1
|
Ieremias L, Manandhar A, Schultz-Knudsen K, Kaspersen MH, Vrettou CI, Rexen Ulven E, Ulven T. Minimal Structural Variation of GPR84 Full Agonist Causes Functional Switch to Inverse Agonism. J Med Chem 2025; 68:7973-8009. [PMID: 40183744 DOI: 10.1021/acs.jmedchem.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
GPR84 is an orphan GPCR that is expressed primarily in immune cells such as neutrophils and macrophages, and that modulates immune responses during inflammation. The receptor has appeared as a promising drug target, and accumulating evidence indicates that GPR84 inhibition is a viable approach for treatment of various inflammatory and fibrotic disorders. Herein, we report the discovery of a minor structural modification resulting in functional switch of agonists to inverse agonists. Subsequent SAR explorations led to the identification of low-nanomolar potency inverse agonists and antagonists, as exemplified by TUG-2181 (40g). Representative compounds exhibited good physicochemical properties, selectivity over other free fatty acid receptors, and the ability to fully inhibit GPR84-mediated neutrophil activation.
Collapse
Affiliation(s)
- Loukas Ieremias
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Asmita Manandhar
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Katrine Schultz-Knudsen
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Mads Holmgaard Kaspersen
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Christina Ioanna Vrettou
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
2
|
Qi Y, Lu J, Sun N, Wang Z, Wang Y, Zhou J, Yin J, Wang C, Yang S. Alström syndrome: A rare cause of dilated cardiomyopathy in five Chinese children. Gene 2025; 944:149285. [PMID: 39884403 DOI: 10.1016/j.gene.2025.149285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/10/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUD The ALMS1 gene is predominantly localized to cilia, particularly in the photoreceptor cells of the retina, auditory neurons, kidneys, and other ciliated structures. Pathogenic mutations in this gene cause Alstrom syndrome (AS), which is characterized by dilated cardiomyopathy, retinal degeneration, neurodeafness, and centripetal obesity. However, the genetic mechanism of the ALMS1 gene remains unclear. This study reports five cases of Chinese children with heterozygous variants in the ALMS1 gene, aiming to expand the genetic map of AS and provide insights into its pathogenesis. METHODS Whole exome sequencing (WES) was performed on 128 children diagnosed with DCM. ALMS1 variants were identified, and their pathogenicity and conservation were analyzed using bioinformatics tools. A retrospective analysis of genotypephenotype associations was also conducted in conjunction with previously reported cases. RESULTS A total of eleven variants were identified in the five patients, including seven nonsense variants c.2035C > T(p.R679*), c.10825C > T(p.(R3609*)), c.5230C > T(p.(Q1744*)), c.3008C > A(p.(S1003*)), c.11686delG(p.(V3896*)), c.2090C > A(p.(S697*)), c.12373C > T(p.(Q4125*)), two frameshift variants c.10383delT(p.(I3461fs*48)), c.1685_c.1686insCAG(p.(D563fs*4)), and two missense variants c.12163C > G(p.(R4055G)) and c.7867G > A(p.A2623T). Cardiac ultrasound revealed improvements in left ventricular ejection fraction (LVEF) following treatment, although no significant change in nystagmus was observed. CONCLUSIONS This study expands the genetic spectrum of ALMS1 gene variants and reinforces their pathogenicity through bioinformatics analysis. Additionally, we emphasize the importance of comprehensive cardiac evaluation and genetic testing in patients with DCM presenting with nystagmus.
Collapse
Affiliation(s)
- Yuying Qi
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jie Lu
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ningning Sun
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ziwei Wang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yuqi Wang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jueru Zhou
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jie Yin
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Shiwei Yang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
3
|
Sinha A, Leeson-Beevers K, Lewis C, Loughery E, Geberhiwot T. Alström syndrome: the journey to diagnosis. Orphanet J Rare Dis 2025; 20:5. [PMID: 39763001 PMCID: PMC11705659 DOI: 10.1186/s13023-024-03509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alström syndrome (AS) is a recessively inherited genetic condition which is ultra-rare and extremely complex. Symptoms include retinal dystrophy, nystagmus, photophobia, hearing loss, obesity, insulin resistance, diabetes and cardiomyopathy. The condition is progressive, but it is important to note that not all the complications associated with AS occur in everyone affected. Symptoms can also present at different stages, making diagnosis difficult. There are currently 88 people diagnosed with AS in the UK. OBJECTIVES The aim of this report is to raise awareness of the key symptoms of AS, in order to promote a faster and more effective diagnosis. This involves identification of individual or a combination of 'red flag' symptoms. Overall the findings should improve the patient experience, and their long-term health outcomes. METHODS Between August-October 2022 we conducted research into a sample of patients from the ASUK database. The process involved a combination of interviews with families, social care and education reviews. Interviews were semi-structured using open questions and a patient-centred approach. RESULTS Seventeen newly diagnosed patients were included in our sample. Only 24% of patients were diagnosed within one year following the onset of AS symptoms. Patients with visual impairment and cardiomyopathy were diagnosed much more quickly, either in infancy or early childhood. 41% of our research participants waited over 5 years for a diagnosis. Insufficient research and treatment advances can further impede the diagnostic process and limit access to therapies or clinical trials, ultimately impacting patient outcomes. CONCLUSION While we welcome these developments, our findings, and the evidence we have gathered in this report suggests that more needs to be done to improve the experiences of people receiving a diagnosis of AS. Obesity rapidly developing in infancy should be flagged as a key symptom to be aware of where AS is a possible diagnosis. Visual impairment (88%) in combination with cardiomyopathy (59%) is a frequent first presentation for patients with AS. Most patients (7/17) are diagnosed many years after symptom onset (5-20 years).
Collapse
Affiliation(s)
- Akshat Sinha
- Department of Diabetes, Endocrinology and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK.
- College of Medicine and Health, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK.
| | - Kerry Leeson-Beevers
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
- Alström Syndrome UK, 4 St Kitts Close, Torquay, Devon, TQ2 7GD, UK
| | - Catherine Lewis
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
- Alström Syndrome UK, 4 St Kitts Close, Torquay, Devon, TQ2 7GD, UK
| | - Elizabeth Loughery
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
- Alström Syndrome UK, 4 St Kitts Close, Torquay, Devon, TQ2 7GD, UK
| | - Tarekegn Geberhiwot
- Department of Diabetes, Endocrinology and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Hu M, Chen S, Wu J, Wang R. Whole-exome sequencing revealed a novel mutation of the ALMS1 gene in a Chinese family with Alström syndrome: a case report. BMC Pediatr 2024; 24:494. [PMID: 39095761 PMCID: PMC11295688 DOI: 10.1186/s12887-024-04949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Alström syndrome (AS) is a rare autosomal recessive disorder that leads to multiple organ fibrosis and failure. Precise diagnosis from the clinical symptoms is challenging due to its highly variabilities and its frequent confusion with other ciliopathies and genetic diseases. Currently, mutations in the ALMS1 gene have been reported as a major cause of AS, thus, it is crucial to focus on the detection and discovery of ALMS1 mutations. CASE PRESENTATION We present a case of a 13-year-old Chinese boy weighing 70 kg and standing 168 cm tall. He has two younger brothers. Their parents hail from different ancestral homes in eastern and northern China. The patient's primary clinical findings included visual impairment at the age of four and progressive hearing loss starting at the age of ten. Subsequently, at the age of twelve, the patient developed hyperlipidaemia and hyperinsulinemia. Ultrasonographic findings indicated the presence of gallstones and mild fatty liver. His Body Mass Index (BMI) significantly increased to 25 kg/m2 (ref: 18.5-23.9 kg/m2). Additionally, echocardiography revealed mild mitral and tricuspid regurgitation. Ultimately, Whole Exome Sequencing (WES) identified a new missense mutation in the ALMS1 gene (NG_011690.1 (NM_015120): c.9536G > A (p.R3179Q)). This missense mutation generated an aberrant splicer and disrupted the stability and hydrophobicity of proteins, which preliminarily determined as " likely pathogenic". Therefore, considering all the above symptoms and molecular analysis, we deduced that the patient was diagnosed with AS according to the guidelines. We recommended that he continue wearing glasses and undergo an annual physical examination. CONCLUSION In this case report, we report a novel homozygous ALMS1 mutation associated with AS in the Chinese population, which expands the mutation spectrum of ALMS1. Genetic testing indeed should be incorporated into the diagnosis of syndromic deafness, as it can help avoid misdiagnoses of AS. While there is no specific treatment for AS, early diagnosis and intervention can alleviate the progression of some symptoms and improve patients' quality of life.
Collapse
Affiliation(s)
- Ming Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
- Key Laboratory of Auditory Speech and Balance Medicine, Tianjin, 300192, China
- Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, 300192, China
| | - Shuang Chen
- Department of Laboratory Medicine, School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Jinyuan Wu
- Department of Ophthalmology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Rong Wang
- Department of Laboratory Medicine, School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
6
|
Das S, Ravi H, Babu A, Banerjee M, Kanagavalli R, Dhanasekaran S, Devi Rajeswari V, Venkatraman G, Ramanathan G. Therapeutic potentials of glucose-dependent insulinotropic polypeptide (GIP) in T2DM: Past, present, and future. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:293-328. [PMID: 39059989 DOI: 10.1016/bs.apcsb.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide health problem that has raised major concerns to the public health community. This chronic condition typically results from the cell's inability to respond to normal insulin levels. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the primary incretin hormones secreted from the intestinal tract. While clinical research has extensively explored the therapeutic potential of GLP-1R in addressing various T2DM-related abnormalities, the possibility of GIPR playing an important role in T2DM treatment is still under investigation. Evidence suggests that GIP is involved in the pathophysiology of T2DM. This chapter focuses on examining the role of GIP as a therapeutic molecule in combating T2DM, comparing the past, present, and future scenarios. Our goal is to delve into how GIP may impact pancreatic β-cell function, adipose tissue uptake, and lipid metabolism. Furthermore, we will elucidate the mechanistic functions of GIP and its receptors in relation to other clinical conditions like cardiovascular diseases, non-alcoholic fatty liver diseases, neurodegenerative diseases, and renal disorders. Additionally, this chapter will shed light on the latest advancements in pharmacological management for T2DM, highlighting potential structural modifications of GIP and the repurposing of drugs, while also addressing the challenges involved in bringing GIP-based treatments into clinical practice.
Collapse
Affiliation(s)
- Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Achsha Babu
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Manosi Banerjee
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - R Kanagavalli
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
7
|
McKay EJ, Luijten I, Broadway-Stringer S, Thomson A, Weng X, Gehmlich K, Gray GA, Semple RK. Female Alms1-deficient mice develop echocardiographic features of adult but not infantile Alström syndrome cardiomyopathy. Dis Model Mech 2024; 17:dmm050561. [PMID: 38756069 PMCID: PMC11225586 DOI: 10.1242/dmm.050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Alström syndrome (AS), a multisystem disorder caused by biallelic ALMS1 mutations, features major early morbidity and mortality due to cardiac complications. The latter are biphasic, including infantile dilated cardiomyopathy and distinct adult-onset cardiomyopathy, and poorly understood. We assessed cardiac function of Alms1 knockout (KO) mice by echocardiography. Cardiac function was unaltered in Alms1 global KO mice of both sexes at postnatal day 15 (P15) and 8 weeks. At 23 weeks, female - but not male - KO mice showed increased left atrial area and decreased isovolumic relaxation time, consistent with early restrictive cardiomyopathy, as well as reduced ejection fraction. No histological or transcriptional changes were seen in myocardium of 23-week-old female Alms1 global KO mice. Female mice with Pdgfra-Cre-driven Alms1 deletion in cardiac fibroblasts and in a small proportion of cardiomyocytes did not recapitulate the phenotype of global KO at 23 weeks. In conclusion, only female Alms1-deficient adult mice show echocardiographic evidence of cardiac dysfunction, consistent with the cardiomyopathy of AS. The explanation for sexual dimorphism remains unclear but might involve metabolic or endocrine differences between sexes.
Collapse
Affiliation(s)
- Eleanor J. McKay
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Adrian Thomson
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Xiong Weng
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Katya Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Gillian A. Gray
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Robert K. Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
8
|
McKay EJ, Luijten I, Weng X, Martinez de Morentin PB, De Frutos González E, Gao Z, Kolonin MG, Heisler LK, Semple RK. Mesenchymal-specific Alms1 knockout in mice recapitulates metabolic features of Alström syndrome. Mol Metab 2024; 84:101933. [PMID: 38583571 PMCID: PMC11047791 DOI: 10.1016/j.molmet.2024.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE Alström Syndrome (AS), caused by biallelic ALMS1 mutations, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and fatty liver. Prior studies suggest that hyperphagia is accounted for by loss of ALMS1 function in hypothalamic neurones, whereas disproportionate metabolic complications may be due to impaired adipose tissue expandability. We tested this by comparing the metabolic effects of global and mesenchymal stem cell (MSC)-specific Alms1 knockout. METHODS Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα-Cre driver was used to abrogate Alms1 function selectively in MSCs and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα+ Alms1-KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. RESULTS Assessed on 45% fat diet to promote adipose expansion, global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα-cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfrα expression. CONCLUSIONS Mesenchymal deletion of Alms1 recapitulates metabolic features of AS, including fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. Hyperphagia in females may depend on Alms1 deficiency in oligodendrocyte precursor cells rather than neurones. AS should be regarded as a forme fruste of lipodystrophy.
Collapse
Affiliation(s)
- Eleanor J McKay
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Xiong Weng
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Pablo B Martinez de Morentin
- The Rowett Institute, University of Aberdeen, Aberdeen, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Elvira De Frutos González
- The Rowett Institute, University of Aberdeen, Aberdeen, UK; Área de Fisiología Humana, Departamento de Ciencias básicas de la Salud, Facultad de ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
| | - Zhanguo Gao
- Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Lora K Heisler
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Ahmed M, Ahmed AR, Farman RA. Advanced Chronic Kidney Disease (CKD) in a Patient With Alstrom Syndrome. Cureus 2024; 16:e60334. [PMID: 38883129 PMCID: PMC11177241 DOI: 10.7759/cureus.60334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Alstrom syndrome is an autosomal recessive disease. It affects multiple systems, including cardiovascular, renal, endocrine, and eyes. Our patient is a 25-year-old female who presented with elevated creatinine. Her past medical history was significant for hypothyroidism, polycystic ovarian syndrome, blindness, cataracts, hearing loss, and heart problems. She had genetic testing done that revealed that she was homozygous for the ALMS1 gene and was diagnosed with Alstrom syndrome. She was followed by nephrology in the clinic and had chronic kidney disease (CKD) stage V. The patient traveled to Italy and was lost to follow-up.
Collapse
Affiliation(s)
- Moeed Ahmed
- Nephrology, Northwestern University, Chicago, USA
| | - Abdul R Ahmed
- Biochemistry, Lahore Medical and Dental College, Lahore, PAK
| | - Rana A Farman
- Psychiatry, The Research Foundation for the State University of New York, Albany, USA
| |
Collapse
|
10
|
McKay EJ, Luijten I, Weng X, Martinez de Morentin PB, De Frutos González E, Gao Z, Kolonin MG, Heisler LK, Semple RK. Mesenchymal-specific Alms1 knockout in mice recapitulates key metabolic features of Alström Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562074. [PMID: 37873427 PMCID: PMC10592792 DOI: 10.1101/2023.10.12.562074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Alström Syndrome (AS), a multi-system disease caused by mutations in the ALMS1 gene, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and hepatosteatosis. How loss of ALMS1 causes this phenotype is poorly understood, but prior studies have circumstancially implicated impaired adipose tissue expandability. We set out to test this by comparing the metabolic effects of selective Alms1 knockout in mesenchymal cells including preadipocytes to those of global Alms1 knockout. Methods Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα -Cre driver was used to abrogate Alms1 function selectively in mesenchymal stem cells (MSCs) and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα + Alms1 -KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. Results Global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα - cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfr α expression. Conclusions Mesenchymal deletion of Alms1 recapitulates the metabolic features of AS, including severe fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. AS should be regarded as a forme fruste of lipodystrophy. Therapies should prioritise targeting positive energy balance.
Collapse
|
11
|
Yu D, Xiang Y, Gou T, Tong R, Xu C, Chen L, Zhong L, Shi J. New therapeutic approaches against pulmonary fibrosis. Bioorg Chem 2023; 138:106592. [PMID: 37178650 DOI: 10.1016/j.bioorg.2023.106592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Pulmonary fibrosis is the end-stage change of a large class of lung diseases characterized by the proliferation of fibroblasts and the accumulation of a large amount of extracellular matrix, accompanied by inflammatory damage and tissue structure destruction, which also shows the normal alveolar tissue is damaged and then abnormally repaired resulting in structural abnormalities (scarring). Pulmonary fibrosis has a serious impact on the respiratory function of the human body, and the clinical manifestation is progressive dyspnea. The incidence of pulmonary fibrosis-related diseases is increasing year by year, and no curative drugs have appeared so far. Nevertheless, research on pulmonary fibrosis have also increased in recent years, but there are no breakthrough results. Pathological changes of pulmonary fibrosis appear in the lungs of patients with coronavirus disease 2019 (COVID-19) that have not yet ended, and whether to improve the condition of patients with COVID-19 by means of the anti-fibrosis therapy, which are the questions we need to address now. This review systematically sheds light on the current state of research on fibrosis from multiple perspectives, hoping to provide some references for design and optimization of subsequent drugs and the selection of anti-fibrosis treatment plans and strategies.
Collapse
Affiliation(s)
- Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu 610072, China
| | - Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
12
|
Adipose tissue function and insulin sensitivity in syndromic obesity of Bardet-Biedl syndrome. Int J Obes (Lond) 2023; 47:382-390. [PMID: 36807608 DOI: 10.1038/s41366-023-01280-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a rare autosomal recessive syndromic obesity of childhood onset among many other features. To date, the excess risk of metabolic complications of severe early-onset obesity in BBS remains controversial. In-depth investigation of adipose tissue structure and function with detailed metabolic phenotype has not been investigated yet. OBJECTIVE To investigate adipose tissue function in BBS. DESIGN A prospective cross-sectional study. MAIN OUTCOME MEASURE To determine if there are differences in insulin resistance, metabolic profile, adipose tissue function and gene expression in patients with BBS compared to BMI-matched polygenic obese controls. METHOD 9 adults with BBS and 10 controls were recruited from the national centre for BBS, Birmingham, UK. An in-depth study of adipose tissue structure and function along with insulin sensitivity was performed using hyperinsulinemic-euglycemic clamp studies, adipose tissue microdialysis, histology and RNA sequencing, and measurement of circulating adipokines and inflammatory biomarkers. RESULTS Adipose tissue structure, gene expression and in vivo functional analysis between BBS and polygenic obesity cohorts were similar. Using hyperinsulinemic-euglycemic clamp and surrogate markers of insulin resistance, we found no significant differences in insulin sensitivity between BBS and obese controls. Furthermore, no significant changes were noted in an array of adipokines, cytokines, pro-inflammatory markers and adipose tissue RNA transcriptomic. CONCLUSION Although childhood-onset extreme obesity is a feature of BBS, detailed studies of insulin sensitivity and adipose tissue structure and function are similar to common polygenic obesity. This study adds to the literature by suggesting that it is the quality and quantity of adiposity not the duration that drives the metabolic phenotype.
Collapse
|
13
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
14
|
Zmyslowska A, Smyczynska U, Stanczak M, Jeziorny K, Szadkowska A, Fendler W, Borowiec M. Association of circulating miRNAS in patients with Alstrőm and Bardet-Biedl syndromes with clinical course parameters. Front Endocrinol (Lausanne) 2022; 13:1057056. [PMID: 36506055 PMCID: PMC9732093 DOI: 10.3389/fendo.2022.1057056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Patients with the rare syndromic forms of monogenic diabetes: Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS) have multiple metabolic abnormalities, including early-onset obesity, insulin resistance, lipid disorders and type 2 diabetes mellitus. The aim of this study was to determine if the expression of circulating miRNAs in patients with ALMS and BBS differs from that in healthy and obese individuals and determine if miRNA levels correlate with metabolic tests, BMI-SDS and patient age. METHODS We quantified miRNA expression (Qiagen, Germany) in four groups of patients: with ALMS (n=13), with BBS (n=7), patients with obesity (n=19) and controls (n=23). Clinical parameters including lipids profile, serum creatinine, cystatin C, fasting glucose, insulin and C-peptide levels, HbA1c values and insulin resistance (HOMA-IR) were assessed in patients with ALMS and BBS. RESULTS We observed multiple up- or downregulated miRNAs in both ALMS and BBS patients compared to obese patients and controls, but only 1 miRNA (miR-301a-3p) differed significantly and in the same direction in ALMS and BBS relative to the other groups. Similarly, 1 miRNA (miR-92b-3p) was dysregulated in the opposite directions in ALMS and BBS patients, but diverged from 2 other groups. We found eight miRNAs (miR-30a-5p, miR-92b-3p, miR-99a-5p, miR-122-5p, miR-192-5p, miR-193a-5p, miR-199a-3p and miR-205-5p) that significantly correlated with at least of the analyzed clinical variables representing an association with the course of the diseases. CONCLUSIONS Our results show for the first time that serum miRNAs can be used as available indicators of disease course in patients with ALMS and BBS syndromes.
Collapse
Affiliation(s)
- Agnieszka Zmyslowska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
- *Correspondence: Agnieszka Zmyslowska,
| | - Urszula Smyczynska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Stanczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Jeziorny
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Wang C, Luo X, Wang Y, Liu Z, Wu S, Wang S, Lan X, Xu Q, Xu W, Yuan F, Wang A, Zeng F, Jia J, Chen Y. Novel Mutations of the ALMS1 Gene in Patients with Alström Syndrome. Intern Med 2021; 60:3721-3728. [PMID: 34148947 PMCID: PMC8710367 DOI: 10.2169/internalmedicine.6467-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Alström syndrome is an autosomal recessive genetic disease caused by a mutation in the ALMS1 gene. Alström syndrome is clinically characterized by multisystem involvement, including sensorineural deafness, cone-rod dystrophy, nystagmus, obesity, insulin resistance, type 2 diabetes and hypogonadism. The diagnosis is thus challenging for patients without this characteristic set of clinical symptoms. We explored the effectiveness of whole-exome sequencing in the diagnosis of Alström syndrome. Methods A girl with symptoms of Alström syndrome was tested and diagnosed with the disease by whole-exome sequencing. Results Whole-exome sequencing revealed two novel variants, c.6160_6161insAT: p.Lys2054Asnfs*21 (exon 8) and c.10823_10824 delAG:p.Glu 3608Alafs*9 (exon16) in the ALMS1 gene, leading to premature termination codons and the domain of ALMS1 protein. Blood sample testing of her asymptomatic parents revealed them to be heterozygous carriers of the same mutations. Assembly showed that the mutations on both alleles were located in conserved sequences. A review of the ALMS1 gene nonsense mutation status was performed. Conclusion We herein report two novel variants of the ALMS1 gene discovered in a Chinese Alström syndrome patient that expand the mutational spectrum of ALMS1 and provided new insight into the molecular mechanism underlying Alström syndrome. Our findings add to the current knowledge concerning the diagnosis and treatment of Alström syndrome.
Collapse
Affiliation(s)
- Chunmei Wang
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| | - Xiaona Luo
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| | - Yilin Wang
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| | - Zhao Liu
- Division of Pediatric Neurology, Department of Pediatrics, University of Illinois and Children's Hospital of Illinois, USA
| | - Shengnan Wu
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| | - Simei Wang
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| | - Xiaoping Lan
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| | - Quanmei Xu
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| | - Wuhen Xu
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| | - Fang Yuan
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| | - Anqi Wang
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| | - Fanyi Zeng
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, China
| | - Jia Jia
- Fuxiang Gene Engineering Research Institute, China
| | - Yucai Chen
- Department of Neurology, Children's Hospital of Shanghai, Shanghai JiaoTong University, China
| |
Collapse
|
16
|
Zhang JJ, Wang JQ, Sun MQ, Xu D, Xiao Y, Lu WL, Dong ZY. Alström syndrome with a novel mutation of ALMS1 and Graves’ hyperthyroidism: A case report and review of the literature. World J Clin Cases 2021; 9:3200-3211. [PMID: 33969109 PMCID: PMC8080750 DOI: 10.12998/wjcc.v9.i13.3200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alström syndrome (AS, OMIM ID 203800) is a rare disease involving multiple organs in children and is mostly reported in non-Chinese patients. In the Chinese population, there are few reports on the clinical manifestations and pathogenesis of AS. This is the first report on the association between AS and Graves’ hyperthyroidism.
CASE SUMMARY An 8-year-old Chinese girl was diagnosed with AS. Two years later, Graves’ hyperthyroidism developed with progressive liver dysfunction. The patient’s clinical data were collected; DNA from peripheral blood of the proband, parents and sibling was collected for gene mutation detection using the second-generation sequencing method and gene panel for diabetes. The association between the patient’s genotype and clinical phenotype was analyzed. She carried the pathogenic compound heterozygous mutation of ALMS1 (c.2296_2299del4 and c.11460C>A). These stop-gain mutations likely caused truncation of the ALMS1 protein.
CONCLUSION The manifestation of hyperthyroidism may suggest rapid progression of AS.
Collapse
Affiliation(s)
- Juan-Juan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Jun-Qi Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Man-Qing Sun
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - De Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Wen-Li Lu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Zhi-Ya Dong
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| |
Collapse
|
17
|
Bettini S, Bombonato G, Dassie F, Favaretto F, Piffer L, Bizzotto P, Busetto L, Chemello L, Senzolo M, Merkel C, Angeli P, Vettor R, Milan G, Maffei P. Liver Fibrosis and Steatosis in Alström Syndrome: A Genetic Model for Metabolic Syndrome. Diagnostics (Basel) 2021; 11:diagnostics11050797. [PMID: 33924909 PMCID: PMC8170882 DOI: 10.3390/diagnostics11050797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
Alström syndrome (ALMS) is an ultra-rare monogenic disease characterized by insulin resistance, multi-organ fibrosis, obesity, type 2 diabetes mellitus (T2DM), and hypertriglyceridemia with high and early incidence of non-alcoholic fatty liver disease (NAFLD). We evaluated liver fibrosis quantifying liver stiffness (LS) by shear wave elastography (SWE) and steatosis using ultrasound sonographic (US) liver/kidney ratios (L/K) in 18 patients with ALMS and 25 controls, and analyzed the contribution of metabolic and genetic alterations in NAFLD progression. We also genetically characterized patients. LS and L/K values were significantly higher in patients compared with in controls (p < 0.001 versus p = 0.013). In patients, LS correlated with the Fibrosis-4 Index and age, while L/K was associated with triglyceride levels. LS showed an increasing trend in patients with metabolic comorbidities and displayed a significant correlation with waist circumference, the homeostasis model assessment, and glycated hemoglobin A1c. SWE and US represent promising tools to accurately evaluate early liver fibrosis and steatosis in adults and children with ALMS during follow-up. We described a new pathogenic variant of exon 8 in ALMS1. Patients with ALMS displayed enhanced steatosis, an early increased age-dependent LS that is associated with obesity and T2DM but also linked to genetic alterations, suggesting that ALMS1 could be involved in liver fibrogenesis.
Collapse
Affiliation(s)
- Silvia Bettini
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (F.F.); (L.B.); (R.V.); (G.M.); (P.M.)
- Correspondence: (S.B.); (F.D.); Tel.: +39-333-204-6896 (S.B.); Tel.: +39-049-821-7021 (F.D.)
| | - Giancarlo Bombonato
- Internal Medicine 5, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (G.B.); (L.P.); (P.B.); (L.C.); (C.M.); (P.A.)
| | - Francesca Dassie
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (F.F.); (L.B.); (R.V.); (G.M.); (P.M.)
- Correspondence: (S.B.); (F.D.); Tel.: +39-333-204-6896 (S.B.); Tel.: +39-049-821-7021 (F.D.)
| | - Francesca Favaretto
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (F.F.); (L.B.); (R.V.); (G.M.); (P.M.)
| | - Luca Piffer
- Internal Medicine 5, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (G.B.); (L.P.); (P.B.); (L.C.); (C.M.); (P.A.)
| | - Paola Bizzotto
- Internal Medicine 5, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (G.B.); (L.P.); (P.B.); (L.C.); (C.M.); (P.A.)
| | - Luca Busetto
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (F.F.); (L.B.); (R.V.); (G.M.); (P.M.)
| | - Liliana Chemello
- Internal Medicine 5, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (G.B.); (L.P.); (P.B.); (L.C.); (C.M.); (P.A.)
| | - Marco Senzolo
- Gastroenterology Department of Oncological and Gastroenterological Surgical Sciences, DiSCOG, University of Padua, 35128 Padua, Italy;
| | - Carlo Merkel
- Internal Medicine 5, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (G.B.); (L.P.); (P.B.); (L.C.); (C.M.); (P.A.)
| | - Paolo Angeli
- Internal Medicine 5, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (G.B.); (L.P.); (P.B.); (L.C.); (C.M.); (P.A.)
| | - Roberto Vettor
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (F.F.); (L.B.); (R.V.); (G.M.); (P.M.)
| | - Gabriella Milan
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (F.F.); (L.B.); (R.V.); (G.M.); (P.M.)
| | - Pietro Maffei
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, 35128 Padua, Italy; (F.F.); (L.B.); (R.V.); (G.M.); (P.M.)
| |
Collapse
|
18
|
Dassie F, Favaretto F, Bettini S, Parolin M, Valenti M, Reschke F, Danne T, Vettor R, Milan G, Maffei P. Alström syndrome: an ultra-rare monogenic disorder as a model for insulin resistance, type 2 diabetes mellitus and obesity. Endocrine 2021; 71:618-625. [PMID: 33566311 DOI: 10.1007/s12020-021-02643-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alström syndrome (ALMS) is a monogenic ultra-rare disorder with a prevalence of one per million inhabitants caused by pathogenic variants of ALMS1 gene. ALMS1 is located on chromosome 2p13, spans 23 exons and encodes a predicted 461.2-kDa protein of 4169 amino acids. The infantile cone-rod dystrophy with nystagmus and severe visual impairment is the earliest and most consistent clinical manifestation of ALMS. In addition, infantile transient cardiomyopathy, early childhood obesity with hyperphagia, deafness, insulin resistance (IR), type 2 diabetes mellitus (T2DM), systemic fibrosis and progressive renal or liver dysfunction are common findings. ALMS1 encodes a large ubiquitously expressed protein that is associated with the centrosome and the basal body of primary cilium. CURRENT RESEARCH The localisation of ALMS1 to the ciliary basal body suggests its contribution to ciliogenesis and/or normal ciliary function, or centriolar stability. ALMS1 regulate glucose transport through the actin cytoskeleton, which plays an important role in insulin-stimulated GLUT4 transport. Both extreme IR and β-cell failure are the two determinant factors responsible for the development of glucose metabolism alterations in ALMS. TREATMENT Currently, there is no known cure for ALMS other than managing the underlying systemic diseases. When possible, individuals with ALMS and families should be referred to a centre of expertise and followed by a multidisciplinary team. Lifestyle modification, aerobic exercise and dietary induced weight loss are highly recommended as primary treatment for ALMS patients with T2DM and obesity. CONCLUSION Managing a rare disease requires not only medical care but also a support network including patient associations.
Collapse
Affiliation(s)
- Francesca Dassie
- Department of Medicine (DIMED), Clinica Medica 3, Padua University Hospital, Padua, Italy
| | - Francesca Favaretto
- Department of Medicine (DIMED), Clinica Medica 3, Padua University Hospital, Padua, Italy
| | - Silvia Bettini
- Department of Medicine (DIMED), Clinica Medica 3, Padua University Hospital, Padua, Italy
| | - Matteo Parolin
- Department of Medicine (DIMED), Clinica Medica 3, Padua University Hospital, Padua, Italy
| | - Marina Valenti
- Italian Association of Alström Syndrome Patients-ASS.A.I., Endo-ERN ePAG, Padua, Italy
| | - Felix Reschke
- Department of General Pediatrics, Endocrinology/Diabetology and Clinical Research, Children's Hospital Auf der Bult, Hannover, Germany
| | - Thomas Danne
- Department of General Pediatrics, Endocrinology/Diabetology and Clinical Research, Children's Hospital Auf der Bult, Hannover, Germany
| | - Roberto Vettor
- Department of Medicine (DIMED), Clinica Medica 3, Padua University Hospital, Padua, Italy
| | - Gabriella Milan
- Department of Medicine (DIMED), Clinica Medica 3, Padua University Hospital, Padua, Italy
| | - Pietro Maffei
- Department of Medicine (DIMED), Clinica Medica 3, Padua University Hospital, Padua, Italy.
| |
Collapse
|
19
|
Geberhiwot T, Baig S, Obringer C, Girard D, Dawson C, Manolopoulos K, Messaddeq N, Bel Lassen P, Clement K, Tomlinson JW, Steeds RP, Dollfus H, Petrovsky N, Marion V. Relative Adipose Tissue Failure in Alström Syndrome Drives Obesity-Induced Insulin Resistance. Diabetes 2021; 70:364-376. [PMID: 32994277 PMCID: PMC7881858 DOI: 10.2337/db20-0647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Obesity is a major risk factor for insulin resistance (IR) and its attendant complications. The pathogenic mechanisms linking them remain poorly understood, partly due to a lack of intermediary monogenic human phenotypes. Here, we report on a monogenic form of IR-prone obesity, Alström syndrome (ALMS). Twenty-three subjects with monogenic or polygenic obesity underwent hyperinsulinemic-euglycemic clamping with concomitant adipose tissue (AT) microdialysis and an in-depth analysis of subcutaneous AT histology. We have shown a relative AT failure in a monogenic obese cohort, a finding supported by observations in a novel conditional mouse model (Alms flin/flin ) and ALMS1-silenced human primary adipocytes, whereas selective reactivation of ALMS1 gene in AT of an ALMS conditional knockdown mouse model (Alms flin/flin ; Adipo-Cre +/- ) restores systemic insulin sensitivity and glucose tolerance. Hence, we show for the first time the relative AT failure in human obese cohorts to be a major determinant of accelerated IR without evidence of lipodystrophy. These new insights into adipocyte-driven IR may assist development of AT-targeted therapeutic strategies for diabetes.
Collapse
Affiliation(s)
- Tarekegn Geberhiwot
- Department of Diabetes, Endocrinology and Metabolism, Queen Elizabeth Hospital Birmingham, Birmingham, U.K.
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Shanat Baig
- Department of Diabetes, Endocrinology and Metabolism, Queen Elizabeth Hospital Birmingham, Birmingham, U.K
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, U.K
| | - Cathy Obringer
- INSERM, UMR_U1112, Laboratoire de Génétique Médicale, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Dorothée Girard
- Flinders Medical Centre, Flinders University, Bedford Park, Australia
| | - Charlotte Dawson
- Department of Diabetes, Endocrinology and Metabolism, Queen Elizabeth Hospital Birmingham, Birmingham, U.K
| | | | - Nadia Messaddeq
- Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM, Collège de France, Illkirch, France
| | - Pierre Bel Lassen
- NutriOmics Unit, INSERM, Sorbonne Université, Assistance-Publique Hôpitaux de Paris, and Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Karine Clement
- NutriOmics Unit, INSERM, Sorbonne Université, Assistance-Publique Hôpitaux de Paris, and Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, U.K
| | - Richard P Steeds
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, U.K
| | - Hélène Dollfus
- INSERM, UMR_U1112, Laboratoire de Génétique Médicale, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
- Service de Génétique Médicale et CARGO, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nikolai Petrovsky
- Flinders Medical Centre, Flinders University, Bedford Park, Australia
- Vaxine Pty Ltd, Bedford Park, Australia
| | - Vincent Marion
- INSERM, UMR_U1112, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, Fédération de Medecine Translationelle de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Etheridge T, Kellom ER, Sullivan R, Ver Hoeve JN, Schmitt MA. Ocular evaluation and genetic test for an early Alström Syndrome diagnosis. Am J Ophthalmol Case Rep 2020; 20:100873. [PMID: 32944671 PMCID: PMC7481517 DOI: 10.1016/j.ajoc.2020.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/18/2020] [Accepted: 08/09/2020] [Indexed: 11/05/2022] Open
Abstract
Purpose We present 3 cases of Alström syndrome (ALMS) that highlight the importance of the ophthalmic exam, as well as the diagnostic challenges and management considerations of this ultra-rare disease. Observations The first case is of a 2-year-old boy with history of spasmus nutans who presented with head bobbing and nystagmus. The second patient is a 5-year-old boy with history of infantile dilated cardiomyopathy status post heart transplant, Burkitt lymphoma status post chemotherapy, obesity, global developmental delay, and high hyperopia previously thought to have cortical visual impairment secondary to heart surgery/possible ischemic event. This patient presented with nystagmus, photophobia, and reduced vision. The third case involves a 8-year-old boy with history of obesity, bilateral optic nerve atrophy, hyperopic astigmatism, exotropia, and nystagmus. Upon presentation to the consulting pediatric ophthalmologist, none of the patients had yet been diagnosed with ALMS. All 3 cases were subsequently found to have an electroretinogram (ERG) that exhibited severe global depression and to carry ALMS1 pathogenic variants. Conclusions and Importance ALMS is an autosomal recessive disease caused by ALMS1 variations, characterized by cone-rod dystrophy, obesity, progressive sensorineural hearing loss, cardiomyopathy, insulin resistance, and multiorgan dysfunction. Retinal dystrophy diagnosis is critical given clinical criteria and detection rates of genetic testing. Early diagnosis is extremely important because progression to flat ERG leads to the inability to differentiate between rod-cone or cone-rod involvement, either of which have their own differential diagnoses. In our series, the ophthalmic exam and abnormal ERG prompted further genetic testing and the subsequent diagnosis of ALMS. Multidisciplinary care ensures the best possible outcome with the ophthalmologist playing a key role.
Collapse
Key Words
- ALMS, Alström Syndrome
- ALMS1 gene
- APD, Afferent pupillary defect
- Alström syndrome
- Autosomal recessive
- BMI, Body mass index
- CHF, Congestive heart failure
- CLIA, Clinical Laboratory Improvement Amendments
- Cone-rod dystrophy
- DA, Dark-adapted
- DFE, Dilated fundus exam
- EEG, Electroencephalogram
- ERG, Electroretinogram
- EUA, Exam under anesthesia
- FAF, Fundus autofluorescence
- IGF, Insulin-like growth factor
- IR, Insulin resistance
- ISCEV, International Society for Clinical Electrophysiology of Vision
- LA, Light-adapted
- MRI, Magnetic resonance imaging
- OCT, Optical coherence tomography
- OD, Right eye
- OPs, Oscillatory potentials
- OS, Left eye
- OU, Both eyes
- RPE, Retinal pigment epithelium
- T2DM, Type II diabetes mellitus
- VA, Visual acuity
- VEP, Visual evoked potential
- VGB, Vigabatrin
- cDNA, complementary DNA
Collapse
Affiliation(s)
- Tyler Etheridge
- University of Wisconsin School of Medicine and Public Health, Department of Ophthalmology & Visual Sciences, Madison, WI, United States
| | - Elizabeth R Kellom
- University of Wisconsin School of Medicine and Public Health, Department of Ophthalmology & Visual Sciences, Madison, WI, United States
| | - Rachel Sullivan
- University of Wisconsin School of Medicine and Public Health, Department of Ophthalmology & Visual Sciences, Madison, WI, United States
| | - James N Ver Hoeve
- University of Wisconsin School of Medicine and Public Health, Department of Ophthalmology & Visual Sciences, Madison, WI, United States
| | - Melanie A Schmitt
- University of Wisconsin School of Medicine and Public Health, Department of Ophthalmology & Visual Sciences, Madison, WI, United States
| |
Collapse
|
21
|
Baig S, Dowd R, Edwards NC, Hodson J, Fabritz L, Vijapurapu R, Liu B, Geberhiwot T, Steeds RP. Prospective cardiovascular magnetic resonance imaging in adults with Alström syndrome: silent progression of diffuse interstitial fibrosis. Orphanet J Rare Dis 2020; 15:139. [PMID: 32503575 PMCID: PMC7275389 DOI: 10.1186/s13023-020-01426-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022] Open
Abstract
Background Alström syndrome (ALMS) is a rare ciliopathy characterised by early onset insulin resistance, obesity, and dyslipidaemia and is a model for diseases that have huge social, health and economic impact. Cardiomyopathy develops in the majority, with high rates of morbidity and mortality, the definitive features of which are coarse replacement fibrosis and diffuse myocardial fibrosis (DIF). The pathogenesis of heart failure is thought to involve fibroblast accumulation and expansion of the extracellular matrix with excess protein deposition, leading to distorted organ architecture and impaired contractile function. Consecutive adults with genetically proven ALMS attending the National Centre for Rare Disease in Birmingham, England were studied. All patients underwent serial CMR, echocardiography and venous blood sampling, with computed tomography coronary angiography (CTCA) performed to assess severity of CAD. The aims of this study were: 1) to evaluate changes over time in DIF by cardiovascular magnetic resonance tissue characterization in ALMS; 2) to examine whether changes in DIF are associated with alteration in systolic or diastolic function; and 3) to evaluate the frequency and severity of coronary artery disease as a confounder for progression of ischaemic versus non-ischaemic fibrosis. Results In total, 30/32 adults (63% male; 67% White British) participated. The median age at first scan was 21.3 years (interquartile range: 19.0–32.6) and participants were followed for a maximum of 67 months. Only 4 patients had significant coronary artery stenosis on post-mortem, invasive coronary angiography or CTCA. Mid short axis myocardial T1 times, myocardial extracellular volume, and left ventricular mass increased significantly over time, by an average of 21.8 ms (95% CI 17.4–26.1; p < 0.001), 1.1 percentage points (0.6–1.6, p < 0.001), and 2.8 g/m2 (1.9–3.7; p < 0.001) per year, respectively. These changes were not associated with significant deterioration in myocardial structure or function. Conclusions This is the first comprehensive prospective study demonstrating progression of DIF in ALMS over time, although no structural or functional consequences were noted within a median three and a half years’ follow up. Further study is warranted to define whether DIF is a by-stander or the driver to impaired contractile function, heart failure and death.
Collapse
Affiliation(s)
- Shanat Baig
- Department of Inherited Metabolic Disorders, Queen Elizabeth Hospital Birmingham, Birmingham, UK.,Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Rory Dowd
- Department of Cardiology, Queen Elizabeth Hospital, Birmingham, UK
| | - Nicola C Edwards
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK.,Department of Cardiology, Queen Elizabeth Hospital, Birmingham, UK
| | - James Hodson
- Institute of Translational Medicine, Queen Elizabeth Hospital, Birmingham, UK
| | - Larissa Fabritz
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK.,Department of Cardiology, Queen Elizabeth Hospital, Birmingham, UK
| | - Ravi Vijapurapu
- Department of Inherited Metabolic Disorders, Queen Elizabeth Hospital Birmingham, Birmingham, UK.,Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Boyang Liu
- Department of Inherited Metabolic Disorders, Queen Elizabeth Hospital Birmingham, Birmingham, UK.,Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Tarekegn Geberhiwot
- Department of Inherited Metabolic Disorders, Queen Elizabeth Hospital Birmingham, Birmingham, UK.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Richard P Steeds
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK. .,Department of Cardiology, Queen Elizabeth Hospital, Birmingham, UK. .,Department of Cardiology, First Floor, Nuffield House, University Hospital Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2GW, UK.
| |
Collapse
|
22
|
PBI-4050 via GPR40 activation improves adenine-induced kidney injury in mice. Clin Sci (Lond) 2019; 133:1587-1602. [PMID: 31308217 DOI: 10.1042/cs20190479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
PBI-4050 (3-pentylbenzenacetic acid sodium salt), a novel first-in-class orally active compound that has completed clinical Phases Ib and II in subjects with chronic kidney disease (CKD) and metabolic syndrome respectively, exerts antifibrotic effects in several organs via a novel mechanism of action, partly through activation of the G protein receptor 40 (GPR40) receptor. Here we evaluate the effects of PBI-4050 in both WT and Gpr40-/- mice on adenine-induced tubulointerstitial injury, anemia and activation of the unfolded protein response (UPR) pathway. Adenine-induced CKD was achieved in 8-week-old C57BL/6 mice fed a diet supplemented with 0.25% adenine. After 1 week, PBI-4050 or vehicle was administered daily by oral-gavage for 3 weeks. Gpr40-/- mice were also subjected to adenine-feeding, with or without PBI-4050 treatment. PBI-4050 improved renal function and urine concentrating ability. Anemia was present in adenine-fed mice, while PBI-4050 blunted these effects and led to significantly higher plasma erythropoietin (EPO) levels. Adenine-induced renal fibrosis, endoplasmic reticulum (ER) stress and apoptosis were significantly decreased by PBI-4050. In parallel, Gpr40-/- mice were more susceptible to adenine-induced fibrosis, renal function impairment, anemia and ER stress compared with WT mice. Importantly, PBI-4050 treatment in Gpr40-/- mice failed to reduce renal injury in this model. Taken together, PBI-4050 prevented adenine-induced renal injury while these beneficial effects were lost upon Gpr40 deletion. These data reinforce PBI-4050's use as a renoprotective therapy and identify GPR40 as a crucial mediator of its beneficial effects.
Collapse
|
23
|
Bahudhanapati H, Tan J, Dutta JA, Strock SB, Sembrat J, Àlvarez D, Rojas M, Jäger B, Prasse A, Zhang Y, Kass DJ. MicroRNA-144-3p targets relaxin/insulin-like family peptide receptor 1 (RXFP1) expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Biol Chem 2019; 294:5008-5022. [PMID: 30709904 DOI: 10.1074/jbc.ra118.004910] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
The hormone relaxin is considered a potential therapy for idiopathic pulmonary fibrosis (IPF). We have previously shown that a potential limitation to relaxin-based IPF therapy is decreased expression of a relaxin receptor, relaxin/insulin-like family peptide receptor 1 (RXFP1), in IPF fibroblasts. The mechanism that down-regulates RXFP1 in IPF remains unclear. To determine whether microRNAs (miRs) regulate RXFP1 gene expression, here we employed a bioinformatics approach to identify miRs predicted to target RXFP1 and identified a putative miR-144-3p target site in the RXFP1 mRNA. In situ hybridization of IPF lung biopsies revealed that miR-144-3p is expressed in fibroblastic foci. Furthermore, we found that miR-144-3p is up-regulated in IPF fibroblasts compared with lung fibroblasts from healthy donors. Transforming growth factor β increased miR-144-3p expression in both healthy and IPF lung fibroblasts in a SMAD family 2/3 (SMAD2/3)-dependent manner, and Jun proto-oncogene AP-1 transcription factor subunit (AP-1) was required for constitutive miR-144-3p expression. Overexpression of an miR-144-3p mimic significantly reduced RXFP1 mRNA and protein levels and increased expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in healthy lung fibroblasts. IPF lung fibroblasts transfected with anti-miR-144-3p had increased RXFP1 expression and reduced α-SMA expression. Of note, a lentiviral luciferase reporter carrying the WT 3' UTR of RXFP1 was significantly repressed in IPF lung fibroblasts, whereas a reporter carrying a mutated miR-144-3p-binding site exhibited less sensitivity toward endogenous miR-144-3p expression, indicating that miR-144-3p down-regulates RXFP1 in IPF lung fibroblasts by targeting its 3' UTR. We conclude that miR-144-3p directly represses RXFP1 mRNA and protein expression.
Collapse
Affiliation(s)
- Harinath Bahudhanapati
- From the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jiangning Tan
- From the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Justin A Dutta
- From the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Stephen B Strock
- From the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - John Sembrat
- From the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Diana Àlvarez
- From the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Mauricio Rojas
- From the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Benedikt Jäger
- Fraunhofer ITEM, Deutsches Zentrum für Lungenforschung (DZL) BREATH, Nicolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Antje Prasse
- Fraunhofer ITEM, Deutsches Zentrum für Lungenforschung (DZL) BREATH, Nicolai-Fuchs-Straße 1, 30625 Hannover, Germany.,the Department of Pulmonology, Hannover Medical School, Deutsches Zentrum für Lungenforschung (DZL) BREATH, Carl-Neuberg Straße 1, 30625 Hannover, Germany, and
| | - Yingze Zhang
- From the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Daniel J Kass
- From the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|