1
|
Chen Y, Zhang Y, Qin S, Yu F, Ni Y, Zhong J. The correlation between TyG-BMI and the risk of osteoporosis in middle-aged and elderly patients with type 2 diabetes mellitus. Front Nutr 2025; 12:1525105. [PMID: 40135223 PMCID: PMC11932904 DOI: 10.3389/fnut.2025.1525105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Background and objectives Osteoporosis (OP) has emerged as one of the most rapidly escalating complications associated with diabetes mellitus. However, the potential risk factors contributing to OP in patients with type 2 diabetes mellitus (T2DM) remain controversial. The aim of this study was to explore the relationship between triglyceride glucose-body mass index (TyG-BMI), a marker of insulin resistance calculated as Ln [triglyceride (TG, mg/dL) × fasting plasma glucose (mg/dL)/2] × BMI, and the risk of OP in T2DM patients. Methods This retrospective cross-sectional study enrolled 386 inpatients with T2DM, comprising both male and postmenopausal female participants aged 40 years or older. Individuals with significant medical histories or medications known to influence bone mineral density were excluded. Machine learning algorithms were employed to rank factors affecting OP risk. Logistic regression analysis was performed to identify independent influencing factors for OP, while subgroup analysis was conducted to evaluate the impact of TyG-BMI on OP across different subgroups. Restricted cubic spline (RCS) analysis was used to explore the dose-response relationship between TyG-BMI and OP. Additionally, the receiver operating characteristic (ROC) curve was utilized to assess the predictive efficiency of TyG-BMI for OP. Results Machine learning analysis identified TyG-BMI as the strongest predictor for type 2 diabetic osteoporosis in middle-aged and elderly patients. After adjusting for confounding factors, multivariate logistic regression analysis revealed that age, osteocalcin, and uric acid were independent influencing factors for OP. Notably, TyG-BMI also emerged as an independent risk factor for OP (95%CI 1.031-1.054, P < 0.01). Subgroup analysis demonstrated a consistent increase in OP risk with higher TyG-BMI levels across all subgroups. RCS analysis indicated a threshold effect, with the risk of OP gradually increasing when TyG-BMI exceeded 191.52. Gender-specific analysis showed increasing the risk of OP when TyG-BMI surpassed 186.21 in males and 198.46 in females, with a more pronounced trend observed in females. ROC suggested that TyG-BMI index has significant discriminative power for type 2 diabetic osteoporosis. Conclusion TyG-BMI has been identified as a robust predictive biomarker for assessing OP risk in middle-aged and elderly populations with T2DM.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Zhong
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Li P, Alenazi KKK, Dally J, Woods EL, Waddington RJ, Moseley R. Role of oxidative stress in impaired type II diabetic bone repair: scope for antioxidant therapy intervention? FRONTIERS IN DENTAL MEDICINE 2024; 5:1464009. [PMID: 39917650 PMCID: PMC11797775 DOI: 10.3389/fdmed.2024.1464009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/02/2024] [Indexed: 02/09/2025] Open
Abstract
Impaired bone healing is a significant complication observed in individuals with type 2 diabetes mellitus (T2DM), leading to prolonged recovery, increased risk of complications, impaired quality of life, and increased risk of patient morbidity. Oxidative stress, resulting from an imbalance between the generation of reactive oxygen species (ROS) and cellular/tissue antioxidant defence mechanisms, has been identified as a critical contributor to the pathogenesis of impaired bone healing in T2DM. Antioxidants have shown promise in mitigating oxidative stress and promoting bone repair, particularly non-enzymic antioxidant entities. This comprehensive narrative review aims to explore the underlying mechanisms and intricate relationship between oxidative stress, impaired bone healing and T2DM, with a specific focus on the current preclinical and clinical evidence advocating the potential of antioxidant therapeutic interventions in improving bone healing outcomes in individuals with T2DM. From the ever-emerging evidence available, it is apparent that exogenously supplemented antioxidants, especially non-enzymic antioxidants, can ameliorate the detrimental effects of oxidative stress, inflammation, and impaired cellular function on bone healing processes during uncontrolled hyperglycaemia; and therefore, hold considerable promise as novel efficacious therapeutic entities. However, despite such conclusions, several important gaps in our knowledge remain to be addressed, including studies involving more sophisticated enzymic antioxidant-based delivery systems, further mechanistic studies into how these antioxidants exert their desirable reparative effects; and more extensive clinical trial studies into the optimisation of antioxidant therapy dosing, frequency, duration and their subsequent biodistribution and bioavailability. By enhancing our understanding of such crucial issues, we can fully exploit the oxidative stress-neutralising properties of these antioxidants to develop effective antioxidant interventions to mitigate impaired bone healing and reduce the associated complications in such T2DM patient populations.
Collapse
Affiliation(s)
- Pui Li
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Kuraym Khalid Kuraym Alenazi
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jordanna Dally
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Emma Louise Woods
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rachel Jane Waddington
- Biomaterials Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Moseley
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Britton M, Monahan GE, Murphy CG, Kearns SR, Devitt AT, Okwieka A, Jaisson S, Van Gulick L, Beljebbar A, Kerdjoudj H, Schiavi J, Vaughan TJ. An investigation of composition, morphology, mechanical properties, and microdamage accumulation of human type 2 diabetic bone. Bone 2024; 187:117190. [PMID: 38960297 DOI: 10.1016/j.bone.2024.117190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
This study investigates the biomechanics of type 2 diabetic bone fragility through a multiscale experimental strategy that considers structural, mechanical, and compositional components of ex vivo human trabecular and cortical bone. Human tissue samples were obtained from the femoral heads of patients undergoing total hip replacement. Mechanical testing was carried out on isolated trabecular cores using monotonic and cyclic compression loading and nanoindentation experiments, with bone microdamage analysed using micro-computed tomography (CT) imaging. Bone composition was evaluated using Raman spectroscopy, high-performance liquid chromatography, and fluorometric spectroscopy. It was found that human type 2 diabetic bone had altered mechanical, compositional, and morphological properties compared to non-type 2 diabetic bone. High-resolution micro-CT imaging showed that cores taken from the central trabecular region of the femoral head had higher bone mineral density (BMD), bone volume, trabecular thickness, and reduced trabecular separation. Type 2 diabetic bone also had enhanced macro-mechanical compressive properties under mechanical loading compared to non-diabetic controls, with significantly higher apparent modulus, yield stress, and pre-yield toughness evident, even when properties were normalised against the bone volume. Using nanoindentation, there were no significant differences in the tissue-level mechanical properties of cortical or trabecular bone in type 2 diabetic samples compared to controls. Through compositional analysis, higher levels of furosine were found in type 2 diabetic trabecular bone, and an increase in both furosine and carboxymethyl-lysine (an advanced glycation end-product) was found in cortical bone. Raman spectroscopy showed that type 2 diabetic bone had a higher mineral-to-matrix ratio, carbonate substitution, and reduced crystallinity compared to the controls. Together, this study shows that type 2 diabetes leads to distinct changes in both organic and mineral phases of the bone tissue matrix, but these changes did not coincide with any reduction in the micro- or macro-mechanical properties of the tissue under monotonic or cyclic loading.
Collapse
Affiliation(s)
- Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Genna E Monahan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Colin G Murphy
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Stephen R Kearns
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Aiden T Devitt
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Anaïs Okwieka
- University of Reims Champagne-Ardenne, CNRS, Extracellular Matrix and Cell Dynamics Unit (MEDyC) UMR, Reims, France
| | - Stéphane Jaisson
- University of Reims Champagne-Ardenne, CNRS, Extracellular Matrix and Cell Dynamics Unit (MEDyC) UMR, Reims, France
| | | | | | - Halima Kerdjoudj
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, EA 4691 Reims, France
| | | | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
4
|
Wang J, Zhao C, Zhao W, Li S. Deficiency of protein phosphatase 5 resists osteoporosis in diabetic mice. Heliyon 2024; 10:e34027. [PMID: 39071657 PMCID: PMC11283048 DOI: 10.1016/j.heliyon.2024.e34027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Osteoporosis is a common diabetic consequence that negatively affects patients' health and quality of life. Nevertheless, there is mutual interference between clinical drugs intended to regulate blood glucose and bone metabolism. Therefore, it is crucial to look for new treatment targets that effectively control blood glucose and safely protect the bone health of patients with diabetes. In this study, mice given a high-fat diet were shown to be resistant to osteoporosis and diabetes when protein phosphatase 5 (PP5) knockout (KO) mice were used. Serum markers of bone remodeling show that PP5 KO mice are resistant to decreased bone formation and increased bone resorption brought on by diabetes. The absence of PP5 resists the reduction of osteoblast differentiation and the enhancement of osteoclast differentiation in diabetic mice, according to the in vitro osteoblast differentiation of bone mesenchymal stem cells and osteoclast differentiation of bone marrow-derived macrophages. Subsequent investigation revealed that PP5 deficiency increases the expression of the key regulator of osteoblast differentiation, runt-related transcription factor 2, and decreases the activity of the receptor activator of the nuclear factor-κB ligand/osteoprotegerin pathway, a crucial regulatory signaling pathway for osteoclast differentiation. In conclusion, we discovered that PP5 deficiency protects diabetic mice against osteoporosis for the first time.
Collapse
Affiliation(s)
- Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Changyu Zhao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Wenpeng Zhao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Al-Daghri NM, Wani K, Khattak MNK, Alnaami AM, Al-Saleh Y, Sabico S. The single point insulin sensitivity estimator (SPISE) is associated with bone health in Arab adults. Aging Clin Exp Res 2024; 36:136. [PMID: 38904881 PMCID: PMC11192813 DOI: 10.1007/s40520-024-02789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The Single Point Insulin Sensitivity Estimator (SPISE) index is a surrogate marker for insulin sensitivity. Given the emerging role of bone as an active endocrine organ, its associations with non-invasive measures of extra-skeletal functions such as insulin sensitivity warrant investigation. AIMS This study aimed to explore the relationship between the SPISE index and Bone Mineral Density (BMD) in an adult population. METHODS Data from a total of 1270 Arab adults (84% females, mean age 56.7 ± 8.1 years) from the Osteoporosis Registry Database of the Chair for Biomarkers of Chronic Diseases in King Saud University, Riyadh, Saudi Arabia was used in this study. T-scores and SPISE were calculated. Regression models were used to determine associations between SPISE and bone health indices. RESULTS The low BMD group (N = 853; T-score <-1.0) had significantly higher SPISE values than those with normal BMD (N = 417; T-score - 1.0 and above) (4.6 ± 1.3 vs. 4.3 ± 1.2, p < 0.001). Multivariate linear regression, adjusted for covariates, confirmed a significant inverse association between SPISE and BMD for all participants (β=-0.22, p < 0.001), as well as both groups [normal BMD (β = -0.10, p = 0.02) and low BMD groups (β = -0.15, p < 0.001)]. SPISE, family history of T2DM, and history of fractures collectively account for 17% of the variances perceived in T-score for all participants (p < 0.001). CONCLUSIONS A significant inverse association between the SPISE index and BMD was observed in adults, suggesting a link between BMD and extra-skeletal health. Underlying mechanisms need to be investigated prospectively using BMD as secondary outcomes in lifestyle modification programs.
Collapse
Affiliation(s)
- Nasser M Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Kaiser Wani
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Malak N K Khattak
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah M Alnaami
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yousef Al-Saleh
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Medicine, Health Oasis Hospital, Riyadh, Saudi Arabia
| | - Shaun Sabico
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Gao L, Liu Y, Li M, Wang Y, Zhang W. Based on HbA1c Analysis: Bone Mineral Density and Osteoporosis Risk in Postmenopausal Female with T2DM. J Clin Densitom 2024; 27:101442. [PMID: 38039558 DOI: 10.1016/j.jocd.2023.101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION This study aims to investigate association between glycosylated hemoglobin (HbA1c) with bone mineral density (BMD) and osteoporosis-risk in postmenopausal female with type 2 diabetes mellitus (T2DM). METHODOLOGY HbA1c values, BMD of L3 vertebra and basic clinical data of 152 postmenopausal females with T2DM and 326 postmenopausal females without T2DM were retrospectively analyzed. The propensity score matching was used to match the T2DM and the non-T2DM group at a ratio of 1:1. Restricted cubic spline (RCS) analysis and piecewise linear regression were used to evaluate the relationship between HbA1c and BMD. Univariable and multivariable logistic regression were utilized to evaluate the effect of HbA1c on the risk of osteoporosis in matched diabetes population. RESULTS After matching, the BMD (66.60 (46.58, 93.23) vs. 63.50 (36.70, 83.33), P < 0.05), HbA1c value (7.50 (6.72, 8.80) vs 5.30 (5.14, 5.50), P < 0.05) in the T2DM group were significantly higher than that of non-T2DM group. We found a nonlinear relation between HbA1c value and BMD, which showing a U-shaped curve with the cutoff value around 7.5 % (Poverall < 0.001, Pnonliearity < 0.05). The prevalence of osteoporosis in T2DM group was similar to that in controls (64.9 % vs 73.6 %, P = 0.102). Age-adjusted HbA1c value was not risk factor of osteoporosis in postmenopausal females with T2DM. CONCLUSION In postmenopausal females with T2DM, high BMD and similar risk of osteoporosis were confirmed; HbA1c was a contributing factor to BMD when values exceed 7.5 %. However, HbA1c does not seem to be associated with osteoporosis risk.
Collapse
Affiliation(s)
- Lei Gao
- Department of Radiology, Hebei Medical University Third Hospital, No.139 ziqiang road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Ying Liu
- Department of Radiology, Hebei Medical University Third Hospital, No.139 ziqiang road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Min Li
- Department of Endocrinology, Hebei Medical University Third Hospital, No.139 ziqiang road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Yan Wang
- Department of Endocrinology, Hebei Medical University Third Hospital, No.139 ziqiang road, Qiaoxi District, Shijiazhuang, Hebei 050051, China.
| | - Wei Zhang
- Department of Radiology, Hebei Medical University Third Hospital, No.139 ziqiang road, Qiaoxi District, Shijiazhuang, Hebei 050051, China.
| |
Collapse
|
7
|
Liu J, Li X, Wang H, Ren Y, Li Y, Guo F. Bavachinin selectively modulates PPAR γ and maintains bone homeostasis in Type 2 Diabetes. Phytother Res 2023; 37:4457-4472. [PMID: 37308719 DOI: 10.1002/ptr.7912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
Full peroxisome proliferator-activated receptor (PPAR) γ agonists, Thiazolidinediones (TZDs), effectively prevent the process of Type 2 Diabetes Mellitus (T2DM), but their side effects have curtailed use in the clinic, including weight gain and bone loss. Here, we identified that a selective PPAR γ modulator, Bavachinin (BVC), isolated from the seeds of Psoralea Corylifolia L., could potently regulate bone homeostasis. MC3T3-E1 pre-osteoblast cells and C3H10T1/2 mesenchymal stem cells were assessed for osteogenic differentiation activities, and receptor activator of NF-κB ligand (RANKL)-induced RAW 264.7 cells were assessed osteoclasts formation. Leptin receptor-deficient mice and diet-induced obesity mice were applied to evaluate the effect of BVC on bone homeostasis in vivo. Compared to full PPAR γ agonist rosiglitazone, BVC significantly increased the osteogenesis differentiation activities under normal and high glucose conditions in MC3T3-E1 cells. Moreover, BVC could alleviate osteoclast differentiation in RANKL-induced RAW 264.7 cells. In vivo, synthesized BVC prodrug (BN) has been applied to improve water solubility, increase the extent of oral absorption of BVC and prolong its residence time in blood circulation. BN could prevent weight gain, ameliorate lipid metabolism disorders, improve insulin sensitivity, and maintain bone mass and bone biomechanical properties. BVC, a unique PPAR γ selective modulator, could maintain bone homeostasis, and its prodrug (BN) exhibits insulin sensitizer activity while circumventing the side effects of the TZDs, including bone loss and undesirable weight gain.
Collapse
Affiliation(s)
- Jingwen Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan Ren
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Huang G, Chen X, Chen Y, Liu W, Chen C, Song W, Zeng G. Causal relationship between type 2 diabetes mellitus and bone mineral density: a Mendelian randomization study in an East Asian population. Osteoporos Int 2023; 34:1719-1727. [PMID: 37306802 PMCID: PMC10511588 DOI: 10.1007/s00198-023-06807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
It remains unclear whether the relationship between type 2 diabetes mellitus (T2DM) and bone mineral density (BMD) reflects causality in East Asian populations. Herein, a Mendelian randomization study conducted in East Asian population enhances the current clinical cognition that T2DM is not associated with reduction in BMD. PURPOSE A Mendelian randomization (MR) approach was utilized to investigate the relationship between type 2 diabetes mellitus (T2DM) and bone mineral density (BMD) in East Asian populations. METHODS Genome-wide association study summary data from BioBank Japan were used to identify genetic variants strongly related to T2DM risk (36,614 cases and 155,150 controls) and osteoporosis (7788 cases and 204,665 controls). Heel BMD GWAS data of 1260 East Asian people from ieu open gwas project was considered as a second outcome. Inverse variance-weighted (IVW) analysis was mainly applied; MR-Egger and the weighted median were also used to obtain robust estimates. A series of sensitivity analyses including Cochran's Q test, MR-Egger regression, and leave-one-out analysis were used to detect pleiotropy or heterogeneity. RESULTS In the main analysis, IVW estimates indicated that T2DM significantly associated with the risk of osteoporosis (odds ratio = 0.92, 95% CI: 0.86-0.99, p = 0.016) and with higher BMD (OR: 1.25, 95% CI: 1.06-1.46, p = 6.49 × 10-3). Results of comprehensive sensitivity analysis were consistent with the main causality estimate. Horizontal pleiotropy and heterogeneity were absent in our MR study. CONCLUSIONS T2DM is not associated with reduction in BMD in terms of genetic polymorphism in East Asian populations.
Collapse
Affiliation(s)
- Guiwu Huang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Xiong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, Guangdong Province, 510120, China
| | - Wenzhou Liu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, Guangdong Province, 510120, China
| | - Chen Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, Guangdong Province, 510120, China
| | - Weidong Song
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, Guangdong Province, 510120, China.
| | - Gang Zeng
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiangxi Road, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
9
|
Akyay OZ, Canturk Z, Selek A, Cetinarslan B, Tarkun İ, Cakmak Y, Baydemir C. The effects of exenatide and insulin glargine treatments on bone turnover markers and bone mineral density in postmenopausal patients with type 2 diabetes mellitus. Medicine (Baltimore) 2023; 102:e35394. [PMID: 37773814 PMCID: PMC10545322 DOI: 10.1097/md.0000000000035394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) related bone fracture. The effects of glucagon-like peptide-1 receptor analogs for the treatment of T2DM on bone are controversial in human studies. This study aimed to compare the effects of GLP-1 receptor analogs exenatide and insulin glargine treatment on bone turnover marker levels and bone mineral density (BMD) in postmenopausal female patients with T2DM. Thirty female patients with T2DM who were naive to insulin and incretin-based treatments, with spontaneous postmenopause, were randomized to exenatide or insulin glargine arms and were followed up for 24 weeks. BMD was evaluated using dual-energy X-ray absorptiometry and bone turnover markers by serum enzyme-linked immunosorbent assay. The body mass index significantly decreased in the exenatide group compared to the glargine group (P < .001). Receptor activator of nuclear factor kappa-B (RANK) and RANK ligand (RANKL) levels were significantly decreased with exenatide treatment (P = .009 and P = .015, respectively). Osteoprotegerin (OPG) level significantly increased with exenatide treatment (P = .02). OPG, RANK, RANKL levels did not change with insulin glargine treatment. No statistically significant difference was found between the pre- and posttreatment BMD, alkaline phosphatase, bone-specific alkaline phosphatase, and type 1 crosslinked N-telopeptide levels in both treatment arms. Despite significant weight loss with exenatide treatment, BMD did not decrease, OPG increased, and the resorption markers of RANK and RANKL decreased, which may reflect early antiresorptive effects of exenatide via the OPG/RANK/RANKL pathway.
Collapse
Affiliation(s)
- Ozlem Zeynep Akyay
- University of Health Sciences Sanliurfa Mehmet Akif İnan Education and Research Hospital, Department of Endocrinology and Metabolism, Sanliurfa, Turkey
| | - Zeynep Canturk
- Kocaeli University School of Medicine, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - Alev Selek
- Kocaeli University School of Medicine, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - Berrin Cetinarslan
- Kocaeli University School of Medicine, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - İlhan Tarkun
- Anadolu Medical Center, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - Yagmur Cakmak
- Kocaeli University School of Medicine, Department of Oncology, Kocaeli, Turkey
| | - Canan Baydemir
- Kocaeli University School of Medicine, Department of Biostatistics and Medical Informatics, Kocaeli, Turkey
| |
Collapse
|
10
|
Mkhize BC, Mosili P, Ngubane PS, Sibiya NH, Khathi A. The Relationship between Renin-Angiotensin-Aldosterone System (RAAS) Activity, Osteoporosis and Estrogen Deficiency in Type 2 Diabetes. Int J Mol Sci 2023; 24:11963. [PMID: 37569338 PMCID: PMC10419188 DOI: 10.3390/ijms241511963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with a plethora of comorbidities, including osteoporosis, which occurs due to an imbalance between bone resorption and formation. Numerous mechanisms have been explored to understand this association, including the renin-angiotensin-aldosterone system (RAAS). An upregulated RAAS has been positively correlated with T2D and estrogen deficiency in comorbidities such as osteoporosis in humans and experimental studies. Therefore, research has focused on these associations in order to find ways to improve glucose handling, osteoporosis and the downstream effects of estrogen deficiency. Upregulation of RAAS may alter the bone microenvironment by altering the bone marrow inflammatory status by shifting the osteoprotegerin (OPG)/nuclear factor kappa-Β ligand (RANKL) ratio. The angiotensin-converting-enzyme/angiotensin II/Angiotensin II type 1 receptor (ACE/Ang II/AT1R) has been evidenced to promote osteoclastogenesis and decrease osteoblast formation and differentiation. ACE/Ang II/AT1R inhibits the wingless-related integration site (Wnt)/β-catenin pathway, which is integral in bone formation. While a lot of literature exists on the effects of RAAS and osteoporosis on T2D, the work is yet to be consolidated. Therefore, this review looks at RAAS activity in relation to osteoporosis and T2D. This review also highlights the relationship between RAAS activity, osteoporosis and estrogen deficiency in T2D.
Collapse
Affiliation(s)
- Bongeka Cassandra Mkhize
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | - Palesa Mosili
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | - Phikelelani Sethu Ngubane
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | | | - Andile Khathi
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| |
Collapse
|
11
|
Johnson MJ, Kandasamy S, Raspovic KM, Manchanda K, Liu GT, VanPelt MD, Lavery LA, Wukich DK. Fractures and dislocations of the foot and ankle in people with diabetes: a literature review. Ther Adv Endocrinol Metab 2023; 14:20420188231163794. [PMID: 37323164 PMCID: PMC10265356 DOI: 10.1177/20420188231163794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/27/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetes (DM) increases fracture risk, and bone quality depends on type diabetes type, duration, and other comorbidities. Diabetes is associated with a 32% increased relative risk (RR) of total fractures and 24% increased RR of ankle fractures compared with patients without DM. Type 2 DM is associated with a 37% increased RR of foot fractures compared with patients without DM. The incidence of ankle fractures in the general population is 169/100,000 per year, while foot fractures occur less frequently, with an incidence of 142/100,000 per year. Biomechanical properties of bone are negatively impacted by stiff collagen, contributing to the increased risk of fragility fractures in patients with DM. Systemic elevation of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), interleukin-1β (IL-1β), and interleukin 6 (IL-6), impact bone healing in patients with DM. Fractures in patients with DM, can be associated with poorly regulated levels of RANKL (receptor activator of nuclear transcription factor kappa-b ligand) leading to prolonged osteoclastogenesis, and net bone resorption. One of the most salient factors in treating fractures and dislocations of the foot and ankle is to recognize the difference between patients with uncomplicated and complicated DM. Complicated diabetes is defined as 'end organ damage', and for the purposes of this review, includes patients with neuropathy, peripheral artery disease (PAD) and/or chronic renal disease. Uncomplicated diabetes is not associated with 'end organ damage'. Foot and ankle fractures in patients with complicated DM pose challenges, and surgery is associated with increased risks of impaired wound healing, delayed fracture healing, malunion, infection, surgical site infection, and revision surgery. While patients with uncomplicated DM can be treated like patients without DM, patients with complicated DM require close follow-up and robust fixation methods should be considered to withstand the anticipated prolonged healing period. The aims of this review are as follows: (1) to review pertinent aspects of DM bone physiology and fracture healing, (2) to review the recent literature on treatment of foot and ankle fractures in patients with complicated DM, and (3) to provide treatment protocols based on the recent published evidence.
Collapse
Affiliation(s)
- Matthew J. Johnson
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suganthi Kandasamy
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katherine M. Raspovic
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kshitij Manchanda
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Tye Liu
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael D. VanPelt
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lawrence A. Lavery
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
12
|
Liu X, Koyama T. D-Pinitol Improved Glucose Metabolism and Inhibited Bone Loss in Mice with Diabetic Osteoporosis. Molecules 2023; 28:molecules28093870. [PMID: 37175278 PMCID: PMC10180393 DOI: 10.3390/molecules28093870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic osteoporosis (DO) has been increasingly recognized as an important complication of diabetes. D-pinitol, a natural compound found in various legumes, is known for its anti-diabetic function, but its effect on DO has not been investigated. Two doses of pinitol (50 and 100 mg/kg Bw/d) were administered orally to experimentally induce the DO mouse model for 5 weeks. The results indicated that pinitol suppressed fasting blood glucose levels and tended to enhance impaired pancreatic function. Pinitol also suppressed serum bone turnover biomarkers, and improved dry femur weight, cancellous bone rate, and bone mineral content in the DO mice. Based on the inositol quantification using GC-MS in serum, liver, kidney, and bone marrow, the pinitol treatment significantly recovered the depleted D-chiro-inositol (DCI) content or the decreased the ratio of DCI to myo-inositol caused by DO. In short, our results suggested that pinitol improved glucose metabolism and inhibited bone loss in DO mice via elevating the DCI levels in tissues.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 1080075, Japan
| | - Tomoyuki Koyama
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 1080075, Japan
| |
Collapse
|
13
|
Bao K, Jiao Y, Xing L, Zhang F, Tian F. The role of wnt signaling in diabetes-induced osteoporosis. Diabetol Metab Syndr 2023; 15:84. [PMID: 37106471 PMCID: PMC10141960 DOI: 10.1186/s13098-023-01067-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis, a chronic complication of diabetes mellitus, is characterized by a reduction in bone mass, destruction of bone microarchitecture, decreased bone strength, and increased bone fragility. Because of its insidious onset, osteoporosis renders patients highly susceptible to pathological fractures, leading to increased disability and mortality rates. However, the specific pathogenesis of osteoporosis induced by chronic hyperglycemia has not yet been fully elucidated. But it is currently known that the disruption of Wnt signaling triggered by chronic hyperglycemia is involved in the pathogenesis of diabetic osteoporosis. There are two main types of Wnt signaling pathways, the canonical Wnt signaling pathway (β-catenin-dependent) and the non-canonical Wnt signaling pathway (non-β-catenin-dependent), both of which play an important role in regulating the balance between bone formation and bone resorption. Therefore, this review systematically describes the effects of abnormal Wnt pathway signaling on bone homeostasis under hyperglycemia, hoping to reveal the relationship between Wnt signaling and diabetic osteoporosis to further improve understanding of this disease.
Collapse
Affiliation(s)
- Kairan Bao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China.
| | - Yinghua Jiao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| | - Lei Xing
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Fang Zhang
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Faming Tian
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| |
Collapse
|
14
|
The trajectory of osteoblast progenitor cells in patients with type 2 diabetes and the predictive model for their osteogenic differentiation ability. Sci Rep 2023; 13:2338. [PMID: 36759556 PMCID: PMC9911595 DOI: 10.1038/s41598-023-29677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
The fate of osteoprogenitor cells along with the progression of type 2 diabetes (T2DM) and factors determining the fate of those cells remains to be elucidated. This cross-sectional study included 18 normoglycemic, 27 prediabetic, and 73 T2DM to determine osteogenic differentiation across the continuum of dysglycemia and to construct a model to predict the fate of osteoprogenitor cells. This study demonstrated a preserved osteogenic differentiation ability of peripheral blood-derived mononuclear cells (PBMC) isolated from normoglycemic and prediabetic but a progressive decline in their osteogenic differentiation during the progression of T2DM. The rate of osteogenic differentiation rapidly declined by 4-7% annually during the first 10 years of diabetes and then slowed down. A predictive model composed of three independent risk factors, including age, duration of diabetes, and glomerular filtration rate, demonstrated an AuROC of 0.834. With a proposed cut-off of 21.25, this model had 72.0% sensitivity, 87.5% specificity, and 78.9% accuracy in predicting the fate of osteoprogenitor cells. In conclusion, this study provided a perspective on the osteogenic differentiation ability of the osteoprogenitor cells across a continuum of dysglycemia and a predictive model with good diagnostic performance for the prediction of the fate of osteoprogenitor cells in patients with T2DM.
Collapse
|
15
|
Lekkala S, Sacher SE, Taylor EA, Williams RM, Moseley KF, Donnelly E. Increased Advanced Glycation Endproducts, Stiffness, and Hardness in Iliac Crest Bone From Postmenopausal Women With Type 2 Diabetes Mellitus on Insulin. J Bone Miner Res 2023; 38:261-277. [PMID: 36478472 PMCID: PMC9898222 DOI: 10.1002/jbmr.4757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have a greater risk of bone fracture compared with those with normal glucose tolerance (NGT). In contrast, individuals with impaired glucose tolerance (IGT) have a lower or similar risk of fracture. Our objective was to understand how progressive glycemic derangement affects advanced glycation endproduct (AGE) content, composition, and mechanical properties of iliac bone from postmenopausal women with NGT (n = 35, age = 65 ± 7 years, HbA1c = 5.8% ± 0.3%), IGT (n = 26, age = 64 ± 5 years, HbA1c = 6.0% ± 0.4%), and T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.1% ± 2.2%). AGEs were assessed in all samples using high-performance liquid chromatography to measure pentosidine and in NGT/T2DM samples using multiphoton microscopy to spatially resolve the density of fluorescent AGEs (fAGEs). A subset of samples (n = 14 NGT, n = 14 T2DM) was analyzed with nanoindentation and Raman microscopy. Bone tissue from the T2DM group had greater concentrations of (i) pentosidine versus IGT (cortical +24%, p = 0.087; trabecular +35%, p = 0.007) and versus NGT (cortical +40%, p = 0.003; trabecular +35%, p = 0.004) and (ii) fAGE cross-link density versus NGT (cortical +71%, p < 0.001; trabecular +44%, p < 0.001). Bone pentosidine content in the IGT group was lower than in the T2DM group and did not differ from the NGT group, indicating that the greater AGE content observed in T2DM occurs with progressive diabetes. Individuals with T2DM on metformin had lower cortical bone pentosidine compared with individuals not on metformin (-35%, p = 0.017). Cortical bone from the T2DM group was stiffer (+9%, p = 0.021) and harder (+8%, p = 0.039) versus the NGT group. Bone tissue AGEs, which embrittle bone, increased with worsening glycemic control assessed by HbA1c (Pen: R2 = 0.28, p < 0.001; fAGE density: R2 = 0.30, p < 0.001). These relationships suggest a potential mechanism by which bone fragility may increase despite greater tissue stiffness and hardness in individuals with T2DM; our results suggest that it occurs in the transition from IGT to overt T2DM. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Sara E. Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Erik A. Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | | | - Kendall F. Moseley
- Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
16
|
Deng J, Cohen DJ, Sabalewski EL, Van Duyn C, Wilson DS, Schwartz Z, Boyan BD. Semaphorin 3A delivered by a rapidly polymerizing click hydrogel overcomes impaired implant osseointegration in a rat type 2 diabetes model. Acta Biomater 2023; 157:236-251. [PMID: 36435442 PMCID: PMC10007856 DOI: 10.1016/j.actbio.2022.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Semaphorin 3A (sema3A) is an osteoprotective factor that enhances bone formation while inhibiting osteoclast bone resorption. It is produced by rat calvarial osteoblasts cultured on grit-blasted/acid-etched microtextured (SLA) titanium surfaces at higher levels than on tissue culture polystyrene, suggesting that it may improve performance of titanium implants in vivo, particularly in conditions characterized by compromised bone quality. To test this, we established a clinically relevant type 2 diabetes mellitus (T2DM) rat model and used a non-toxic click hydrogel that rapidly polymerizes in situ (GEL) to provide localized controlled delivery of sema3A. In vitro studies confirmed that sema3A released from GEL was biologically active, increasing osteoblast differentiation of a pre-osteoblast cell-line. Whereas increased sema3A production was not observed in T2DM calvarial osteoblasts cultured on SLA, exogenous sema3A enhanced surface-induced osteoblast differentiation, indicating that it would be a viable candidate for in vivo use. Delivery of sema3A either by GEL or by local injection to bone defects enhanced osseointegration of SLA implants in the T2DM rats. Trabecular bone mass and bone-to-implant contact were decreased in T2DM rats compared to normal rats; sema3A delivered locally improved both parameters. These findings suggest that reduced trabecular bone contributes to poor osseointegration in T2DM patients and support GEL as a promising treatment option for sustained release of therapeutic doses of sema3A. Moreover, using this clinically translatable T2DM model and developing a biocompatible, Cu-free click chemistry hydrogel platform for the non-invasive delivery of therapeutics has major implications for regenerative medicine as a whole. STATEMENT OF SIGNIFICANCE: Osseointegration is compromised in patients with poor bone quality due to conditions like type 2 diabetes mellitus (T2DM). Previously, we showed that semaphorin 3A (sema3A) production is increased when human bone marrow stromal cells are cultured on titanium substrates that support osseointegration in vivo, suggesting it may enhance peri-implant osteogenesis in diabetes. Here we established a spontaneously developing T2DM rat model with clinical translatability and used it to assess sema3A effectiveness. Sema3A was delivered to the implant site via a novel copper-free click hydrogel, which has minimal swelling behavior and superior rheological properties. Osseointegration was successfully restored, and enhanced compared to burst release through injections. This study provides scientific evidence for using sema3A to treat impaired osseointegration in T2DM patients.
Collapse
Affiliation(s)
- Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; VCU DaVinci Center for Innovation, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David J Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| | - Eleanor L Sabalewski
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| | - Christine Van Duyn
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| | - D Scott Wilson
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MA 21231, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
17
|
Hou Y, Hou X, Nie Q, Xia Q, Hu R, Yang X, Song G, Ren L. Association of Bone Turnover Markers with Type 2 Diabetes Mellitus and Microvascular Complications: A Matched Case-Control Study. Diabetes Metab Syndr Obes 2023; 16:1177-1192. [PMID: 37139349 PMCID: PMC10149773 DOI: 10.2147/dmso.s400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose The aim of this study was to evaluate the association of bone turnover markers (BTMs) with type 2 diabetes mellitus (T2DM) and microvascular complications. Methods A total of 166 T2DM patients and 166 non-diabetic controls matched by gender and age were enrolled. T2DM patients were sub-classified into groups based on whether they had diabetic peripheral neuropathy (DPN), diabetic retinopathy (DR), and diabetic kidney disease (DKD). Clinical data including demographic characteristics and blood test results [serum levels of osteocalcin (OC), N-terminal propeptide of type 1 procollagen (P1NP), and β-crosslaps (β-CTX)] were collected. Logistic regression and restrictive cubic spline curves were performed to examine the association of BTMs with the risk of T2DM and microvascular complications. Results After adjusting for family history of diabetes, sex and age, an inverse association was observed between elevated serum OC levels [O, p < 0.001] and increased serum P1NP levels , p < 0.001] with the risk of T2DM. Moreover, there was an inverse linear association of serum OC and P1NP levels with the risk of T2DM. However, β-CTX was not associated with T2DM. Further analysis showed a nonlinear association between OC and the risk of DR, while P1NP and β-CTX were not correlated with DR. Serum concentrations of BTMs were not associated with the risks of DPN and DKD. Conclusion Serum OC and P1NP levels were negatively correlated with T2DM risk. Particularly, serum OC levels were associated with DR risk. Given that BTMs are widely used as markers of bone remodeling, the present finding provides a new perspective for estimating the risk of diabetic microvascular complications.
Collapse
Affiliation(s)
- Yilin Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Xiaoyu Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qian Nie
- Health Examination Center, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qiuyang Xia
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Rui Hu
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Xiaoyue Yang
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Correspondence: Guangyao Song; Luping Ren, Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China, Email ;
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| |
Collapse
|
18
|
Song P, Chen T, Rui S, Duan X, Deng B, Armstrong DG, Ma Y, Deng W. Canagliflozin promotes osteoblastic MC3T3-E1 differentiation via AMPK/RUNX2 and improves bone microarchitecture in type 2 diabetic mice. Front Endocrinol (Lausanne) 2022; 13:1081039. [PMID: 36589840 PMCID: PMC9800613 DOI: 10.3389/fendo.2022.1081039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of bone metabolic disorders and bone fracture due to disease progression and clinical treatment. The effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors, now greatly prescribed for the treatment of T2DM, on bone metabolism is not clear. This study aimed to explore the possible influence of bone metabolic disorder and the underlying mechanism through a comparison of three different SGLT2 inhibitors (canagliflozin, dapagliflozin, and empagliflozin) in the treatment of type 2 diabetic mice. For the in vivo experiments, four groups (DM, DM+Cana, DM+Dapa, and DM+Empa) were established using micro-CT to detect the bone microarchitecture and bone-related parameters. The study results indicated that canagliflozin, but not dapagliflozin or empagliflozin, increased bone mineral density (p<0.05) and improved bone microarchitecture in type 2 diabetic mice. Furthermore, canagliflozin promoted osteoblast differentiation at a concentration of 5 μM under high glucose concentration (HG). Phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) α (Thr172) has been confirmed to activate run-related transcription factor-2 (RUNX2) to perform this function. This effect can be partially reversed by the AMPK inhibitor dorsomorphin (compound C) and strengthened by the AMPK activator acadesine (AICAR) in vitro. The level trend of RUNX2 and p-AMPK in vivo were consistent with those in vitro. This study suggested that canagliflozin played a beneficial role in bone metabolism in type 2 diabetic mice compared with dapagliflozin and empagliflozin. It provides some theoretical support for the chosen drugs, especially for patients with osteoporosis or a high risk of fracture.
Collapse
Affiliation(s)
- Peiyang Song
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Tianyi Chen
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shunli Rui
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaodong Duan
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Yu Ma
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
19
|
Faienza MF, Pontrelli P, Brunetti G. Type 2 diabetes and bone fragility in children and adults. World J Diabetes 2022; 13:900-911. [PMID: 36437868 PMCID: PMC9693736 DOI: 10.4239/wjd.v13.i11.900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Type 2 diabetes (T2D) is a global epidemic disease. The prevalence of T2D in adolescents and young adults is increasing alarmingly. The mechanisms leading to T2D in young people are similar to those in older patients. However, the severity of onset, reduced insulin sensitivity and defective insulin secretion can be different in subjects who develop the disease at a younger age. T2D is associated with different complications, including bone fragility with consequent susceptibility to fractures. The purpose of this systematic review was to describe T2D bone fragility together with all the possible involved pathways. Numerous studies have reported that patients with T2D show preserved, or even increased, bone mineral density compared with controls. This apparent paradox can be explained by the altered bone quality with increased cortical bone porosity and compr-omised mechanical properties. Furthermore, reduced bone turnover has been described in T2D with reduced markers of bone formation and resorption. These findings prompted different researchers to highlight the mechanisms leading to bone fragility, and numerous critical altered pathways have been identified and studied. In detail, we focused our attention on the role of microvascular disease, advanced glycation end products, the senescence pathway, the Wnt/β-catenin pathway, the osteoprotegerin/receptor-activator of nuclear factor kappa B ligand, osteonectin and fibroblast growth factor 23. The understanding of type 2 myeloid bone fragility is an important issue as it could suggest possible interventions for the prevention of poor bone quality in T2D and/or how to target these pathways when bone disease is clearly evident.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Paola Pontrelli
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari 70124, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
20
|
Al-Hakeim HK, Al-Kaabi QJ, Maes M. High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus. Growth Factors 2022; 40:240-253. [PMID: 36165005 DOI: 10.1080/08977194.2022.2126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
Collapse
Affiliation(s)
| | | | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
21
|
Cirovic A, Jadzic J, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Increased Cortical Porosity, Reduced Cortical Thickness, and Reduced Trabecular and Cortical Microhardness of the Superolateral Femoral Neck Confer the Increased Hip Fracture Risk in Individuals with Type 2 Diabetes. Calcif Tissue Int 2022; 111:457-465. [PMID: 35871240 PMCID: PMC9308472 DOI: 10.1007/s00223-022-01007-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Individuals with diabetes mellitus type 2 (T2DM) have approximately 30% increased risk of hip fracture; however, the main cause of the elevated fracture risk in those subjects remains unclear. Moreover, micromechanical and microarchitectural properties of the superolateral femoral neck-the common fracture-initiating site-are still unknown. We collected proximal femora of 16 men (eight with T2DM and eight controls; age: 61 ± 10 years) at autopsy. After performing post-mortem bone densitometry (DXA), the superolateral neck was excised and scanned with microcomputed tomography (microCT). We also conducted Vickers microindentation testing. T2DM and control subjects did not differ in age (p = 0.605), body mass index (p = 0.114), and femoral neck bone mineral density (BMD) (p = 0.841). Cortical porosity (Ct.Po) was higher and cortical thickness (Ct.Th) was lower in T2DM (p = 0.044, p = 0.007, respectively). Of trabecular microarchitectural parameters, only structure model index (p = 0.022) was significantly different between T2DM subjects and controls. Control group showed higher cortical (p = 0.002) and trabecular bone microhardness (p = 0.005). Increased Ct.Po and decreased Ct.Th in T2DM subjects increase the propensity to femoral neck fracture. Apart from the deteriorated cortical microarchitecture, decreased cortical and trabecular microhardness suggests altered bone composition of the superolateral femoral neck cortex and trabeculae in T2DM. Significantly deteriorated cortical microarchitecture of the superolateral femoral neck is not recognized by standard DXA measurement of the femoral neck.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Jelena Jadzic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Danica Djukic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Marija Djuric
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
22
|
Albaik M, Khan JA, Sindi I, Akesson KE, McGuigan FEA. Bone mass in Saudi women aged 20-40 years: the association with obesity and vitamin D deficiency. Arch Osteoporos 2022; 17:123. [PMID: 36107272 DOI: 10.1007/s11657-022-01164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/23/2022] [Indexed: 02/03/2023]
Abstract
UNLABELLED This study describes that low bone density is prevalent in premenopausal Saudi women, especially women of normal weight and vitamin D deficiency. Although BMD is higher in obese young women, this may not be beneficial later in life in conjunction with persistent vitamin D deficiency. INTRODUCTION Not attaining peak bone mass is one crucial factor contributing to the risk of developing osteoporosis and suffering fractures in later life. The objectives of this study were to describe the normal range of bone mineral density (BMD) and bone mineral content (BMC) in premenopausal Saudi women in relation to obesity and vitamin D insufficiency. METHODS A cross-sectional study involving 312 healthy Saudi women aged 20-40. All women were clinically examined. BMD (g/cm2) and BMC (g) assessed at total body (TB), femoral neck (FN) and lumbar spine (LS) were performed using dual-energy X-ray absorptiometry (DXA). Obesity was defined as BMI ≥ 30 kg/m2 and vitamin D deficiency defined as 25(OH)D < 50 nmol/L. RESULTS Almost half of the studied women were obese, and the majority (86.2%) were deficient in vitamin D. Mean BMD in TB 1.060 ± 0.091, FN 0.918 ± 0.153 and LS 1.118 ± 0.123 g/cm2, while TB-BMC 2077 ± 272 g. When classified by BMI, the proportion with low bone density was 2-3 times higher among the normal weight compared to the obese women, p < 0.001. In the cohort overall, ~ 19% of these young premenopausal women had osteopenia or osteoporosis at the femoral neck, but 26% in normal weight, vitamin D deficient women. CONCLUSION This study shows low bone density in premenopausal Saudi women, particularly those with normal weight. While obesity appears to confer some protection against vitamin D deficiency at this age, this is assumed to change in later life.
Collapse
Affiliation(s)
- Mai Albaik
- Biochemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia.
- Center of Excellence for Osteoporosis Research, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Jalaluddin A Khan
- Center of Excellence for Osteoporosis Research, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ikhlas Sindi
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Kristina E Akesson
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Department of Orthopaedics, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Fiona E A McGuigan
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Department of Orthopaedics, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
23
|
Hendrijantini N, Suisan YC, Megantara RWA, Tumali BAS, Kuntjoro M, Ari MDA, Sitalaksmi RM, Hong G. Bone Remodeling in Mandible of Wistar Rats with Diabetes Mellitus and Osteoporosis. Eur J Dent 2022. [PMID: 35785822 DOI: 10.1055/s-0042-1745768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES This study aimed to determine some of bone molecular expressions and its possible bone remodeling pathway between diabetes mellitus (DM) and osteoporosis model in the mandibular bone of Wistar rats. MATERIALS AND METHODS Twenty-seven female Wistar rats were divided randomly into control and treatment groups. Treatment groups were injected with streptozotocin intraperitoneally to induce DM (P1) and underwent bilateral ovariectomy to generate osteoporosis (P2). All groups were terminated after 12 weeks. Immunohistochemical and hematoxylin-eosin staining were performed to determine the expression of Runt-related transcription factor 2 (RUNX2), Osterix, vascular endothelial growth factor (VEGF), receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), tartrate-resistant acid phosphatase (TRAP), and observed the osteoblast and osteoclast. Statistical analysis was performed using one-way analysis of variance. RESULTS The lowest mean of RUNX2 and VEGF expression was found in the P2 group. The lowest mean of Osterix expression was found in the P1 group. Both P1 and P2 groups of osteoblast/osteoclast ratio were decreased. There were no significant differences in the expression of TRAP between all groups; however, increased expression of RANKL/OPG ratio was only found in the P2 group. CONCLUSION DM and osteoporosis induce changes in the bone remodeling pathway which are represented by a decrease in osteoblast biomarkers and an increase in osteoclast biomarkers.
Collapse
Affiliation(s)
- Nike Hendrijantini
- Department of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yonatan Christian Suisan
- Resident of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | | - Mefina Kuntjoro
- Department of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ratri Maya Sitalaksmi
- Department of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Guang Hong
- Division for Globalization Initiative, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
24
|
Hu Z, Qiu W, Yu Y, Wu X, Fang F, Zhu X, Xu X, Tu Q, Van Dyke TE, Morgan EF, Chen J. Identification and Characterization of a Novel Long Noncoding RNA that Regulates Osteogenesis in Diet-Induced Obesity Mice. Front Cell Dev Biol 2022; 10:832460. [PMID: 35531098 PMCID: PMC9068931 DOI: 10.3389/fcell.2022.832460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
As a precursor to type 2 diabetes mellitus (T2D), obesity adversely alters bone cell functions, causing decreased bone quality. Currently, the mechanisms leading to alterations in bone quality in obesity and subsequently T2D are largely unclear. Emerging evidence suggests that long noncoding RNAs (lncRNAs) participate in a vast repertoire of biological processes and play essential roles in gene expression and posttranscriptional processes. Mechanistically, the expression of lncRNAs is implicated in pathogenesis surrounding the aggregation or alleviation of human diseases. To investigate the functional link between specific lncRNA and obesity-associated poor bone quality and elucidate the molecular mechanisms underlying the interaction between the two, we first assessed the structure of the bones in a diet-induced obese (DIO) mouse model. We found that bone microarchitecture markedly deteriorated in the DIO mice, mainly because of aberrant remodeling in the bone structure. The results of in vitro mechanistic experiments supported these observations. We then screened mRNAs and lncRNAs from DIO bones and functionally identified a specific lncRNA, Gm15222. Further analyses demonstrated that Gm15222 promotes osteogenesis and inhibits the expression of adipogenesis-related genes in DIO via recruitment of lysine demethylases KDM6B and KDM4B, respectively. Through this epigenetic pathway, Gm15222 modulates histone methylation of osteogenic genes. In addition, Gm15222 showed a positive correlation with the expression of a neighboring gene, BMP4. Together, the results of this study identified and provided initial characterization of Gm15222 as a critical epigenetic modifier that regulates osteogenesis and has potential roles in targeting the pathophysiology of bone disease in obesity and potential T2D.
Collapse
Affiliation(s)
- Zhekai Hu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Wei Qiu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Yuedi Yu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Xingwen Wu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Fuchun Fang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Thomas E. Van Dyke
- Clinical and Translational Research, Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Forsyth Institute, Boston, MA, United States
| | - Elise F. Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Developmental, Molecular and Chemical Biology, Tufts School of Medicine, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- *Correspondence: Jake Chen,
| |
Collapse
|
25
|
Shi P, Hou A, Li C, Wu X, Jia S, Cen H, Hu X, Gong H. Continuous subcutaneous insulin infusion ameliorates bone structures and mechanical properties in type 2 diabetic rats by regulating bone remodeling. Bone 2021; 153:116101. [PMID: 34245934 DOI: 10.1016/j.bone.2021.116101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 12/29/2022]
Abstract
Continuous subcutaneous insulin infusion (CSII) is an intensive insulin therapy for patients with type 2 diabetes mellitus (T2DM) who have poor glycemic control, but its effect on T2DM-related bone disorder is unclear. This study described the possible mechanisms by which CSII affects bone remodeling, structures, and mechanical properties in T2DM rats. Herein, male rats (6-week-old) were assigned randomly to 4-week and 8-week administration groups, each of which included healthy control, T2DM, CSII, and Placebo groups. Then, metabolic markers, bone formation and resorption markers in serum and protein expressions of osteoclastogenesis regulators in tibias were detected. Meanwhile, microstructures, nanostructures, macro-mechanical properties, nano-mechanical properties, and mineral compositions in femurs were evaluated. 4-week later, CSII treatment restored circulatory metabolites, bone formation and resorption markers, and osteoclastogenesis regulators, improved certain bone microstructures, decreased matrix mineralization, and increased fracture toughness in T2DM rats. For 8-week group, CSII treatment restored bone formation and resorption markers, osteoclastogenesis regulators, and bone microstructures, besides improved bone mineral compositions and nanostructures, enhanced bone mechanical properties such as fracture toughness, maximum load, elastic modulus, indentation modulus and hardness. Collectively, 8-week CSII treatment is more conducive to ameliorating bone structures and mechanical properties in T2DM rats by regulating bone remodeling compared with 4-week CSII treatment, thus improving whole bone quality and providing valuable information for clinical prevention and treatment of T2DM-related bone disorders.
Collapse
Affiliation(s)
- Peipei Shi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Aiqi Hou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chenchen Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaodan Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaorong Hu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
26
|
Wang X, Jiang L, Shao X. Association Analysis of Insulin Resistance and Osteoporosis Risk in Chinese Patients with T2DM. Ther Clin Risk Manag 2021; 17:909-916. [PMID: 34511917 PMCID: PMC8418372 DOI: 10.2147/tcrm.s328510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background To explore the relationship between insulin resistance and osteoporosis risk in Chinese patients with type 2 diabetes mellitus (T2DM). Methods A total of 234 T2DM patients were retrospectively analyzed, and their lumbar bone mineral density (BMD) and insulin resistance using C-peptide-based homeostasis model of insulin resistance [HOMA-IR (CP)] were assessed. Univariate and multivariable logistic regression methods were used to evaluate the association between HOMA-IR (CP) and osteoporosis, and subgroup analysis was performed on female and male patients. Results After fully adjusting the covariates, the association between HOMA-IR (CP) and osteoporosis was only significant in female patients (P = 0.022); the interaction effect with gender was significant (P for interaction <0.05). Curve fitting showed that the relationship between HOMA-IR (CP) and osteoporosis in women was nonlinear. When HOMA-IR (CP) is <4.00, its effect on osteoporosis was not significant (P = 0.474); when HOMA-IR (CP) is >4.00, the risk of osteoporosis increased significantly, with OR = 26.88 (95% CI: 2.75-262.69, P = 0.005). The relationship between insulin resistance and osteoporosis risk in T2DM patients is significantly affected by gender. Conclusion The higher the degree of insulin resistance in female patients, the greater the risk of osteoporosis, but the two are not linearly associated.
Collapse
Affiliation(s)
- Xinshui Wang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Lijuan Jiang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Xiaonan Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| |
Collapse
|
27
|
Osteoprotegerin expression and serum values in obese women with type 2 diabetes mellitus. Mol Biol Rep 2021; 48:7095-7104. [PMID: 34487291 PMCID: PMC8419664 DOI: 10.1007/s11033-021-06699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Obesity and diabetes prevalence are increasing worldwide. We aimed to detect the possible association of osteoprotegerin (OPG) gene expression with visceral adiposity indices and cardiometabolic risk factors among obese women. METHODS AND RESULTS The study enrolled 150 controls and 150 obese cases subdivided into two subgroups non-diabetic (n = 70) and 80 patients with type 2 diabetes mellitus (T2DM). Circulating OPG gene expression levels were figured out by real time PCR (Polymerase Chain Reaction). Serum OPG levels were assessed by Enzyme Linked Immunosorbent Assay. Our results explored that OPG serum levels were lower in the obese women compared to control group (p < 0.001) and obese diabetics had higher serum levels of OPG in comparison to obese non-diabetic patients (p < 0.001). Expression levels of OPG were higher in obese women than controls (p < 0.001). Moreover, the blood expression levels of OPG gene were higher in diabetic obese patients than non-diabetics. We found positive correlations between parameters of metabolic syndrome and obesity indices. After adjustment of the traditional risk factors, stepwise linear regression analysis test revealed that OPG expression levels were independently correlated with glycated hemoglobin, high-density lipoprotein-cholesterol, and waist-to-hip ratio. CONCLUSIONS OPG mRNA levels were associated with surrogate markers of insulin resistance in Egyptian obese women.
Collapse
|
28
|
Cooper ID, Brookler KH, Crofts CAP. Rethinking Fragility Fractures in Type 2 Diabetes: The Link between Hyperinsulinaemia and Osteofragilitas. Biomedicines 2021; 9:1165. [PMID: 34572351 PMCID: PMC8472634 DOI: 10.3390/biomedicines9091165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) and/or cardiovascular disease (CVD), conditions of hyperinsulinaemia, have lower levels of osteocalcin and bone remodelling, and increased rates of fragility fractures. Unlike osteoporosis with lower bone mineral density (BMD), T2DM bone fragility "hyperinsulinaemia-osteofragilitas" phenotype presents with normal to increased BMD. Hyperinsulinaemia and insulin resistance positively associate with increased BMD and fragility fractures. Hyperinsulinaemia enforces glucose fuelling, which decreases NAD+-dependent antioxidant activity. This increases reactive oxygen species and mitochondrial fission, and decreases oxidative phosphorylation high-energy production capacity, required for osteoblasto/cytogenesis. Osteocytes directly mineralise and resorb bone, and inhibit mineralisation of their lacunocanalicular space via pyrophosphate. Hyperinsulinaemia decreases vitamin D availability via adipocyte sequestration, reducing dendrite connectivity, and compromising osteocyte viability. Decreased bone remodelling and micropetrosis ensues. Trapped/entombed magnesium within micropetrosis fossilisation spaces propagates magnesium deficiency (MgD), potentiating hyperinsulinaemia and decreases vitamin D transport. Vitamin D deficiency reduces osteocalcin synthesis and favours osteocyte apoptosis. Carbohydrate restriction/fasting/ketosis increases beta-oxidation, ketolysis, NAD+-dependent antioxidant activity, osteocyte viability and osteocalcin, and decreases excess insulin exposure. Osteocalcin is required for hydroxyapatite alignment, conferring bone structural integrity, decreasing fracture risk and improving metabolic/endocrine homeodynamics. Patients presenting with fracture and normal BMD should be investigated for T2DM and hyperinsulinaemia.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Translational Physiology Research Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Kenneth H. Brookler
- Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Catherine A. P. Crofts
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand;
| |
Collapse
|
29
|
Li H, Wen Y, Liu P, Zhang L, Zhang X, Liu Y, Ma B, Kuang H, Wang J, Song L. Characteristics of bone metabolism in postmenopausal women with newly diagnosed type 2 diabetes mellitus. Clin Endocrinol (Oxf) 2021; 95:430-438. [PMID: 34008210 DOI: 10.1111/cen.14501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The characteristics of bone metabolism in T2DM are still controversial. This study aims to recognize bone turnover features in patients with newly diagnosed T2DM who have never been treated with anti-diabetic drugs and further explore the possible factors contributing to their impaired bone turnover. MATERIALS AND METHODS An analytic sample of 88 patients with newly diagnosed T2DM and 152 non-diabetic control individuals were studied. All the participants were postmenopausal women. Demographics variables and clinical history were recorded. We measured lipid profile, glucose metabolism, bone turnover markers indices as well as their related hormones, serum calcium and phosphorus. Bone mineral density was detected by dual-energy X-ray absorptiometry. We compared the differences in bone turnover markers and their regulating hormones between two groups and further analysed the factors related to bone turnover in T2DM. RESULTS Compared with the control group, patients with T2DM had a higher level of bone alkaline phosphatase (BALP), lower levels of procollagen type I intact N-terminal (P1NP), osteocalcin (OC) and parathyroid hormone (PTH). Multiple linear regression analysis showed that in patients with T2DM, HbA1c was negatively correlated with P1NP and OC. For patients without diabetes, HbA1c was negatively related to BALP and OC. CONCLUSIONS Patients with newly diagnosed T2DM may have impaired osteoblastic maturation and bone formation, which may be mainly attributed to hyperglycaemia.
Collapse
Affiliation(s)
- Huijuan Li
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuhua Wen
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peipei Liu
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liya Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoya Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Osteoporosis and Metabolic Bone Diseases, Tongji University School of Medicine, Shanghai, China
| | - Yichen Liu
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haidong Kuang
- Yichuan Community Health Service Center, Shanghai, China
| | - Jianxin Wang
- Yichuan Community Health Service Center, Shanghai, China
| | - Lige Song
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Osteoporosis and Metabolic Bone Diseases, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Zhou H, Li C, Song W, Wei M, Cui Y, Huang Q, Wang Q. Increasing fasting glucose and fasting insulin associated with elevated bone mineral density-evidence from cross-sectional and MR studies. Osteoporos Int 2021; 32:1153-1164. [PMID: 33409590 DOI: 10.1007/s00198-020-05762-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
UNLABELLED We performed a cross-sectional study using the National Health Examination and Nutrition Survey (NHANES) data and a Mendelian randomisation (MR) study using the GWAS summary statistics from European populations. The T2D-related indices (fasting plasma glucose (FPG), fasting insulin (FI), and insulin resistance (IR)) were found to associate with elevated bone mineral density (BMD). INTRODUCTION The known associations amongst FPG, FI, IR, and BMD remain inconsistent. This study aims to explore the abovementioned associations by using cross-sectional and MR designs. METHODS Data from adults aged ≥ 20 years (n = 7170) in four rounds of the U.S. NHANES (2005-2010 and 2013-2014) were analysed in this cross-sectional study. Multiple linear and logistic regression models were used for statistical analyses. A two-sample MR study was performed using the genome-wide association study summary statistics obtained from the Meta-analyses of Glucose and Insulin-related traits Consortium (n = 108,557) and Genetic Factors for Osteoporosis Consortium (n = 32,735) to examine the causality of the FI-BMD association. RESULTS Multiple linear regression revealed that FPG was positively associated with the BMDs at the hip, femur neck, and 1st lumbar spine (L1). Multiple logistic regressions revealed that FPG levels were associated with elevated BMDs at the hip and L1, and FI and IR levels were associated with elevated BMD at the hip. Patients with type 2 diabetes had higher hip BMD than those without diabetes. In the MR study, the lumbar spine BMD increased by 0.49 g/cm2 (95% confidence interval: 0.01, 0.97) in response to per unit increase in log-transformed FI. CONCLUSION Findings from our cross-sectional and MR studies revealed the associations between the studied diabetic indices and BMD measurements in the US and European adults.
Collapse
Affiliation(s)
- H Zhou
- MOE Key Laboratory of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - C Li
- MOE Key Laboratory of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - W Song
- MOE Key Laboratory of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - M Wei
- MOE Key Laboratory of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Y Cui
- MOE Key Laboratory of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Q Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Q Wang
- MOE Key Laboratory of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
Niță G, Niță O, Gherasim A, Arhire L, Herghelegiu A, Mihalache L, Tuchilus C, Graur M. The role of RANKL and FGF23 in Assessing Bone Turnover in Type 2 Diabetic Patients. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2021; 17:51-59. [PMID: 34539910 PMCID: PMC8417483 DOI: 10.4183/aeb.2021.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CONTEXT Type 2 diabetes is a chronic metabolic disease which affects bone. There is evidence in the literature about some serum markers that reflect the bone turnover metabolism, such as RANKL (Receptor Activator of Nuclear factor Kappa-b Ligand) and Fibroblast Growth Factor (FGF) 23. OBJECTIVE We aimed to investigate the correlations between RANKL and FGF23 and other diabetes-related factors possibly influencing early bone turnover changes. SUBJECTS AND METHOD We conducted a cross-sectional analytical study on a group of 171 patients with type 2 diabetes, without Charcot's arthropathy or a history of amputations, in which a complete history and anthropometric, clinical, biochemical and dietary evaluation were performed. We evaluated the serum level of RANKL and FGF 23. RESULTS RANKL was significantly lower in patients with macroangiopathy (0.42±0.15 pmol/L vs. 0.47±0.2 pmol/L, p=0.001). The level of FGF23 was lower in patients with neuropathy (0.37±0.36 pmol/L vs. 0.41±0.17 pmol/L, p=0.001). We found that FGF23 increased with age, but decreased with the duration of diabetes. We also found an inverse relationship between FGF23 levels and HbA1c, triglycerides, diastolic blood pressure, total proteins, albuminemia. CONCLUSIONS RANKL was significantly lower in patients with macroangiopathy, and FGF 23 in patients with neuropathy. Therefore, more studies are needed to elucidate their role in early bone turnover changes.
Collapse
Affiliation(s)
- G. Niță
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - O. Niță
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - A. Gherasim
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - L.I. Arhire
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - A.M Herghelegiu
- “Carol Davila” University of Medicine and Pharmacy, Faculty of Medicine, Bucharest, Romania
| | - L. Mihalache
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - C. Tuchilus
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| | - M. Graur
- “Grigore T Popa” University of Medicine and Pharmacy, Faculty of Medicine, Iasi
| |
Collapse
|
32
|
Häussling V, Aspera-Werz RH, Rinderknecht H, Springer F, Arnscheidt C, Menger MM, Histing T, Nussler AK, Ehnert S. 3D Environment Is Required In Vitro to Demonstrate Altered Bone Metabolism Characteristic for Type 2 Diabetics. Int J Mol Sci 2021; 22:2925. [PMID: 33805833 PMCID: PMC8002142 DOI: 10.3390/ijms22062925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.
Collapse
Affiliation(s)
- Victor Häussling
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Romina H. Aspera-Werz
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Helen Rinderknecht
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Fabian Springer
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany;
- Radiology Department, BG Trauma Center Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Christian Arnscheidt
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Maximilian M. Menger
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Tina Histing
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Andreas K. Nussler
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| |
Collapse
|
33
|
Xu Y, Wu Q. Trends in osteoporosis and mean bone density among type 2 diabetes patients in the US from 2005 to 2014. Sci Rep 2021; 11:3693. [PMID: 33580184 PMCID: PMC7881186 DOI: 10.1038/s41598-021-83263-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to examine how bone health changed among T2DM patients in the past decade. Continuous National Health and Nutrition Examination Survey (NHANES) data from 2005-2006 to 2013-2014 were analyzed to examine the trends of bone mineral density (BMD) and the prevalence trends of osteoporosis osteopenia among T2DM patients and non-diabetic people aged 40 years and older. The age- and BMI-adjusted mean BMD of the femur neck for the four NHANES cycles decreased linearly in both T2DM patients and non-diabetic people (both Plinear trend ≤ 0.009). Among women with T2DM, the mean BMD in 2013-2014 was significantly lower than that in 2005-2006, even after adjusting for multiple covariates. During 2005-2014, the prevalence of osteoporosis among T2DM patients and non-diabetic people increased but with no significant linear trend (both Plinear trend > 0.05), while the prevalence of osteopenia in the two populations increased linearly (both Plinear trend < 0.04). Age- and BMI-adjusted mean BMD decreased in 2013-2014 in patients with T2DM and non-diabetic people, while the prevalence of osteoporosis and osteopenia increased in both groups.
Collapse
Affiliation(s)
- Yingke Xu
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, College of Science, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Qing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
- Nevada Institute of Personalized Medicine, College of Science, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
34
|
Kang M, Thalji G, Huang CC, Shirazi S, Lu Y, Ravindran S, Cooper LF. Macrophage Control of Incipient Bone Formation in Diabetic Mice. Front Cell Dev Biol 2021; 8:596622. [PMID: 33569378 PMCID: PMC7868429 DOI: 10.3389/fcell.2020.596622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Both soft and hard tissue wound healing are impaired in diabetes. Diabetes negatively impacts fracture healing, bone regeneration and osseointegration of endosseous implants. The complex physiological changes associated with diabetes often manifest in immunological responses to wounding and repair where macrophages play a prominent role in determining outcomes. We hypothesized that macrophages in diabetes contribute toward impaired osseous wound healing. To test this hypothesis, we compared osseous wound healing in the mouse calvaria defect model using macrophages from C57BL/6J and db/db mice to direct osseous repair in both mouse strains. Initial analyses revealed that db/db mice macrophages showed an inflamed phenotype in its resting state. Incipient bone regeneration evaluated by μCT indicated that bone regeneration was relatively impaired in the db/db mouse calvaria and in the calvaria of C57BL/6J mice supplemented with db/db macrophages. Furthermore, osteogenic differentiation of mouse mesenchymal stem cells was negatively impacted by conditioned medium from db/db mice compared to C57BL/6J mice. Moreover, miR-Seq analysis revealed an altered miRNA composition in db/db macrophages with up regulated pro-inflammatory miRNAs and down regulated anti-inflammatory miRNAs. Overall, this study represents a direct step toward understanding macrophage-mediated regulation of osseous bone regeneration and its impairment in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Miya Kang
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Ghadeer Thalji
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Chun-Chieh Huang
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Yu Lu
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Lyndon F Cooper
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
Abstract
UNLABELLED In a large population-based study of Iran, the age-standardized prevalence of osteoporosis was 24.6% in men and 62.7% in women aged ≥ 60 years. Osteoporosis was negatively associated with body mass index in both sexes, and with diabetes in men and hypertriglyceridemia in women. PURPOSE Population aging has made osteoporosis and osteoporotic fractures an important health problem, especially in developing countries. This study aimed to explore the prevalence of osteoporosis and associated factors among the elderly population of the south-west of Iran. METHODS Baseline data of the second stage of the Bushehr Elderly Health program was used. Spinal, total hip, or femoral neck osteoporosis was described as a BMD that lies 2.5 standard deviations or more, below the average values of a young healthy adult in the lumbar spine, total hip, or femoral neck, respectively. Osteoporosis at either site was defined as total osteoporosis. Age-standardized prevalence of osteoporosis was estimated. We used the modified Poisson regression with a robust variance estimator to identify the factors related to osteoporosis, adjusting for potential confounders. RESULTS Overall, 2425 individuals (1166 men) aged over 60 years were included. In all, total osteoporosis was detected in 1006 (41.5%) of the participants. Using the reference value derived from Caucasian women aged 20-29 years, the age-standardized prevalence of total osteoporosis was 24.6 (95% CI: 21.9-27.3) in men, and 62.7 (95% CI: 60.0-65.4) in women. In men, osteoporosis was positively associated with age, smoking, history of fracture, and history of renal/liver diseases and negatively associated with body mass index (BMI) and diabetes. BMI, hypertriglyceridemia, and education were negatively correlated with osteoporosis in women, while years after menopause and history of fracture increased the likelihood of osteoporosis, significantly. CONCLUSION Results support the high prevalence of osteoporosis and osteopenia in the elderly population. Considering the importance of severe complications, especially fractures, comprehensive interventions should be expanded.
Collapse
|
36
|
Napoli N, Conte C, Eastell R, Ewing SK, Bauer DC, Strotmeyer ES, Black DM, Samelson EJ, Vittinghoff E, Schwartz AV. Bone Turnover Markers Do Not Predict Fracture Risk in Type 2 Diabetes. J Bone Miner Res 2020; 35:2363-2371. [PMID: 32717111 DOI: 10.1002/jbmr.4140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes (T2D) is characterized by increased fracture risk despite higher BMD and reduced bone turnover. BMD underestimates fracture risk in T2D, but the predictive role of bone turnover markers (BTMs) on fracture risk in T2D has not been explored. Thus, we sought to determine whether BTMs predict incident fractures in subjects with T2D. For this case-cohort study, we used data from the Health, Aging, and Body Composition (Health ABC) Study of well-functioning older adults, aged 70 to 79 years at baseline (April 1997-June 1998). The case-cohort sample consisted of (i) the cases, composed of all 223 participants who experienced incident fractures of the hip, clinical spine, or distal forearm within the first 9 years of study follow-up; and (ii) the subcohort of 508 randomly sampled participants from three strata at baseline (T2D, prediabetes, and normoglycemia) from the entire Health ABC cohort. A total of 690 subjects (223 cases, of whom 41 were in the subcohort) were included in analyses. BTMs (C-terminal telopeptide of type I collagen [CTX], osteocalcin [OC], and procollagen type 1 N-terminal propeptide [P1NP]) were measured in archived baseline serum. Cox regression with robust variance estimation was used to estimate the adjusted hazard ratio (HR) for fracture per 20% increase in BTMs. In nondiabetes (prediabetes plus normoglycemia), fracture risk was increased with higher CTX (HR 1.10; 95% confidence interval [CI], 1.01 to 1.20 for each 20% increase in CTX). Risk was not increased in T2D (HR 0.92; 95% CI, 0.81 to 1.04; p for interaction .045). Similarly, both OC and P1NP were associated with higher risk of fracture in nondiabetes, but not in T2D, with p for interaction of .078 and .109, respectively. In conclusion, BTMs did not predict incident fracture risk in T2D but were modestly associated with fracture risk in nondiabetes. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nicola Napoli
- Division of Endocrinology and Diabetes, University Campus Bio-Medico di Roma, Rome, Italy.,Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Rome, Italy
| | - Richard Eastell
- Metabolic Bone Centre, Northern General Hospital, Sheffield, UK
| | - Susan K Ewing
- Department Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Douglas C Bauer
- Departments of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Elsa S Strotmeyer
- Center for Aging and Population Health, Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dennis M Black
- Departments of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth J Samelson
- Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric Vittinghoff
- Department Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Ann V Schwartz
- Department Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
37
|
Shahen VA, Gerbaix M, Koeppenkastrop S, Lim SF, McFarlane KE, Nguyen ANL, Peng XY, Weiss NB, Brennan-Speranza TC. Multifactorial effects of hyperglycaemia, hyperinsulinemia and inflammation on bone remodelling in type 2 diabetes mellitus. Cytokine Growth Factor Rev 2020; 55:109-118. [PMID: 32354674 DOI: 10.1016/j.cytogfr.2020.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Bones undergo continuous cycles of bone remodelling that rely on the balance between bone formation and resorption. This balance allows the bone to adapt to changes in mechanical loads and repair microdamages. However, this balance is susceptible to upset in various conditions, leading to impaired bone remodelling and abnormal bones. This is usually indicated by abnormal bone mineral density (BMD), an indicator of bone strength. Despite this, patients with type 2 diabetes mellitus (T2DM) exhibit normal to high BMD, yet still suffer from an increased risk of fractures. The activity of the bone cells is also altered as indicated by the reduced levels of bone turnover markers in T2DM observed in the circulation. The underlying mechanisms behind these skeletal outcomes in patients with T2DM remain unclear. This review summarises recent findings regarding inflammatory cytokine factors associated with T2DM to understand the mechanisms involved and considers potential therapeutic interventions.
Collapse
Affiliation(s)
- V A Shahen
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - M Gerbaix
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - S Koeppenkastrop
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - S F Lim
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - K E McFarlane
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Amanda N L Nguyen
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - X Y Peng
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - N B Weiss
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - T C Brennan-Speranza
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia; School of Public Health, Faculty of Medicine and Health, The University of Sydney, Australia.
| |
Collapse
|
38
|
Panezai J, Altamash M, Engstrӧm PE, Larsson A. Association of Glycated Proteins with Inflammatory Proteins and Periodontal Disease Parameters. J Diabetes Res 2020; 2020:6450742. [PMID: 31998807 PMCID: PMC6977320 DOI: 10.1155/2020/6450742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Periodontitis is a chronic inflammatory condition that may contribute to diabetogenesis. The aim was to investigate the levels of glycated proteins and their correlation with periodontal and systemic inflammation. Fifty-one patients with periodontitis and 20 healthy subjects underwent probing pocket depth (PPD) measurements. PPD total and PPD disease with and without tooth adjustment were used as continuous indices. Marginal bone loss (MBL) for mandibular premolars and molars was measured digitally. Body mass index (BMI) and waist circumference (WC) were also analyzed. Glycated hemoglobin (HbA1c) and fructosamine (FrAm) levels were measured in all subjects. A multiplex proximity extension assay (PEA) was used to analyze the serum samples for simultaneous measurement of 92 proteins. Both HbA1c and FrAm inversely correlated with IL-10, FGF-21, MCP-1, and TNF beta amongst 16 proteins. HbA1c correlated directly with OPG. Parameters of disease severity were consistently significant for HbA1c. Adjusted PPD total and number of missing teeth were increased in diabetes whereas levels of RANKL and RANKL to OPG ratio were the highest in nondiabetic periodontitis patients. Hyperglycemic conditions in periodontitis patients are associated with reduced levels of anti-inflammatory proteins as well as dysregulated bone resorption.
Collapse
Affiliation(s)
- Jeneen Panezai
- Altamash Institute of Dental Medicine, Department of Periodontology, Karachi, Pakistan
- Karolinska Institutet, Department of Dental Medicine, Division of Oral Diseases, Section of Periodontology, Huddinge, Sweden
| | - Mohammad Altamash
- Altamash Institute of Dental Medicine, Department of Periodontology, Karachi, Pakistan
| | - Per-Erik Engstrӧm
- Karolinska Institutet, Department of Dental Medicine, Division of Oral Diseases, Section of Periodontology, Huddinge, Sweden
| | - Anders Larsson
- Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW There is ample evidence that patients with type 2 diabetes (T2D) have increased risk of fracture even though they have normal or high bone mineral density. As a result, poor bone quality is suggested to contribute to skeletal fragility in this population. Thus, our goal was to conduct a comprehensive literature review to understand how bone quality components are altered in T2D and their effects on bone biomechanics and fracture risk. RECENT FINDINGS T2D does affect bone quality via alterations in bone microarchitecture, organic matrix, and cellular behavior. Further, studies indicate that bone biomechanical properties are generally deteriorated in T2D, but there are few reports in patients. Additional work is needed to better understand molecular and cellular mechanisms that contribute to skeletal fragility in T2D. This knowledge can contribute to the development of improved diagnostic tools and drug targets to for improved quality of life for those with T2D.
Collapse
Affiliation(s)
- Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA.
| | - Taraneh Rezaee
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Rachana Vaidya
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| |
Collapse
|
40
|
Costantini S, Conte C. Bone health in diabetes and prediabetes. World J Diabetes 2019; 10:421-445. [PMID: 31523379 PMCID: PMC6715571 DOI: 10.4239/wjd.v10.i8.421] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/03/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Bone fragility has been recognized as a complication of diabetes, both type 1 diabetes (T1D) and type 2 diabetes (T2D), whereas the relationship between prediabetes and fracture risk is less clear. Fractures can deeply impact a diabetic patient's quality of life. However, the mechanisms underlying bone fragility in diabetes are complex and have not been fully elucidated. Patients with T1D generally exhibit low bone mineral density (BMD), although the relatively small reduction in BMD does not entirely explain the increase in fracture risk. On the contrary, patients with T2D or prediabetes have normal or even higher BMD as compared with healthy subjects. These observations suggest that factors other than bone mass may influence fracture risk. Some of these factors have been identified, including disease duration, poor glycemic control, presence of diabetes complications, and certain antidiabetic drugs. Nevertheless, currently available tools for the prediction of risk inadequately capture diabetic patients at increased risk of fracture. Aim of this review is to provide a comprehensive overview of bone health and the mechanisms responsible for increased susceptibility to fracture across the spectrum of glycemic status, spanning from insulin resistance to overt forms of diabetes. The management of bone fragility in diabetic patient is also discussed.
Collapse
Affiliation(s)
- Silvia Costantini
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- Epatocentro Ticino, Lugano 6900, Switzerland
| | - Caterina Conte
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- IRCCS Ospedale San Raffaele, Internal Medicine and Transplantation, Milan 20123, Italy
| |
Collapse
|
41
|
Abstract
Poorly controlled diabetes with comorbid manifestations negatively affects outcomes in lower extremity trauma, increasing the risk of short-term and long-term complications. Management strategies of patients with diabetes that experience lower extremity trauma should also include perioperative management of hyperglycemia to reduce adverse and serious adverse events.
Collapse
Affiliation(s)
- George T Liu
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, 1801 Inwood Road, Dallas, TX 75390-8883, USA; Foot and Ankle Service, Orthopaedic Surgery, Parkland Memorial Hospital, Level 1 Trauma Center, 5200 Harry Hines Boulevard, Dallas, TX 75235, USA.
| | - Drew T Sanders
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, 1801 Inwood Road, Dallas, TX 75390-8883, USA; Orthopaedic Trauma Service, Parkland Memorial Hospital, Level 1 Trauma Center, 5200 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Katherine M Raspovic
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, 1801 Inwood Road, Dallas, TX 75390-8883, USA; Foot and Ankle Service, Orthopaedic Surgery, Parkland Memorial Hospital, Level 1 Trauma Center, 5200 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Dane K Wukich
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, 1801 Inwood Road, Dallas, TX 75390-8883, USA; Foot and Ankle Service, Orthopaedic Surgery, Parkland Memorial Hospital, Level 1 Trauma Center, 5200 Harry Hines Boulevard, Dallas, TX 75235, USA
| |
Collapse
|
42
|
Zhang L, Zheng L, Li C, Wang Z, Li S, Xu L. Sema3a as a Novel Therapeutic Option for High Glucose-Suppressed Osteogenic Differentiation in Diabetic Osteopathy. Front Endocrinol (Lausanne) 2019; 10:562. [PMID: 31481931 PMCID: PMC6710340 DOI: 10.3389/fendo.2019.00562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
Objective: Diabetic osteopathy is a common comorbidity of diabetes mellitus, with skeletal fragility, osteoporosis and bone pain. The aim of our study was to highlight the role of sema3a on osteoblast differentiation of MC3T3-e1 in high-glucose condition and explore its therapeutic effect of diabetic osteopathy in vitro and vivo. Methods: In our study, the expression of osteogenesis-related makers, such as ALP, OCN, OPG, β-catenin and Runx2, were analyzed in MC3T3 osteoblastic cells to explore the effect of sema3a on osteoblast differentiation in high-glucose condition, and as was the staining of ALP and Alizarin Red S. In a diabetic animal model, the expression of serum bone metabolic markers, such as ALP, P1NP, OCN, and β-CTX, were analyzed and micro-CT was used to detect bone architecture, including Tb.N, Tb.Th, Tb.Sp, Tb.Pf, BS/BV, and BV/TV after the treatment of sema3a. Results: High glucose significantly inhibited osteogenic differentiation by decreasing the expression of osteogenesis-related makers, sema3a and its receptor of Nrp-1 in a dose-dependent manner in MC3T3. In high-glucose condition, exogenous sema3a (RPL917Mu01) increased the expression of ALP, OCN, OPG, Runx2, β-catenin, and the positive proportion of ALP and Alizarin Red S staining. In addition, in diabetic animal model, exogenous sema3a could increase bone mass and bone mineral density, and downregulate the expression of ALP, P1NP, OCN, and β-CTX. Conclusion: High glucose suppresses osteogenic differentiation in MC3T3 and sema3a may take part in this process. The application of exogenous sema3a alleviates high glucose-induced inhibition of osteoblast differentiation in diabetic osteopathy.
Collapse
|