. Int J Mol Sci 2019; 21:ijms21010205. [PMID: 31892228 PMCID: PMC6982217 DOI: 10.3390/ijms21010205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 01/15/2023] Open
Abstract
The ability of commercial monolayer graphene oxide (GO) and graphene oxide nanocolloids (GOC) to interact with different unicellular systems and biomolecules was studied by analyzing the response of human alveolar carcinoma epithelial cells, the yeast Saccharomyces cerevisiae and the bacteria Vibrio fischeri to the presence of different nanoparticle concentrations, and by studying the binding affinity of different microbial enzymes, like the α-l-rhamnosidase enzyme RhaB1 from the bacteria Lactobacillus plantarum and the AbG β-d-glucosidase from Agrobacterium sp. (strain ATCC 21400). An analysis of cytotoxicity on human epithelial cell line A549, S. cerevisiae (colony forming units, ROS induction, genotoxicity) and V. fischeri (luminescence inhibition) cells determined the potential of both nanoparticle types to damage the selected unicellular systems. Also, the protein binding affinity of the graphene derivatives at different oxidation levels was analyzed. The reported results highlight the variability that can exist in terms of toxicological potential and binding affinity depending on the target organism or protein and the selected nanomaterial.
Collapse
|
21
|
Lyu Y, Zeng W, Du G, Chen J, Zhou J. Efficient bioconversion of epimedin C to icariin by a glycosidase from Aspergillus nidulans. BIORESOURCE TECHNOLOGY 2019; 289:121612. [PMID: 31203178 DOI: 10.1016/j.biortech.2019.121612] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 05/25/2023]
Abstract
Herba Epimedii is a traditional Chinese herbal medicine that contains a mixture of bioactive flavonoid glycosides. Among them, icariin has the most outstanding bioactive functions, while epimedin C exhibits substantial toxicity. A recombinant α-L-rhamnosidase (synAnRhaE) from Aspergillus nidulans was expressed in Escherichia coli to promote the efficient bioconversion of epimedin C to icariin. A hydrolase activity of 574.5 U L-1 was acquired via optimized fed-batch fermentation in a 5-L bioreactor. The enzyme proved to be stable in an acidulous pH range below 55 °C with an optimal pH of 4.5 and optimal temperature of 55 °C. Epimedin C (1 g L-1) was 100% converted to icariin within 90 min using recombinant cells. The resting cells proved to be selective for epimedin C and 2″-O-rhamnosylicariside II in crude extracts of the epimedium plant. This work provides an original and efficient biocatalyst system that can be applied in industrialized production of icariin.
Collapse
Affiliation(s)
- Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
22
|
Synergistic Catalysis of Glycosyltransferase and Sucrose Synthase to Produce Isoquercitrin Through Glycosylation of Quercetin. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02712-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Liao H, Gong JY, Yang Y, Jiang ZD, Zhu YB, Li LJ, Ni H, Li QB. Enhancement of the thermostability of Aspergillus niger α-l-rhamnosidase based on PoPMuSiC algorithm. J Food Biochem 2019; 43:e12945. [PMID: 31368575 DOI: 10.1111/jfbc.12945] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
α-l-Rhamnosidase is a biotechnologically important enzyme in food industry and in the preparation of drugs and drug precursors. To expand the functionality of our previously cloned α-l-rhamnosidase from Aspergillus niger JMU-TS528, 14 mutants were constructed based on the changes of the folding free energy (ΔΔG), predicted by the PoPMuSiC algorithm. Among them, six single-site mutants displayed higher thermal stability than wild type (WT). The combinational mutant K573V-E631F displayed even higher thermostability than six single-site mutants. The spectra analyses displayed that the WT and K573V-E631F had almost similar secondary and tertiary structure profiles. The simulated protein structure-based interaction analysis and molecular dynamics calculation were further implemented to assess the conformational preferences of the K573V-E631F. The improved thermostability of mutant K573V-E631F may be attributed to the introduction of new cation-π and hydrophobic interactions, and the overall improvement of the enzyme conformation. PRACTICAL APPLICATIONS: The stability of enzymes, particularly with regards to thermal stability remains a critical issue in industrial biotechnology and industrial processing generally tends to higher ambient temperature to inhibit microbial growth. Most of the α-l-rhamnosidases are usually active at temperature from 30 to 60°C, which are apt to denature at temperatures over 60°C. To expand the functionality of our previously cloned α-l-rhamnosidase from Aspergillus niger JMU-TS528, we used protein engineering methods to increase the thermal stability of the α-l-rhamnosidase. Practically, conducting reactions at high temperatures enhances the solubility of substrates and products, increases the reaction rate thus reducing the reaction time, and inhibits the growth of contaminating microorganisms. Thus, the improvement on the thermostability of α-l-rhamnosidase on the one hand can increase enzyme efficacy; on the other hand, the high ambient temperature would enhance the solubility of natural substrates of α-l-rhamnosidase, such as naringin, rutin, and hesperidin, which are poorly dissolved in water at room temperature. Protein thermal resistance is an important issue beyond its obvious industrial importance. The current study also helps in the structure-function relationship study of α-l-rhamnosidase.
Collapse
Affiliation(s)
- Hui Liao
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Jian-Ye Gong
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yan Yang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Ze-Dong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yan-Bing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Li-Jun Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Qing-Biao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
24
|
Nano-encapsulation of naringinase produced by Trichoderma longibrachiatum ATCC18648 on thermally stable biopolymers for citrus juice debittering. J Microbiol 2019; 57:521-531. [DOI: 10.1007/s12275-019-8528-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022]
|
25
|
Effects of β-glucosidase and α-rhamnosidase on the Contents of Flavonoids, Ginkgolides, and Aroma Components in Ginkgo Tea Drink. Molecules 2019; 24:molecules24102009. [PMID: 31130645 PMCID: PMC6572456 DOI: 10.3390/molecules24102009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Ginkgo tea is a kind of health food produced from Ginkgo biloba leaves. The market of Ginkgo tea encountered many difficulties because of its bad palatability and vague function statement. In this study, two kinds of glycosidase were used to improve the flavor of Ginkgo tea, and three kinds of bioactivities were selected to investigate the health care function of the tea infusion. The aroma components extracted by headspace absorb (HSA) method during the making of Ginkgo tea were analyzed by GC-MS. The flavonoids and ginkgolides released into the tea infusion were studied by HPLC. A combination of β-glucosidase (β-G) and α-rhamnosidase (α-R) was applied during the making of the tea. The contents of characteristic aroma components and the release of total flavonoids and ginkgolides were increased significantly by adding β-G and α-R. The composition of flavone glycosides was changed greatly. The free radical scavenging, inhibition of inflammatory cell activation, and tumor cytotoxicity activities of the tea were demonstrably improved. According to the release of active components, Ginkgo tea can be brewed repeatedly for at least three times. The enzymes used here show potential application prospects in the making of Ginkgo tea or tea drink to get higher contents of flavonoids, ginkgolides, and aroma components.
Collapse
|
26
|
Wu T, Pei J, Ge L, Wang Z, Ding G, Xiao W, Zhao L. Characterization of a α-l-rhamnosidase from Bacteroides thetaiotaomicron with high catalytic efficiency of epimedin C. Bioorg Chem 2018; 81:461-467. [DOI: 10.1016/j.bioorg.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 01/28/2023]
|
27
|
Ge L, Li D, Wu T, Zhao L, Ding G, Wang Z, Xiao W. B-factor-saturation mutagenesis as a strategy to increase the thermostability of α-L-rhamnosidase from Aspergillus terreus. J Biotechnol 2018; 275:17-23. [DOI: 10.1016/j.jbiotec.2018.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 11/15/2022]
|
28
|
Li Q, Wu T, Qi Z, Zhao L, Pei J, Tang F. Characterization of a novel thermostable and xylose-tolerant GH 39 β-xylosidase from Dictyoglomus thermophilum. BMC Biotechnol 2018; 18:29. [PMID: 29783967 PMCID: PMC5963010 DOI: 10.1186/s12896-018-0440-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/24/2018] [Indexed: 02/08/2023] Open
Abstract
Background β-D-xylosidase is a vital exoglycosidase with the ability to hydrolyze xylooligosaccharides to xylose and to biotransform some saponins by cleaving outer β-xylose. β-D-xylosidase is widely used as one of the xylanolytic enzymes in a diverse range of applications, such as fuel, food and the pharmaceutical industry; therefore, more and more studies have focused on the thermostable and xylose-tolerant β-D-xylosidases. Results A thermostable β-xylosidase gene (xln-DT) of 1509 bp was cloned from Dictyoglomus thermophilum and expressed in E.coli BL21. According to the amino acid and phylogeny analyses, the β-xylosidase Xln-DT is a novel β-xylosidase of the GH family 39. The recombinant β-xylosidase was purified, showing unique bands on SDS-PAGE, and had a protein molecular weight of 58.7 kDa. The β-xylosidase Xln-DT showed an optimal activity at pH 6.0 and 75 °C, with p-nitrophenyl-β-D-xylopyranoside (pNPX) as a substrate. Xln-DT displayed stability over a pH range of 4.0-7.5 for 24 h and displayed thermotolerance below 85 °C. The values of the kinetic parameters Km and Vmax for pNPX were 1.66 mM and 78.46 U/mg, respectively. In particular, Xln-DT displayed high tolerance to xylose, with 60% activity in the presence of 3 M xylose. Xln-DT showed significant effects on the hydrolyzation of xylobiose. After 3 h, all the xylobiose tested was degraded into xylose. Moreover, β-xylosidase Xln-DT had a high selectivity for cleaving the outer xylose moieties of natural saponins, such as notoginsenoside R1 and astragaloside IV, which produced the ginsenoside Rg1 with stronger anti-fatigue activity and produced cycloastragenol with stronger anti-aging activity, respectively. Conclusion This study provides a novel GH 39 β-xylosidase displaying extraordinary properties of highly catalytic activity at temperatures above 75 °C, remarkable hydrolyzing activity of xylooligosaccharides and rare saponins producing ability in the pharmaceutical and commercial industries. Electronic supplementary material The online version of this article (10.1186/s12896-018-0440-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.,Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, 159 Long Pan Road, Nanjing, 210037, China
| | - Tao Wu
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Zhipeng Qi
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China. .,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China. .,Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, 159 Long Pan Road, Nanjing, 210037, China.
| | - Jianjun Pei
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.,Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, 159 Long Pan Road, Nanjing, 210037, China
| | - Feng Tang
- International Centre for Bamboo and Rattan, 8 Fu Tong East Street, Beijing, 100714, China
| |
Collapse
|
29
|
Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One 2018; 13:e0197563. [PMID: 29771951 PMCID: PMC5957424 DOI: 10.1371/journal.pone.0197563] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/04/2018] [Indexed: 02/02/2023] Open
Abstract
Kaempferol (kae) and its glycosides are widely distributed in nature and show multiple bioactivities, yet few reports have compared them. In this paper, we report the antitumor, antioxidant and anti-inflammatory activity differences of kae, kae-7-O-glucoside (kae-7-O-glu), kae-3-O-rhamnoside (kae-3-O-rha) and kae-3-O-rutinoside (kae-3-O-rut). Kae showed the highest antiproliferation effect on the human hepatoma cell line HepG2, mouse colon cancer cell line CT26 and mouse melanoma cell line B16F1. Kae also significantly inhibited AKT phosphorylation and cleaved caspase-9, caspase-7, caspase-3 and PARP in HepG2 cells. A kae-induced increase in DPPH and ABTS radical scavenging activity, inhibition of concanavalin A (Con A)-induced activation of T cell proliferation and NO or ROS production in LPS-induced RAW 264.7 macrophage cells were also seen. Kae glycosides were used to produce kae via environment-friendly enzymatic hydrolysis. Kae-7-O-glu and kae-3-O-rut were hydrolyzed to kae by β-glucosidase and/or α-L-rhamnosidase. This paper demonstrates the application of enzymatic catalysis to obtain highly biologically active kae. This work provides a novel and efficient preparation of high-value flavone-related products.
Collapse
|
30
|
Enrichment and Purification of Total Ginkgo Flavonoid O-Glycosides from Ginkgo Biloba Extract with Macroporous Resin and Evaluation of Anti-Inflammation Activities In Vitro. Molecules 2018; 23:molecules23051167. [PMID: 29757247 PMCID: PMC6100411 DOI: 10.3390/molecules23051167] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022] Open
Abstract
In the present study, the performance and separation characteristics of six macroporous resins for the enrichment and purification of total ginkgo flavonoid O-glycosides (TGFs) (quercetin (I), kaempferol (II), isorhamnetin (III)) from Ginkgo Biloba extracts (EGB) are evaluated. The adsorption and desorption properties of TGFs are studied on macroporous resins, including D101, D201, AB-8, HPD400, D301, and D311. Along with the results, AB-8 resin exhibits the best adsorption and desorption capacity for these three ginkgo flavonoid O-glycosides among the six resins. Adsorption isotherms are created on AB-8 resin and fit well to the Langmuir (R2 > 0.96) and Freundlich (R2 > 0.92, 0.3 < 1/n < 0.7) models. After the treatment with gradient elution on AB-8 resin packed chromatography column, the contents of the three main ginkgo flavonoid O-glycosides (I, II, and III) increase from 8.93%, 9.88%, and 6.11% in the extracts to 30.12%, 35.21%, and 14.14%, respectively, in the product. The recoveries of compounds I, II, and III are 88.76%, 93.78%, and 60.90%, respectively. Additionally, the anti-inflammatory effects of TGFs are evaluated in LPS-treated RAW 264.7 macrophages, and the result demonstrates that TGFs could significantly inhibit LPS-induced NO release in vitro in a dose-dependent manner compared with the control group. These findings suggest that TGFs could potentially be natural antioxidants and anti-inflammatory ingredients that could be used in pharmaceutical products and functional food additives.
Collapse
|
31
|
Li L, Liao H, Yang Y, Gong J, Liu J, Jiang Z, Zhu Y, Xiao A, Ni H. Improving the thermostability by introduction of arginines on the surface of α-L-rhamnosidase (r-Rha1) from Aspergillus niger. Int J Biol Macromol 2018; 112:14-21. [PMID: 29355637 DOI: 10.1016/j.ijbiomac.2018.01.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 02/05/2023]
Abstract
To improve the thermostability of α-L-rhamnosidase (r-Rha1), an enzyme previously identified from Aspergillus niger JMU-TS528, multiple arginine (Arg) residues were introduced into the r-Rha1 sequence to replace several lysine (Lys) residues that located on the surface of the folded r-Rha1. Hinted by in silico analysis, five surface Lys residues (K134, K228, K406, K440, K573) were targeted to produce a list of 5 single-residue mutants and 4 multiple-residue mutants using site-directed mutagenesis. Among these mutants, a double Lys to Arg mutant, i.e. K406R/K573R, showed the best thermostability improvement. The half-life of this mutant's enzyme activity increased 3 h at 60 °C, 23 min at 65 °C, and 3.5 min at 70 °C, when compared with the wild type. The simulated protein structure based interaction analysis and molecular dynamics calculation indicate that the thermostability improvement of the mutant K406R-K573R was possibly due to the extra hydrogen bonds, the additional cation-π interactions, and the relatively compact conformation. With the enhanced thermostability, the α-L-rhamnosidase mutant, K406R-K573R, has potentially broadened the r-Rha1 applications in food processing industry.
Collapse
Affiliation(s)
- Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Liao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yan Yang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jianye Gong
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jianan Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Anfeng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
32
|
Zhu Y, Jia H, Xi M, Li J, Yang L, Li X. Characterization of a naringinase from Aspergillus oryzae 11250 and its application in the debitterization of orange juice. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Ge L, Xie J, Wu T, Zhang S, Zhao L, Ding G, Wang Z, Xiao W. Purification and characterisation of a novel α-L-rhamnosidase exhibiting transglycosylating activity from Aspergillus oryzae. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lin Ge
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
- College of Chemical Engineering; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
| | - Jingcong Xie
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
- College of Chemical Engineering; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
| | - Tao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
- College of Chemical Engineering; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
| | - Shanshan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
- College of Chemical Engineering; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
- College of Chemical Engineering; Nanjing Forestry University; 159 Long Pan Road Nanjing 210037 China
| | - Gang Ding
- Jiangsu Kanion Pharmaceutical Co., Ltd.; 58 Haichang South Road Lianyungang Jiangsu 222001 China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd.; 58 Haichang South Road Lianyungang Jiangsu 222001 China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd.; 58 Haichang South Road Lianyungang Jiangsu 222001 China
| |
Collapse
|