1
|
Moktip T, Salaipeth L, Cope AE, Taherzadeh MJ, Watanabe T, Phitsuwan P. Current Understanding of Feather Keratin and Keratinase and Their Applications in Biotechnology. Biochem Res Int 2025; 2025:6619273. [PMID: 40308531 PMCID: PMC12041636 DOI: 10.1155/bri/6619273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 05/02/2025] Open
Abstract
The food industry generates substantial keratin waste, particularly chicken feathers, which are rich in amino acids and essential nutrients. However, the insolubility of keratin presents a significant challenge to its conversion. Keratinase, an enzyme produced by certain fungi and bacteria, offers a promising solution by degrading feather keratin into amino acids and soluble proteins. Among these, bacterial keratinase is notable for its superior stability and activity, although its production remains constrained, necessitating continued research to identify efficient microbial strains. Keratin-derived hydrolyzates, recognized for their biological and immunological properties, have garnered significant research interest. This review examines the structural characteristics of chicken feather keratin, its resistance to conventional proteases, and advances in keratinase production and purification techniques. Additionally, the keratin degradation mechanism and the adoption of environmentally friendly technologies for managing feather waste are explored. Finally, the review highlights the potential applications of keratinase across diverse industries, including animal feed and cosmetics.
Collapse
Affiliation(s)
- Thanakorn Moktip
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Lakha Salaipeth
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Natural Resource Management and Sustainability, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Ana Eusebio Cope
- Future Genetic Resources Cluster, Rice Breeding Innovation Platform, IRRI, Los Banos, Philippines
| | | | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Paripok Phitsuwan
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| |
Collapse
|
2
|
Wang B, Chen Y, Wu JC, Li Q. Unraveling dynamics and interactions of core microorganisms in the biodegradation of keratin-based feather wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122939. [PMID: 39426169 DOI: 10.1016/j.jenvman.2024.122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Waste feathers, abundant byproducts of the poultry industry, pose significant environmental challenges. Although microbial degradation has been investigated, the core microorganisms and their interactions remain underexplored. This study examined microbial community dynamics during feather degradation, using diverse feather sources and under varying temperatures. Significant divergences were observed in bacterial communities, with Firmicutes, Actinobacteria, and Acidobacteriota (56.65%, 18.13%, and 11.14%) as dominant phyla. A core microbial consortium of 51 taxa was identified, with 8 core genera from the Bacilli class, significantly enriched during degradation. Higher temperature (50 °C) accelerated degradation. Dynamics patterns showed the enrichment of and depletion of some strains. Functional prediction highlighted the mechanisms for keratin biodegradation. This study identified core microorganisms and enzymes during keratin degradation, providing evidence to microbial treatment of keratin-based waste to reduce agricultural pollution.
Collapse
Affiliation(s)
- Boxi Wang
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yuan Chen
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jin Chuan Wu
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Qingxin Li
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| |
Collapse
|
3
|
Milase RN, Lin J, Mvubu NE, Hlengwa N. Reclassification of the first Bacillus tropicus phage calls for reclassification of other Bacillus temperate phages previously designated as plasmids. BMC Genomics 2024; 25:1018. [PMID: 39478480 PMCID: PMC11526630 DOI: 10.1186/s12864-024-10937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Bacillus tropicus is a recently identified subspecies of the Bacillus cereus group of bacteria that have been shown to possess genes associated with antimicrobial resistance (AMR) and identified as the causative agent for anthrax-like disease in Chinese soft-shelled turtles. In addition, B. tropicus has demonstrated great potential in the fields of bioremediation and bioconversion. This article describes the comparative genomics of a Bacillus phage vB_Btc-RBClinn15 (referred to as RBClin15) infecting the recently identified B. tropicus AOA-CPS1. RBClin15 is a temperate phage with a putative parABS partitioning system as well as an arbitrium system, which are presumed to enable extrachromosomal genome maintenance and regulate the lysis/lysogeny switch, respectively. The temperate phage RBClin15 has been sequenced however, was erroneously deposited as a plasmid in the NCBI GenBank database. A BLASTn search against the GenBank database using the whole genome sequence of RBClin15 revealed seven other putative temperate phages that were also deposited as plasmids in the database. Comparative genomic analyses shows that RBClin15 shares between 87 and 92% average nucleotide identity (ANI) with the seven temperate phages from the GenBank database. All together RBClin15 and the seven putative temperate phages share common genome arrangements and < 29% protein homologs with the closest phages, including 0105phi7-2. A phylogenomic tree and proteome-based phylogenetic tree analysis showed that RBClin15 and the seven temperate phages formed a separate branch from the closest phage, 0105phi7-2. In addition, the intergenomic similarity between RBClin15 and its closely related phages ranged between 0.3 and 47.7%. Collectively, based on the phylogenetic, and comparative genomic analyses, we propose three new species which will include RBClin15 and the seven temperate phages in the newly proposed genus Theosmithvirus under Caudoviricetes.
Collapse
Affiliation(s)
- Ridwaan Nazeer Milase
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, Republic of South Africa.
| | - Johnson Lin
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, Republic of South Africa
| | - Nontobeko E Mvubu
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, Medical School, University of KwaZulu Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Nokulunga Hlengwa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
4
|
Everly V, Waturangi DE, Papuangan N, Nurhasanah, Julyantoro PGS. Metabolite from supernatant of soil and plant-associated bacteria control biofilm of fish pathogens. BMC Res Notes 2024; 17:311. [PMID: 39420363 PMCID: PMC11488183 DOI: 10.1186/s13104-024-06974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES This research aimed to identify and quantify the antibiofilm activity of bioactive compounds from bacteria isolated from rhizosphere and nodule butterfly pea (Clitoria ternatea), rhizosphere clove afo 3 (Syzygium aromaticum), nodule mimosa (Mimosa pudica L.), and soil from gold mining land which were recovered from Ternate, Tidore, Obi Island, and Marotai Island, Eastern part of Indonesia. RESULTS Eight supernatants from soil and plant-associated bacteria were found to have quorum quenching activity against Chromobacterium violaceum. All supernatants exhibited antibiofilm activity against biofilm formed by Aeromonas hydrophila and Vibrio harveyi. The supernatant of FT5 showed the highest activity in disrupting (66.59%) and inhibiting (85.63%) the biofilm of A. hydrophila. For V. harveyi, the supernatant of PTM3 showed the highest disruption activity (72.61%), whileRCA7 showed the highest inhibition activity(75.68%). The Gas Chromatography-Mass Spectrometry (GC-MS) identified fatty acids, ester, and diketopiperazine as the compounds related to the antibiofilm activity. Molecular identification revealed that the isolates belong to the genera Bacillus, Priestia, and Chryseobacterium.
Collapse
Affiliation(s)
- Vanessa Everly
- Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk Lapan,Tangerang, Banten, 15345, Indonesia
| | - Diana Elizabeth Waturangi
- Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk Lapan,Tangerang, Banten, 15345, Indonesia.
- Department of Master in Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia.
| | - Nurmaya Papuangan
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| | - Nurhasanah
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, 80361, Indonesia
| |
Collapse
|
5
|
Kumari P, Abhinand CS, Kumari R, Upadhyay A, Satheeshkumar PK. Design, development and characterization of a chimeric protein with disulfide reductase and protease domain showing keratinase activity. Int J Biol Macromol 2024; 278:135025. [PMID: 39187103 DOI: 10.1016/j.ijbiomac.2024.135025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Keratin is one of the major components of solid waste, and the degradation products have extensive applications in various commercial industries. Due to the complexity of the structure of keratin, especially the disulfide bonds between keratin polypeptides, keratinolytic activity is efficient with a mixture of proteins with proteases, peptidases, and oxidoreductase activity. The present work aimed to create an engineered chimeric protein with a disulfide reductase domain and a protease domain connected with a flexible linker. The structure, stability, and substrate interaction were analyzed using the protein modeling tools and codon-optimized synthetic gene cloned, expressed, and purified using Ni2+-NTA chromatography. The keratinolytic activity of the protein was at its maximum at 70 °C. The suitable pH for the enzyme activity was pH 8. While Ni2+, Mg2+, and Na+ inhibited the keratinolytic activity, Cu2+, Ca2+, and Mn2+ enhanced it significantly. Biochemical characterization of the protease domain indicated significant keratinolytic activity at 70 °C at pH 10.0 but was less efficient than the chimeric protein. Experiments using feathers as the substrate showed a clear degradation pattern in the SEM analysis. The samples collected from the degradation experiments indicated the release of proteins (2-fold) and amino acids (8.4-fold) in a time-dependent manner. Thus, the protease with an added disulfide reductase domain showed excellent keratin degradation activity and has the potential to be utilized in the commercial industries.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ritu Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Astha Upadhyay
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
6
|
Espinosa Bernal MA, Mena Navarro MP, Arvizu Gómez JL, Saldaña C, Ramos López MÁ, Amaro Reyes A, Escamilla García M, Pacheco Aguilar JR, Moreno VP, Rodríguez Morales JA, Álvarez Hidalgo E, Nuñez Ramírez J, Hernández Flores JL, Campos Guillén J. Biocontrol Activity of Bacillus altitudinis CH05 and Bacillus tropicus CH13 Isolated from Capsicum annuum L. Seeds against Fungal Strains. Microorganisms 2024; 12:1943. [PMID: 39458253 PMCID: PMC11509363 DOI: 10.3390/microorganisms12101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
In this study, seed-surface-associated bacteria from fresh fruits of Capsicum spp. were analyzed to explore potential isolates for biocontrol of phytopathogenic fungal strains. A total of 76 bacterial isolates were obtained from three different species of chili pepper (C. annuum L., C. pubescens R. & P., and C. chinense Jacq.), and two isolates were selected via mycelial growth inhibition assays based on their production of volatile organic compounds (VOCs) against six fungal strains. Genomic analysis identified these isolates as Bacillus altitudinis CH05, with a chromosome size of 3,687,823 bp and with 41.25% G+C, and Bacillus tropicus CH13, with a chromosome size of 5,283,706 bp and with 35.24% G+C. Both bacterial strains showed high mycelial growth inhibition capacities against Sclerotium rolfsii, Sclerotinia sp., Rhizoctonia solani, and Alternaria alternata but lower inhibition capacities against Colletotrichum gloesporoides and Fusarium oxysporum. VOC identification was carried out after 24 h of fermentation with 64 VOCs for B. altitudinis CH05 and 53 VOCs for B. tropicus CH13. 2,5-Dimethyl pyrazine and acetoin had the highest relative abundance values in both bacterial strains. Our findings revealed that seed-surface-associated bacteria on Capsicum spp. have the metabolic ability to produce VOCs for biocontrol of fungal strains and have the potential to be used in sustainable agriculture.
Collapse
Affiliation(s)
- Merle Ariadna Espinosa Bernal
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Mayra Paola Mena Navarro
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Jackeline Lizzeta Arvizu Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, Mexico;
| | - Carlos Saldaña
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias S/N, Querétaro 76220, Querétaro, Mexico;
| | - Miguel Ángel Ramos López
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Aldo Amaro Reyes
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Monserrat Escamilla García
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Juan Ramiro Pacheco Aguilar
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Victor Pérez Moreno
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - José Alberto Rodríguez Morales
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico;
| | - Erika Álvarez Hidalgo
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Jorge Nuñez Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | | | - Juan Campos Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| |
Collapse
|
7
|
Xia W, Jin M, Li X, Dong C, Han Y. Construction of artificial microbial consortia for efficient degradation of chicken feathers and optimization of degradation conditions. World J Microbiol Biotechnol 2024; 40:312. [PMID: 39198372 DOI: 10.1007/s11274-024-04113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024]
Abstract
Microbes within a consortium exhibit a synergistic interaction, enhancing their collective capacity to perform functions more effectively than a single species, especially in the degradation of keratin-rich substrates. To achieve a more stable and efficient breakdown of chicken feathers, a comprehensive screening of over 9,000 microbial strains was undertaken. This meticulous selection process identified strains with the capability to degrade keratin effectively. Subsequently, antagonistic tests were conducted to isolate strains of fungi and bacteria that were non-antagonistic, which were then used to form the artificial microbial consortia. The optimal fermentation conditions for the keratinophilic microbial consortia were determined through the optimization of response surface methodology. The results revealed that 11 microbial strains-comprising of 4 fungi and 7 bacteria-were particularly proficient in degrading chicken feathers. The artificially constructed microbial consortia (AMC) comprised two bacterial strains and one fungal strain. The optimal conditions for feathers degradation were identified as a 10 g/L concentration of chicken feathers, a 2.6% microbial inoculation volume and a fermentation fluid pH of 9. Under these conditions, the degradation rate for chicken feathers reached a significant 74.02%, representing an 11.45% increase over the pre-optimization rate. The AMC developed in this study demonstrates the potential for efficient and economical process of livestock and poultry feathers. It provides innovative insights and a theoretical foundation for tackling the challenging degradation of keratin-rich materials. Furthermore, this research lays the groundwork for the separation and purification of keratins, as well as the development of novel proteases, which could have profound implications for a range of applications.
Collapse
Grants
- [Qian Ke He [2020] 6005] ?Hundred? Talent Projects of Guizhou Province
- [Qian Ke He [2020] 6005] ?Hundred? Talent Projects of Guizhou Province
- [Qian Ke He [2020] 6005] ?Hundred? Talent Projects of Guizhou Province
- [Qian Ke He [2020] 6005] ?Hundred? Talent Projects of Guizhou Province
- [Qian Ke He [2020] 6005] ?Hundred? Talent Projects of Guizhou Province
- [No.32060011, 32160007, 32260003] The National Natural Science Foundation of China
- [No.32060011, 32160007, 32260003] The National Natural Science Foundation of China
- [No.32060011, 32160007, 32260003] The National Natural Science Foundation of China
- [No.32060011, 32160007, 32260003] The National Natural Science Foundation of China
- [No.32060011, 32160007, 32260003] The National Natural Science Foundation of China
- [GNYL [2017]009] Construction Program of Biology First-class Discipline in Guizhou
- [GNYL [2017]009] Construction Program of Biology First-class Discipline in Guizhou
- [GNYL [2017]009] Construction Program of Biology First-class Discipline in Guizhou
- [GNYL [2017]009] Construction Program of Biology First-class Discipline in Guizhou
- [GNYL [2017]009] Construction Program of Biology First-class Discipline in Guizhou
Collapse
Affiliation(s)
- Wencai Xia
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Mei Jin
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xin Li
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
8
|
Fernandes LMG, Carvalho-Silva JD, Ferreira-Santos P, Porto ALF, Converti A, Cunha MNCD, Porto TS. Valorization of agro-industrial residues using Aspergillus heteromorphus URM0269 for protease production: Characterization and purification. Int J Biol Macromol 2024; 273:133199. [PMID: 38885866 DOI: 10.1016/j.ijbiomac.2024.133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
This study aimed to produce, characterize and purify a protease from Aspergillus heteromorphus URM0269. After production by solid fermentation of wheat bran performed according to a central composite design, protease was characterized in terms of biochemical, kinetic, and thermodynamic parameters for further purification by chromatography. Proteolytic activity achieved a maximum value of 57.43 U/mL using 7.8 g of wheat bran with 40 % moisture. Protease displayed high stability in the pH and temperature ranges of 5.0-10.0 and 20-30 °C, respectively, and acted optimally at pH 7.0 and 50 °C. The enzyme, characterized as a serine protease, followed Michaelis-Menten kinetics with a maximum reaction rate of 140.0 U/mL and Michaelis constant of 11.6 mg/mL. Thermodynamic activation parameters, namely activation Gibbs free energy (69.79 kJ/mol), enthalpy (5.86 kJ/mol), and entropy (-214.39 J/mol.K) of the hydrolysis reaction, corroborated with kinetic modeling showing high affinity for azocasein. However, thermodynamic parameters suggested a reversible mechanism of unfolding. Purification by chromatography yielded a protease purification factor of 7.2, and SDS-PAGE revealed one protein band with a molecular mass of 14.7 kDa. Circular dichroism demonstrated a secondary structure made up of 45.6 % α-helices. These results show the great potential of this protease for future use in the industrial area.
Collapse
Affiliation(s)
- Lígia Maria Gonçalves Fernandes
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Jônatas de Carvalho-Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, As Lagoas, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), University of Vigo (Campus Auga), As Lagoas, Ourense 32004, Spain
| | - Ana Lúcia Figueiredo Porto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa University, via Opera Pia 15, Genoa 16145, Italy
| | - Márcia Nieves Carneiro da Cunha
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Tatiana Souza Porto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil.
| |
Collapse
|
9
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Song C, Liu R, Yin D, Xie C, Liang Y, Yang D, Jiang M, Zhang H, Shen N. A Comparative Transcriptome Analysis Unveils the Mechanisms of Response in Feather Degradation by Pseudomonas aeruginosa Gxun-7. Microorganisms 2024; 12:841. [PMID: 38674785 PMCID: PMC11052024 DOI: 10.3390/microorganisms12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Microbial degradation of feathers offers potential for bioremediation, yet the microbial response mechanisms warrant additional investigation. In prior work, Pseudomonas aeruginosa Gxun-7, which demonstrated robust degradation of feathers at elevated concentrations, was isolated. However, the molecular mechanism of this degradation remains only partially understood. To investigate this, we used RNA sequencing (RNA-seq) to examine the genes that were expressed differentially in P. aeruginosa Gxun-7 when exposed to 25 g/L of feather substrate. The RNA-seq analysis identified 5571 differentially expressed genes; of these, 795 were upregulated and 603 were downregulated. Upregulated genes primarily participated in proteolysis, amino acid, and pyruvate metabolism. Genes encoding proteases, as well as those involved in sulfur metabolism, phenazine synthesis, and type VI secretion systems, were notably elevated, highlighting their crucial function in feather decomposition. Integration of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) taxonomies, combined with a review of the literature, led us to propose that metabolic feather degradation involves environmental activation, reducing agent secretion, protease release, peptide/amino acid uptake, and metabolic processes. Sulfite has emerged as a critical activator of keratinase catalysis, while cysteine serves as a regulatory mediator. qRT-PCR assay results for 11 selected gene subset corroborated the RNA-seq findings. This study enhances our understanding of the transcriptomic responses of P. aeruginosa Gxun-7 to feather degradation and offers insights into potential degradation mechanisms, thereby aiding in the formulation of effective feather waste management strategies in poultry farming.
Collapse
Affiliation(s)
- Chaodong Song
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Rui Liu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Doudou Yin
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Chenjie Xie
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Ying Liang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, No. 98, Daxue Road, Nanning 530007, China;
| | - Mingguo Jiang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Hongyan Zhang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Naikun Shen
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| |
Collapse
|
11
|
Sornchuer P, Saninjuk K, Amonyingcharoen S, Ruangtong J, Thongsepee N, Martviset P, Chantree P, Sangpairoj K. Whole Genome Sequencing Reveals Antimicrobial Resistance and Virulence Genes of Both Pathogenic and Non-Pathogenic B. cereus Group Isolates from Foodstuffs in Thailand. Antibiotics (Basel) 2024; 13:245. [PMID: 38534680 DOI: 10.3390/antibiotics13030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Members of the Bacillus cereus group are spore-forming Gram-positive bacilli that are commonly associated with diarrheal or emetic food poisoning. They are widespread in nature and frequently present in both raw and processed food products. Here, we genetically characterized 24 B. cereus group isolates from foodstuffs. Whole-genome sequencing (WGS) revealed that most of the isolates were closely related to B. cereus sensu stricto (12 isolates), followed by B. pacificus (5 isolates), B. paranthracis (5 isolates), B. tropicus (1 isolate), and "B. bingmayongensis" (1 isolate). The most detected virulence genes were BAS_RS06430, followed by bacillibactin biosynthesis genes (dhbA, dhbB, dhbC, dhbE, and dhbF), genes encoding the three-component non-hemolytic enterotoxin (nheA, nheB, and nheC), a gene encoding an iron-regulated leucine-rich surface protein (ilsA), and a gene encoding a metalloprotease (inhA). Various biofilm-associated genes were found, with high prevalences of tasA and sipW genes (matrix protein-encoding genes); purA, purC, and purL genes (eDNA synthesis genes); lytR and ugd genes (matrix polysaccharide synthesis genes); and abrB, codY, nprR, plcR, sinR, and spo0A genes (biofilm transcription regulator genes). Genes related to fosfomycin and beta-lactam resistance were identified in most of the isolates. We therefore demonstrated that WGS analysis represents a useful tool for rapidly identifying and characterizing B. cereus group strains. Determining the genetic epidemiology, the presence of virulence and antimicrobial resistance genes, and the pathogenic potential of each strain is crucial for improving the risk assessment of foodborne B. cereus group strains.
Collapse
Affiliation(s)
- Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | | | - Sumet Amonyingcharoen
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
12
|
Rahimnahal S, Meimandipour A, Fayazi J, Asghar Karkhane A, Shamsara M, Beigi Nassiri M, Mirzaei H, Hamblin MR, Tarrahimofrad H, Bakherad H, Zamani J, Mohammadi Y. Biochemical and molecular characterization of novel keratinolytic protease from Bacillus licheniformis (KRLr1). Front Microbiol 2023; 14:1132760. [PMID: 37234543 PMCID: PMC10206251 DOI: 10.3389/fmicb.2023.1132760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
The keratin-degrading bacterium Bacillus licheniformis secretes a keratinase with potential industrial interest. Here, the Keratinase gene was intracellularly expressed in Escherichia coli BL21(DE3) using pET-21b (+) vector. Phylogenetic tree analysis showed that KRLr1 is closely related to Bacillus licheniformis keratinase that belongs to the serine peptidase/subtilisin-like S8 family. Recombinant keratinase appeared on the SDS-PAGE gel with a band of about 38 kDa and was confirmed by western blotting. Expressed KRLr1 was purified by Ni-NTA affinity chromatography with a yield of 85.96% and then refolded. It was found that this enzyme has optimum activity at pH 6 and 37°C. PMSF inhibited the KRLr1 activity and Ca2+ and Mg2+ increased the KRLr1 activity. Using keratin 1% as the substrate, the thermodynamic values were determined as Km 14.54 mM, kcat 912.7 × 10-3 (S-1), and kcat/Km 62.77 (M-1 S-1). Feather digestion by recombinant enzyme using HPLC method, showed that the amino acids cysteine, phenylalanine, tyrosine and lysine had the highest amount compared to other amino acids obtained from digestion. Molecular dynamics (MD) simulation of HADDOCK docking results exhibited that KRLr1 enzyme was able to interact strongly with chicken feather keratine 4 (FK4) compared to chicken feather keratine 12 (FK12). These properties make keratinase KRLr1 a potential candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Somayyeh Rahimnahal
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Amir Meimandipour
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Jamal Fayazi
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Ali Asghar Karkhane
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Mohammadtaghi Beigi Nassiri
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Faculty of Health Science, Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Hossein Tarrahimofrad
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | | |
Collapse
|
13
|
Liya SM, Umesh M, Nag A, Chinnathambi A, Alharbi SA, Jhanani GK, Shanmugam S, Brindhadevi K. Optimized production of keratinolytic proteases from Bacillus tropicus LS27 and its application as a sustainable alternative for dehairing, destaining and metal recovery. ENVIRONMENTAL RESEARCH 2023; 221:115283. [PMID: 36639016 DOI: 10.1016/j.envres.2023.115283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The present study describes the isolation and characterization of Bacillus tropicus LS27 capable of keratinolytic protease production from Russell Market, Shivajinagar, Bangalore, Karnataka, with its diverse application. The ability of this strain to hydrolyze chicken feathers and skim milk was used to assess its keratinolytic and proteolytic properties. The strain identification was done using biochemical and molecular characterization using the 16S rRNA sequencing method. Further a sequential and systematic optimization of the factors affecting the keratinase production was done by initially sorting out the most influential factors (NaCl concentration, pH, inoculum level and incubation period in this study) through one factor at a time approach followed by central composite design based response surface methodology to enhance the keratinase production. Under optimized levels of NaCl (0.55 g/L), pH (7.35), inoculum level (5%) and incubation period (84 h), the keratinase production was enhanced from 41.62 U/mL to 401.67 ± 9.23 U/mL (9.65 fold increase) that corresponds to a feather degradation of 32.67 ± 1.36% was achieved. With regard to the cost effectiveness of application studies, the crude enzyme extracted from the optimized medium was tested for its potential dehairing, destaining and metal recovery properties. Complete dehairing was achieved within 48 h of treatment with crude enzyme without any visible damage to the collagen layer of goat skin. In destaining studies, combination of crude enzyme and detergent solution [1 mL detergent solution (5 mg/mL) and 1 mL crude enzyme] was found to be most effective in removing blood stains from cotton cloth. Silver recovery from used X-ray films was achieved within 6 min of treatment with crude enzyme maintained at 40 °C.
Collapse
Affiliation(s)
- Stanly Merin Liya
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India.
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Kathirvel Brindhadevi
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, India.
| |
Collapse
|
14
|
Alamnie G, Gessesse A, Bitew M, Dawud N, Andualem B, Girma A. Production and biochemical characterization of keratinase enzyme from
Bacillus subtilis
ES5 and its potential application in leather dehairing process: a clean leather tanning process. BIOTECHNOL BIOTEC EQ 2023; 37. [DOI: 10.1080/13102818.2023.2288691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2025] Open
Affiliation(s)
- Getachew Alamnie
- Department of Biological Sciences, College of Natural and Computational Science, Mekdela Amba University, Tuluawliya, Ethiopia
- Department of Industrial and Environmental Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Amare Gessesse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | | | | | - Berhanu Andualem
- Department of Industrial and Environmental Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Abayeneh Girma
- Department of Biological Sciences, College of Natural and Computational Science, Mekdela Amba University, Tuluawliya, Ethiopia
| |
Collapse
|
15
|
Ren W, Li P, Wang X, Che Y, Long H, Zhang X, Cai X, Huang A, Zeng Y, Xie Z. Cross-habitat distribution pattern of Bacillus communities and their capacities of producing industrial hydrolytic enzymes in Paracel Islands: Habitat-dependent differential contributions of the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116252. [PMID: 36126600 DOI: 10.1016/j.jenvman.2022.116252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Bacillus as a predominant genus of enzyme-producing bacteria presents desirable features to fulfill the vast demand of specific industries, whereas the knowledge of the Bacillus communities and their capacities of producing industrial hydrolytic enzymes across the microhabitats of the Paracel Islands is limited. Herein, a total of 193 culturable Bacillus strains belonging to 19 species were isolated across the microhabitats of seawater, sediment, coral and seagrass, covering 39 stations of the Paracel Islands. Each microhabitat displayed its unique species, while the species of Bacillus paramycoides besides being the dominant species with an abundance of 54.94% also was the only species shared by all microhabitats of the Paracel Islands. Of the Bacillus communities, 97.41% of the isolates exhibited the capacity of producing one-or-more types of enzymes with comparatively higher and broader ranges of enzyme activities, including 163 protease-, 27 cellulase-, 118 alginate lyase-, 140 K-carrageenase- and 158 agarose-producing strains. By the correlation analyses of "Bacillus-environmental factors" and "Enzyme-producing Bacillus-environmental factors", the cross-habitat distribution and enzyme-producing capacity pattern of the Bacillus communities were strongly driven by habitat type, and the environmental factors made habitat-dependent differential contributions to that in the Paracel Islands. It's worth noting that the cellulase-producing strain wasn't detected in seagrass due to its survival strategy to prevent cellulose degradation by inhibiting cellulase-producing bacteria, while coral contained more stable microbial metabolic functions to protect against environmental fluctuations. These findings besides providing large quantities of promising enzyme-producing candidates for specific industrial desires, also facilitate the development and utilization of marine microbial resources and the environmental policy- and/or law-making according to environmental features across the microhabitats of the Paracel Islands.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Peiwei Li
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xinyi Wang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yuhan Che
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xiaoni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yanhua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China.
| |
Collapse
|