1
|
Farooqi R, Ullah S, Khan A, Gurav SS, Mali SN, Aftab H, Al-Sadoon MK, Hsu MH, Taslimi P, Al-Harrasi A, Shafiq Z, Schenone S. Design, synthesis, in-vitro and in-silico studies of novel N-heterocycle based hydrazones as α-glucosidase inhibitors. Bioorg Chem 2025; 156:108155. [PMID: 39826499 DOI: 10.1016/j.bioorg.2025.108155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Diabetes mellitus has dominated the globe as a chronic health condition and has become a major global health concern. The inhibition of the key metabolic enzymes of carbohydrates digestion including α-amylase and α-glucosidase are the promising targets for the treatment of diabetes via delaying glucose absorption. Therefore, nitrogen containing saturated heterocycle (pyrrolidinyl, piperidinyl and N-methylpiperazinyl) based hydrazones derivatives 5-23 were synthesized through two step reactions and evaluated for their anti-diabetic potential. All compounds exhibited potent α-glucosidase inhibitory capability ranging (IC50 = 10.26-47.35 µM), as compared to acarbose (IC50 = 871.40 ± 1.24 µM). Interestingly these derivatives also exhibited significant inhibitory capability against α-amylase with IC50 values in the range 25.81-76.05 µM. Mechanistic study on the most potent compound indicated a competitive type of inhibition with a Ki value of 8.30 ± 0.0076 µM. Molecular docking was performed to predict binding interactions between receptor proteins and moiety. In QSAR analysis, through use of QSARINS different 1D and 2D descriptors were used to generate different models that enabled further identification of structural requirements that contributed to activity. pIC50 values were also predicted by QSAR model. Furthermore, in-silico ADMET and BOILED-egg model analysis showed that all analogues exhibited passive GI absorption, and all showed BBB penetration.
Collapse
Affiliation(s)
- Rehmatullah Farooqi
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 Pakistan; National Changhua University of Education, Changhua 50007 Taiwan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Oman; Department of Chemical and Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Shailesh S Gurav
- Department of Chemistry, VIVA College, Virar (W)-401303, Maharashtra, India
| | - Suraj N Mali
- School of Pharmacy, DY Patil Deemed to Be University, Navi Mumbai, India
| | - Hina Aftab
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 Pakistan
| | - Mohammad Khalid Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Ming-Hua Hsu
- National Changhua University of Education, Changhua 50007 Taiwan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74110 Bartin, Turkey
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 Pakistan.
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa 16132, Italy.
| |
Collapse
|
2
|
Arya T, Kumar R, Aziz T, Alam MS, Kujur A. Exploring electrocardiographic alterations and the prolongation of QT interval in patients with diabetes mellitus. J Family Med Prim Care 2024; 13:5033-5039. [PMID: 39723001 PMCID: PMC11668398 DOI: 10.4103/jfmpc.jfmpc_747_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/25/2024] [Accepted: 06/15/2024] [Indexed: 12/28/2024] Open
Abstract
Background Diabetes mellitus (DM) affects a substantial proportion of the world's population and is associated with an increased risk of sudden cardiac death (SCD) due to cardiac arrhythmias, specifically prolonged QT intervals. This study investigates the correlation between glycemic control and cardiac health in 77 diabetic patients. Methods Patients with both type 1 and type 2 DM aged 14 to 82 years were included. Various clinical and metabolic parameters were evaluated, including glycated hemoglobin (HbA1C). QT intervals were measured using electrocardiograms (ECGs), and patients were categorized based on their QTc intervals. SPSS was used for statistical analysis, including one-way ANOVA tests. Results The study revealed diverse age and gender representation among diabetic patients. Most patients had type 2 diabetes (87%) with varying illness durations. Patients ranged in age from 14 to 82 years, with a mean of 48.14 16.58 years. The gender distribution was even (49% male and 51% female). Most participants had diabetes for less than five years (57%) and varied treatment histories (71% managed with oral hypoglycemic agents, 17% with insulin, and 12% with a combination). The ECG revealed ST-T alterations (4%) as well as sinus tachycardia (13%) and left ventricular hypertrophy (19%). Conclusion This study sheds light on the intricate relationship between diabetes, glycemic control, and cardiac health. QTc interval variations were observed even though the clinical and metabolic profiles of the patients varied. The influence of glycemic control on QT intervals and cardiovascular outcomes in diabetic patients requires additional study.
Collapse
Affiliation(s)
- Tushar Arya
- Department of Physiology, Medinirai Medical College, Palamu, Jharkhand, India
| | - Rajendra Kumar
- Department of Physiology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Tarique Aziz
- Department of Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Md Shadab Alam
- Department of Pharmacology and Therapeutics, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Anit Kujur
- Department of Community Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| |
Collapse
|
3
|
Pei R, Wang J, He P, Yu Q, Zhang S, Shi G, Liu G, Li X. Risk factors for type 2 diabetes mellitus in Chinese rheumatoid arthritis patients from 2018 to 2022: a real-world, single-center, retrospective study. Front Immunol 2024; 15:1445639. [PMID: 39430749 PMCID: PMC11486693 DOI: 10.3389/fimmu.2024.1445639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction In patients with rheumatoid arthritis (RA), the increased risk of concomitant type 2 diabetes mellitus (T2D) is an important contributor to increased mortality and decreased quality of life; however, the mechanisms and pathogenetic factors remain unknown. Methods In this study, we aimed to assess the risk factors for T2D in patients with RA. We recruited 206 healthy controls and 488 patients with RA, 160 of whom had comorbid T2D. General clinical information, disease characteristics, and circulating lymphocyte levels detected using modified flow cytometry were collected from all participants. Logistic regression models adjusted for confounders were fitted to estimate the risk factors of T2D in patients with RA. Results The incidence of RA in patients with T2D was 15.6%. Patients with RA and T2D had a longer disease duration, higher BMI, and a higher incidence of hypertension and a family history of diabetes than those with RA but no T2D. The absolute numbers of T helper 2 cell (Th2) and Regulatory T cells (Treg) decreased in patients with RA and T2D, which led to an increase in the ratios of Th1/Th2 and Th17/Treg cells. Multivariate logistic regression analysis showed that a family history of diabetes, a higher incidence of hypertension, higher neutrophil-lymphocyte ratio (NLR) levels, lower platelet-lymphocyte ratio (PLR) levels, and fewer circulating Th2 and Treg cells were associated with an increased risk of T2D in patients with RA. Discussion The levels of peripheral lymphocytes, especially Th2 and Treg cells, are closely related to the occurrence of T2D in patients with RA; however, the influence of body mass index (BMI), family history of diabetes, and systemic inflammation should not be ignored.
Collapse
Affiliation(s)
- Ruomeng Pei
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Gaoxiang Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Geliang Liu
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Cengiz N, Topan A, Akyol Güner T. Evaluation of the relationship between self-care agency and quality of life in adolescents with type 1 diabetes mellitus during COVID-19 pandemic. J Pediatr Nurs 2024; 78:e236-e243. [PMID: 39013702 DOI: 10.1016/j.pedn.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE This study aims to explore the relationship between self-care agency and quality of life among adolescents with Type 1 Diabetes Mellitus (T1DM) during the pandemic. DESIGN AND METHODS The study was conducted with 186 adolescents aged 13-16 who have T1DM and attended a pediatric endocrinology clinic at a Training and Research Hospital in the capital city of Turkey between January 1, 2022, and December 31, 2022. Data from 118 adolescents who met the inclusion criteria and fully completed the survey were used in the analysis. Data were collected using the 'Participant Information Form', 'Self-Care Agency Scale', and 'Kiddo-KINDL Quality of Life Scale'. RESULTS The study found that adolescents with higher self-care agency reported significantly better quality of life. Additionally, significant correlations were observed between self-care agency and adherence to pandemic measures, dietary adjustments, hygiene practices, diabetes management challenges, family communication, sleep duration, dietary patterns, and exercise difficulties (p < 0.05). CONCLUSION During the COVID-19 pandemic, it was evident that the self-care agency and quality of life of adolescents with T1DM were impacted, with those possessing higher self-care agency experiencing better and more meaningful quality of life. APPLICATION TO PRACTICE T1DM affects all aspects of life, and quality of life is considered a critical outcome of diabetes care. It is essential for adolescents to adhere to practices such as regular nutrition, physical activity, blood sugar monitoring, and appropriate insulin intake to achieve optimal glycemic levels and the best possible quality of life. Adolescents should be trained on these issues by pediatric nurses.
Collapse
Affiliation(s)
- Nursel Cengiz
- Dr Sami Ulus Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Aysel Topan
- Zonguldak Bülent Ecevit University, Faculty of Health Sciences, Dept. of Nursing, Kozlu-Zonguldak, Turkey
| | - Türkan Akyol Güner
- Zonguldak Bülent Ecevit University, Faculty of Health Sciences, Kozlu-Zonguldak, Turkey.
| |
Collapse
|
5
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
6
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
7
|
Rivas-Garcia L, Quintana-Navarro GM, Alcala-Díaz JF, Torres-Peña JD, Arenas-de Larriva AP, Rangel-Zuñiga OA, López-Moreno A, Malagon MM, Katsiki N, Perez-Martinez P, Lopez-Miranda J, Delgado-Lista J. Association between Diet Quality and Risk of Type 2 Diabetes Mellitus in Patients with Coronary Heart Disease: Findings from the CORDIOPREV Study. Nutrients 2024; 16:1249. [PMID: 38674939 PMCID: PMC11053861 DOI: 10.3390/nu16081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of type 2 diabetes mellitus (T2DM) is growing in Western countries. Nutritional interventions that promote high-quality dietary patterns could help reverse this trend. We aimed to evaluate whether changes in Nutrient-Rich Food Index 9.3 (NRF9.3) were related to the risk of developing T2DM in patients with coronary heart disease (CHD). The study was carried out in the context of two healthy dietary interventions (a Mediterranean and a low-fat diet). For this purpose, we evaluated all the patients in the CORDIOPREV study without T2DM at baseline. Data were obtained during the first 5 years of dietary intervention. The score was calculated using the Food Frequency Questionnaires at baseline and after 1 year of intervention. After 5 years of follow-up, 106 patients developed T2DM (incident-T2DM), while 316 subjects did not (non-T2DM). Total NRF9.3 score and changes during the first year of intervention were compared between incident-T2DM and non-T2DM. Incident-T2DM showed less improvement in NRF9.3 than non-T2DM (p = 0.010). In the multi-adjusted Cox proportional hazard study, patients with greater improvement in NRF9.3 had over 50% less risk of developing T2DM compared with the lowest tertile (HR 2.10, 95%, CI = 1.12-3.56). In conclusion, improved diet quality in terms of nutrient density after the dietary intervention was associated with a lower risk of T2DM in patients with CHD.
Collapse
Affiliation(s)
- Lorenzo Rivas-Garcia
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Gracia M. Quintana-Navarro
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Juan F. Alcala-Díaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| | - Jose D. Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| | - Antonio P. Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| | - Oriol Alberto Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alejandro López-Moreno
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria M. Malagon
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
8
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
9
|
Gerasimenko OV, Gerasimenko JV. The role of CFTR in diabetes-induced pancreatic ductal dysfunction. J Physiol 2024; 602:993-994. [PMID: 38421594 DOI: 10.1113/jp286338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
|
10
|
Sood A, Fernandes V, Preeti K, Rajan S, Khatri DK, Singh SB. S1PR2 inhibition mitigates cognitive deficit in diabetic mice by modulating microglial activation via Akt-p53-TIGAR pathway. Int Immunopharmacol 2024; 126:111278. [PMID: 38011768 DOI: 10.1016/j.intimp.2023.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cognitive deficit is one of the challenging complications of type 2 diabetes. Sphingosine 1- phosphate receptors (S1PRs) have been implicated in various neurodegenerative and metabolic disorders. The association of S1PRs and cognition in type 2 diabetes remains elusive. Microglia-mediated neuronal damage could be the thread propagating cognitive deficit. The effects of S1PR2 inhibition on cognition in high-fat diet and streptozotocin-induced diabetic mice were examined in this work. We further assessed microglial activation and putative microglial polarisation routes. Cognitive function loss was observed after four months of diabetes induction in Type 2 diabetes animal model. JTE013, an S1PR2 inhibitor, was used to assess neuroprotection against cognitive decline and neuroinflammation in vitro and in vivo diabetes model. JTE013 (10 mg/kg) improved synaptic plasticity by upregulating psd95 and synaptophysin while reducing cognitive decline and neuroinflammation. It further enhanced anti-inflammatory microglia in the hippocampus and prefrontal cortex (PFC), as evidenced by increased Arg-1, CD206, and YM-1 levels and decreased iNOS, CD16, and MHCII levels. TIGAR, TP53-induced glycolysis and apoptosis regulator, might facilitate the anti-inflammatory microglial phenotype by promoting oxidative phosphorylation and decreasing apoptosis. However, since p53 is a TIGAR suppressor, inhibiting p53 could be beneficial. S1PR2 inhibition increased p-Akt and TIGAR levels and reduced the levels of p53 in the PFC and hippocampus of type 2 diabetic mice, thereby decreasing apoptosis. In vitro, palmitate was used to imitate sphingolipid dysregulation in BV2 cells, followed by conditioned media exposure to Neuro2A cells. JTE013 rescued the palmitate-induced neuronal apoptosis by promoting the anti-inflammatory microglia. In the present study, we demonstrate that the inhibition of S1PR2 improves cognitive function and skews microglia toward anti-inflammatory phenotype in type 2 diabetic mice, thereby promising to be a potential therapy for neuroinflammation.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Shruti Rajan
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| |
Collapse
|
11
|
Rybarczyk A, Formanowicz D, Formanowicz P. Key Therapeutic Targets to Treat Hyperglycemia-Induced Atherosclerosis Analyzed Using a Petri Net-Based Model. Metabolites 2023; 13:1191. [PMID: 38132873 PMCID: PMC10744714 DOI: 10.3390/metabo13121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic superphysiological glucose concentration is a hallmark of diabetes mellitus (DM) and a cause of damage to many types of cells. Atherosclerosis coexists with glucose metabolism disturbances, constituting a significant problem and exacerbating its complications. Atherosclerosis in DM is accelerated, so it is vital to slow its progression. However, from the complex network of interdependencies, molecules, and processes involved, choosing which ones should be inhibited without blocking the pathways crucial for the organism's functioning is challenging. To conduct this type of analysis, in silicotesting comes in handy. In our study, to identify sites in the network that need to be blocked to have an inhibitory effect on atherosclerosis in hyperglycemia, which is toxic for the human organism, we created a model using Petri net theory and performed analyses. We have found that blocking isoforms of protein kinase C (PKC)-PKCβ and PKCγ-in diabetic patients can contribute to the inhibition of atherosclerosis progression. In addition, we have discovered that aldose reductase inhibition can slow down atherosclerosis progression, and this has been shown to reduce PKC (β and γ) expression in DM. It has also been observed that diminishing oxidative stress through the inhibitory effect on the AGE-RAGE axis may be a promising therapeutic approach in treating hyperglycemia-induced atherosclerosis. Moreover, the blockade of NADPH oxidase, the key enzyme responsible for the formation of reactive oxygen species (ROS) in blood vessels, only moderately slowed down atherosclerosis development. However, unlike aldose reductase blockade, or direct PKC (β and γ), the increased production of mitochondrial ROS associated with mitochondrial dysfunction effectively stopped after NADPH oxidase blockade. The results obtained may constitute the basis for further in-depth research.
Collapse
Affiliation(s)
- Agnieszka Rybarczyk
- Institute of Computing Science, Poznan University of Technology, 60-695 Poznan, Poland;
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Faculty of Electrical Engineering, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Piotr Formanowicz
- Institute of Computing Science, Poznan University of Technology, 60-695 Poznan, Poland;
| |
Collapse
|
12
|
Fagihi MA, Premathilaka C, O’Neill T, Garré M, Bhattacharjee S. An Investigation into the Acidity-Induced Insulin Agglomeration: Implications for Drug Delivery and Translation. ACS OMEGA 2023; 8:25279-25287. [PMID: 37483254 PMCID: PMC10357556 DOI: 10.1021/acsomega.3c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
Insulin undergoes agglomeration with (subtle) changes in its biochemical environment, including acidity, application of heat, ionic imbalance, and exposure to hydrophobic surfaces. The therapeutic impact of such unwarranted insulin agglomeration is unclear and needs further evaluation. A systematic investigation was conducted on recombinant human insulin-with or without labeling with fluorescein isothiocyanate-while preparing insulin suspensions (0.125, 0.25, and 0.5 mg/mL) at pH 3. The suspensions were incubated (37 °C) and analyzed at different time points (t = 2, 4, 24, 48, and 72 h). Transmission electron microscopy and nanoparticle tracking analysis identified colloidally stable (zeta potential 15 ± 5 mV) spherical agglomerates of unlabeled insulin (100-500 nm). Circular dichroism established the preservation of insulin's secondary structure rich in α-helices despite exposure to an acidic environment (pH 3) for 72 h. Furthermore, fluorescence lifetime imaging microscopy illustrated an acidic core inside these spherical agglomerates, while the acidity gradually lessened toward the periphery. Some of these smaller agglomerates fused to form larger chunks with discrete zones of acidity. The data indicated a primary nucleation-driven mechanism of acid-induced insulin agglomeration under physiologically relevant conditions.
Collapse
Affiliation(s)
- Megren
H. A. Fagihi
- School
of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Clinical
Laboratory Sciences Department, College of Applied Medical Sciences, Najran University, Najran 55461, Kingdom of Saudi Arabia
| | - Chanaka Premathilaka
- Institute
of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Tiina O’Neill
- Conway
Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Massimiliano Garré
- Super-Resolution
Imaging Consortium, Royal College of Surgeons
in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Sourav Bhattacharjee
- School of
Veterinary Medicine, University College
Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Coulter-Parkhill A, Gault VA, McClean S, Irwin N. Peptides originally derived from Chilobrachys jingzhao tarantula venom possess beneficial effects on pancreatic beta cell health and function. Eur J Pharmacol 2023:175855. [PMID: 37391009 DOI: 10.1016/j.ejphar.2023.175855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Clinical approval of the glucagon-like peptide-1 (GLP-1) mimetic exenatide for the treatment of type 2 diabetes highlights the therapeutic effectiveness of venom-derived peptides. In the present study, we examined and characterised the glucose-lowering potential of synthetic Jingzhaotoxin IX and Jingzhaotoxin XI peptides, which were originally isolated from the venom of the Chinese earth tarantula Chilobrachys jingzhao. Following confirmation of lack of beta-cell toxicity of synthetic peptides, assessment of enzymatic stability and effects on in vitro beta-cell function were studied, alongside putative mechanisms. Glucose homeostatic and appetite suppressive actions of Jingzhaotoxin IX and Jingzhaotoxin XI alone, or in combination with exenatide, were then assessed in normal overnight fasted C57BL/6 mice. Synthetic Jingzhaotoxin peptides were non-toxic and exhibited a decrease in mass of 6 Da in Krebs-Ringer bicarbonate buffer suggesting inhibitor cysteine knot (ICK)-like formation, but interestingly were liable to plasma enzyme degradation. The Jingzhaotoxin peptides evoked prominent insulin secretion from BRIN BD11 beta-cells, with activity somewhat characteristic of Kv2.1 channel binding. In addition, Jingzhaotoxin peptides enhanced beta-cell proliferation and provided significant protection against cytokine-induced apoptosis. When injected co-jointly with glucose, the Jingzhaotoxin peptides slightly decreased blood-glucose levels but had no effect on appetite in overnight fasted mice. Whilst the Jingzhaotoxin peptides did not enhance exenatide-induced benefits on glucose homeostasis, they augmented exenatide-mediated suppression of appetite. Taken together, these data highlight the therapeutic potential of tarantula venom-derived peptides, such as Jingzhaotoxin IX and Jingzhaotoxin XI either alone or in combination with exenatide, for diabetes and related obesity.
Collapse
Affiliation(s)
- A Coulter-Parkhill
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland, UK
| | - V A Gault
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland, UK
| | - S McClean
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland, UK
| | - N Irwin
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
14
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
15
|
Adam CA, Marcu DTM, Mitu O, Roca M, Aursulesei Onofrei V, Zabara ML, Tribuș LC, Cumpăt C, Crișan Dabija R, Mitu F. Old and Novel Predictors for Cardiovascular Risk in Diabetic Foot Syndrome—A Narrative Review. APPLIED SCIENCES 2023; 13:5990. [DOI: 10.3390/app13105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Diabetic foot syndrome (DFS) is a complication associated with diabetes that has a strong negative impact, both medically and socio-economically. Recent epidemiological data show that one in six patients with diabetes will develop an ulcer in their lifetime. Vascular complications associated with diabetic foot have multiple prognostic implications in addition to limiting functional status and leading to decreased quality of life for these patients. We searched the electronic databases of PubMed, MEDLINE and EMBASE for studies that evaluated the role of DFS as a cardiovascular risk factor through the pathophysiological mechanisms involved, in particular the inflammatory ones and the associated metabolic changes. In the era of evidence-based medicine, the management of these cases in multidisciplinary teams of “cardio-diabetologists” prevents the occurrence of long-term disabling complications and has prognostic value for cardiovascular morbidity and mortality among diabetic patients. Identifying artificial-intelligence-based cardiovascular risk prediction models or conducting extensive clinical trials on gene therapy or potential therapeutic targets promoted by in vitro studies represent future research directions with a modulating role on the risk of morbidity and mortality in patients with DFS.
Collapse
Affiliation(s)
- Cristina Andreea Adam
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, 700661 Iasi, Romania
| | - Dragos Traian Marius Marcu
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, 700115 Iasi, Romania
| | - Ovidiu Mitu
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mihai Roca
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, 700661 Iasi, Romania
| | - Viviana Aursulesei Onofrei
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mihai Lucian Zabara
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Carina Tribuș
- Department of Internal Medicine, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine, Ilfov County Emergency Hospital, 022104 Bucharest, Romania
| | - Carmen Cumpăt
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Management, “Alexandru Ioan Cuza” University, 700506 Iasi, Romania
| | - Radu Crișan Dabija
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, 700115 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, 700115 Iasi, Romania
- Academy of Medical Sciences, 030167 Bucharest, Romania
- Academy of Romanian Scientists, 700050 Iasi, Romania
| |
Collapse
|
16
|
Lopez-Yus M, García-Sobreviela MP, del Moral-Bergos R, Arbones-Mainar JM. Gene Therapy Based on Mesenchymal Stem Cells Derived from Adipose Tissue for the Treatment of Obesity and Its Metabolic Complications. Int J Mol Sci 2023; 24:7468. [PMID: 37108631 PMCID: PMC10138576 DOI: 10.3390/ijms24087468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a highly prevalent condition often associated with dysfunctional adipose tissue. Stem cell-based therapies have become a promising tool for therapeutic intervention in the context of regenerative medicine. Among all stem cells, adipose-derived mesenchymal stem cells (ADMSCs) are the most easily obtained, have immunomodulatory properties, show great ex vivo expansion capacity and differentiation to other cell types, and release a wide variety of angiogenic factors and bioactive molecules, such as growth factors and adipokines. However, despite the positive results obtained in some pre-clinical studies, the actual clinical efficacy of ADMSCs still remains controversial. Transplanted ADMSCs present a meager rate of survival and proliferation, possibly because of the damaged microenvironment of the affected tissues. Therefore, there is a need for novel approaches to generate more functional ADMSCs with enhanced therapeutic potential. In this context, genetic manipulation has emerged as a promising strategy. In the current review, we aim to summarize several adipose-focused treatments of obesity, including cell therapy and gene therapy. Particular emphasis will be given to the continuum from obesity to metabolic syndrome, diabetes, and underlying non-alcoholic fatty liver disease (NAFLD). Furthermore, we will provide insights into the potential shared adipocentric mechanisms involved in these pathophysiological processes and their remediation using ADMSCs.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Maria Pilar García-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Raquel del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Jose M. Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Recent developments in synthetic α-glucosidase inhibitors: A comprehensive review with structural and molecular insight. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
18
|
Quercetin Ameliorates Testicular Damage in Zucker Diabetic Fatty Rats through Its Antioxidant, Anti-Inflammatory and Anti-Apoptotic Properties. Int J Mol Sci 2022; 23:ijms232416056. [PMID: 36555696 PMCID: PMC9781092 DOI: 10.3390/ijms232416056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of quercetin (QUE) on the testicular architecture as well as markers of oxidative, inflammatory, and apoptotic profile of male gonads in Zucker diabetic fatty (ZDF) rats suffering from Type 2 diabetes mellitus in the absence or presence of obesity. QUE was administered orally at a dose of 20 mg/kg/day for 6 weeks. Morphometric analysis revealed that QUE treatment led to an improvement in testicular appearance, particularly in the case of Obese ZDF rats. Furthermore, a significant stabilization of the antioxidant capacity (p < 0.05), superoxide dismutase and catalase activity (p < 0.01), with a concomitant decrease in lipid peroxidation (p < 0.05) were observed in Obese ZDF animals exposed to QUE. Our data also indicate a significant decline in the levels of interleukin (IL)-1 (p < 0.05), IL-6 (p < 0.01) and tumor necrosis factor alpha (p < 0.001) following QUE supplementation to Obese ZDF rats in comparison with their respective control. Finally, a significant down-regulation of the pro-apoptotic BAX protein (p < 0.0001) was observed in Obese ZDF rats administered with QUE, while a significant Bcl-2 protein overexpression (p < 0.0001) was recorded in Lean ZDF animals when compared to their untreated control. As such, our results suggest that QUE is a potentially beneficial agent to reduce testicular damage in ZDF rats with Type 2 diabetes mellitus by decreasing oxidative stress, chronic inflammation, and excessive cell loss through apoptosis.
Collapse
|
19
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
20
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022; 11:2517. [PMID: 36010595 PMCID: PMC9406440 DOI: 10.3390/cells11162517] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
21
|
Li J, Chen Y, Liu Q, Tian Z, Zhang Y. Mechanistic and therapeutic links between rheumatoid arthritis and diabetes mellitus. Clin Exp Med 2022; 23:287-299. [DOI: 10.1007/s10238-022-00816-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
|