1
|
Song X, Ye T, Jing D, Wei K, Ge Y, Bei X, Qi Y, Wang H, Li J, Zhang Y. Association between exposure to per- and polyfluoroalkyl substances and levels of lipid profile based on human studies. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:133-145. [PMID: 38408126 DOI: 10.1515/reveh-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Epidemiological evidence suggests that exposure to per- and polyfluoroalkyl substances (PFAS) is associated with lipid profile levels, but with inconsistent conclusions from different studies. The aim of this study was to conduct a meta-analysis of the relationship between PFAS exposure and lipid profile levels based on population-based epidemiological studies. Embase, PubMed, Ovid database, The Cochrane Library and Web of Science database were used to search appropriate studies (before September 6, 2022) on the correlation between PFAS exposure and lipid profile levels. β value, odd ratio (OR) and 95 % confidence intervals (CIs) were extracted from studies. In this study, we found that higher low-density lipoprotein (LDL) levels were associated with exposure to perfluoroundecanoic acid (PFUnDA) (β value=0.13, 95 % CIs: 0.02, 0.24) and perfluorooctane sulfonic acid (PFOS) (β value=0.13, 95 % CIs: 0.04, 0.21). PFOA, PFOS and PFNA exposure were significantly related to the higher levels of total cholesterol (TC) with the pooled effect estimates of 0.08 (95 % CI: 0.02, 0.14), 0.13 (95 % CI: 0.05, 0.21) and 0.14 (95 % CI: 0.08, 0.20) respectively. In sum, our results identified that PFOA, PFOS, PFNA and PFUnDA were the most important risk factors for abnormal levels of lipid profile, indicating that we should prevent cerebrovascular disease by reducing and controlling PFAS exposure.
Collapse
Affiliation(s)
- Xinru Song
- Department of General Surgery, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingtao Ye
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Dongmei Jing
- Muchunyuan Nursing Home of Jiangsu Province Official Hospital, Nanjing, China
| | - Kai Wei
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Yue Ge
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xinyue Bei
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Yuqian Qi
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Huanqiang Wang
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Jun Li
- Department of General Surgery, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
2
|
Sun K, Zhou C, Gong M, Zhang Y, Jiang Y, Song W. The prevalence of metabolic syndrome in primary aldosteronism and essential hypertension: A systematic review and meta-analysis. J Clin Hypertens (Greenwich) 2024; 26:879-889. [PMID: 39037169 PMCID: PMC11301440 DOI: 10.1111/jch.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
It remained debates on metabolic-related disorders in patients with primary aldosteronism (PA) and essential hypertension (EH). A systematic review and meta-analysis was conducted to explore the prevalence of metabolic syndrome (MS) and the related indicators in PA and EH. PubMed, Embase, Web of Science and the Cochrane Central Register of Controlled Trials from their commencement to December 2023 were searched for eligible studies. The meta-analysis was performed by Review Manager 5.3 and STATA 15.1 software. A total of 12 studies were included, revealing that there was no significant difference between PA and EH in the prevalence of MS (1.27[0.92, 1.76], p = 0.14) with higher heterogeneity (I2 = 68%, p = 0.0002), while it became significant different (1.45[1.17, 1.81], p = 0.0008) and lower heterogeneity (I2 = 26%, p = 0.19) in patients who were overweight or obese by subgroup analysis. Higher systolic blood pressure (2.99[0.67, 5.31], p = 0.01; I2 = 43%, p = 0.06) and diastolic blood pressure (2.10[0.82, 3.38], p = 0.001; I2 = 36%, p = 0.11) with lower heterogeneity, and lower triglyceride in PA group with higher heterogeneity (-0.23[-0.37, -0.09], p = 0.001; I2 = 76%, p < 0.0001) were observed. No significant difference was found in other indicators. This study showed a higher prevalence of MS in patients who were overweight or obese with PA. However, it was not the same in these patients who were in normal weight. More researches were needed to explore the relationship between PA and metabolism of glucose and lipid.
Collapse
Affiliation(s)
- Kaiwen Sun
- Department of CardiologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Chenxu Zhou
- Department of CardiologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Minghui Gong
- Department of CardiologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Ying Zhang
- Department of CardiologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Yinong Jiang
- Department of CardiologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Wei Song
- Department of CardiologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
3
|
Wang WT, Wu TH, Er LK, Huang CW, Tu KH, Fan KC, Tsai CH, Wang SY, Wu CY, Huang SH, Liu HW, Tseng FY, Wu WC, Chang CC, Cheng HM, Lin LY, Chueh JS, Lin YH, Hwu CM, Wu VC. Recent progress in unraveling cardiovascular complications associated with primary aldosteronism: a succinct review. Hypertens Res 2024; 47:1103-1119. [PMID: 38228750 DOI: 10.1038/s41440-023-01538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
This comprehensive review offers a thorough exploration of recent advancements in our understanding of the intricate cardiovascular complications associated with Primary Aldosteronism (PA). PA encompasses a spectrum of conditions characterized by hypertension and excessive production of aldosterone operating independently of the renin-angiotensin system. Given its association with an elevated risk of cardiovascular and cerebrovascular complications, as well as a higher incidence of metabolic syndrome in comparison to individuals with essential hypertension (EH), an accurate diagnosis of PA is of paramount importance. This review delves into the intricate interplay between PA and cardiovascular health and focuses on the key pathophysiological mechanisms contributing to adverse cardiac outcomes. The impact of different treatment modalities on cardiovascular health is also examined, offering insights into potential therapeutic approaches. By highlighting the significance of recognizing PA as a significant contributor to cardiovascular morbidity, this review emphasizes the need for improved screening, early diagnosis, and tailored management strategies to both enhance patient care and mitigate the burden of cardiovascular diseases. The findings presented herein underscore the growing importance of PA in the context of cardiovascular medicine and emphasize the potential for translating these insights into targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Wei-Ting Wang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Tsung-Hui Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Leay-Kiaw Er
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, Hualien, Taiwan, ROC
- School of Medicine, Tzu-Chi University College of Medicine, Hualien, Taiwan, ROC
| | - Chien-Wei Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Nephrology, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Kun-Hua Tu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Kang-Chih Fan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan, ROC
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Shu-Yi Wang
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Chun-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Shu-Heng Huang
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Han-Wen Liu
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Fen-Yu Tseng
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Wan-Chen Wu
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Hao-Min Cheng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| | - Liang-Yu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jeff S Chueh
- Primary Aldosteronism Center, National Taiwan University Hospital, (NTUH-PAC), Taipei, Taiwan, ROC
- TAIPAI, Taiwan Primary Aldosteronism Investigation (TAIPAI) Study Group, Taipei, Taiwan, ROC
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Primary Aldosteronism Center, National Taiwan University Hospital, (NTUH-PAC), Taipei, Taiwan, ROC
- TAIPAI, Taiwan Primary Aldosteronism Investigation (TAIPAI) Study Group, Taipei, Taiwan, ROC
| | - Chii-Min Hwu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| | - Vin-Cent Wu
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
- School of Medicine, Tzu-Chi University College of Medicine, Hualien, Taiwan, ROC.
- Primary Aldosteronism Center, National Taiwan University Hospital, (NTUH-PAC), Taipei, Taiwan, ROC.
- TAIPAI, Taiwan Primary Aldosteronism Investigation (TAIPAI) Study Group, Taipei, Taiwan, ROC.
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Ercis M, Sanchez-Ruiz JA, Webb LM, Solares-Bravo M, Betcher HK, Moore KM, Frye MA, Veldic M, Ozerdem A. Sex differences in effectiveness and adverse effects of mood stabilizers and antipsychotics: A systematic review. J Affect Disord 2024; 352:171-192. [PMID: 38367709 DOI: 10.1016/j.jad.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Psychiatric disorders differ in their prevalence, symptom profiles, and disease courses in men and women. However, sex differences in psychiatric disorders have not received enough attention to guide treatment recommendations. This systematic review aims to summarize sex differences in the treatment responses and adverse effects of mood stabilizers and antipsychotics transdiagnostically. METHODS We conducted a systematic review following the PRISMA 2020 statement (CRD42020212478). A literature search was conducted using MEDLINE, Embase, Cochrane Central, PsycINFO, Web of Science Core Collection, and Scopus databases. Studies comparing mood stabilizer or antipsychotic treatment outcomes in men and women were included. JBI critical appraisal checklists were used to assess bias risk. RESULTS Out of 4866 records, 129 reports (14 on mood stabilizers, 115 on antipsychotics) with varying designs were included. Sample sizes ranged from 17 to 22,774 participants (median = 147). The most common psychiatric diagnoses were schizophrenia spectrum (n = 109, 84.5 %) and bipolar disorders (n = 38, 29.5 %). Only four studies explored sex differences in mood stabilizer treatment response. In 40 articles on antipsychotic treatment response, 18 indicated no sex difference, while 16 showed females had better outcomes. Women had more adverse effects with both mood stabilizers and antipsychotics. The risk of bias was low in 84 (65.1 %) of studies. LIMITATIONS Substantial heterogeneity among the studies precluded performing a meta-analysis. CONCLUSION Number of studies focusing on sex differences in treatment outcomes of mood stabilizers is limited. Women may respond better to antipsychotics than men, but also experience more side effects. The impact of pharmacokinetics on sex differences warrants more attention.
Collapse
Affiliation(s)
- Mete Ercis
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Lauren M Webb
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Hannah K Betcher
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Katherine M Moore
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Aysegul Ozerdem
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Olejarz M, Szczepanek-Parulska E, Ruchala M. Lipoprotein alterations in endocrine disorders - a review of the recent developments in the field. Front Endocrinol (Lausanne) 2024; 15:1354098. [PMID: 38628593 PMCID: PMC11018929 DOI: 10.3389/fendo.2024.1354098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Dyslipidemia is one of the most common disorders worldwide, which, if left untreated, results in a multitude of complications. Thus proper diagnostics, which includes identifying of secondary causes of dyslipidemia is crucial. Endocrine disorders are an important cause of secondary dyslipidemia. This paper aims to review the publications on lipoprotein alterations in endocrine disorders from the past two years and provide an overview of the recent discoveries in this dynamically developing and large field. Significant changes in lipoprotein serum concentrations are present in most endocrinological diseases and can be modified with proper treatment. Some lipoproteins have also been proposed as markers in some endocrine diseases, e.g., thyroid carcinoma. From the scope of endocrine disorders, the largest number of studies explored the lipoprotein changes in polycystic ovary syndrome and in women during the menopausal and peri-menopausal period. Even though the association of thyroid disorders with dyslipidemia is already well studied, new research has delivered some exciting findings about lipoprotein alterations in euthyroid patients with either positive antithyroid peroxidase antibodies or reduced sensitivity to thyroid hormones. The problem of the adverse metabolic profile, including dyslipidemia in hypoprolactinemia has been recognized. Moreover, this review describes other significant discoveries encompassing lipoprotein alterations in disorders of the adrenals, thyroid, parathyroid glands, pituitary, and gonads. The up-to-date knowledge of the influence of endocrine disorders and hormonal changes on serum lipoproteins is prudent as it can significantly impact therapeutic decisions.
Collapse
Affiliation(s)
- Michal Olejarz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | | |
Collapse
|
6
|
Sun K, Gong M, Yu Y, Yang M, Zhang Y, Jiang Y, Song W. Comparison of saline infusion test and captopril challenge test in the diagnosis of Chinese with primary aldosteronism in different age groups. Front Endocrinol (Lausanne) 2024; 15:1343704. [PMID: 38586461 PMCID: PMC10995348 DOI: 10.3389/fendo.2024.1343704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Background To explore the diagnostic accuracy and the optimal cutoff value between the saline infusion test (SIT) and captopril challenge test (CCT) [including the value and suppression of plasma aldosterone concentration (PAC)] for primary aldosteronism (PA) diagnosing. Methods A total of 318 patients with hypertension were consecutively enrolled, including 126 patients with PA and 192 patients with essential hypertension (EH), in this observational study. The characteristics of patients and laboratory examinations were collected and compared. The comparison between SIT and CCT was carried by drawing the receiver operator characteristic curve (ROC) and calculating the area under the curve (AUC) to explore the diagnostic accuracy and the optimal cutoff value. Results The average age was 51.59 ± 10.43 in the PA group and 45.72 ± 12.44 in the EH group (p<0.05). The optimal cutoff value was 10.7 ng/dL for post-CCT PAC, 6.8 ng/dL for post-SIT PAC, and 26.9% for suppression of post-CCT PAC. The diagnostic value of post-CCT PAC was the highest with 0.831 for the AUC and 0.552 for the Youden index. The optimal cutoff value for patients who were <50 years old was 11.5 ng/dL for post-CCT PAC and 8.4 ng/dL for post-SIT PAC. The suppression of post-CCT PAC turned to 18.2% for those of age 50 or older. Conclusion Compared with SIT, CCT had a higher diagnostic value when post-CCT PAC was used as the diagnostic criterion in Chinese people, while the selection of diagnostic thresholds depended on patient age.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinong Jiang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Song
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Sang L, Ge Y, Liu F, Wei K, Shen X, Zhang Y, Li Z, Lu W, Gao X, Zhang Y. Association between per- and polyfluoroalkyl substances and sex hormone levels in males based on human studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115998. [PMID: 38262091 DOI: 10.1016/j.ecoenv.2024.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Per- and poly-fluoroalkyl substances (PFAS) are ubiquitous chemicals in the environment and our daily lives. Several epidemiological studies have revealed that PFAS exposure is linked to male sex hormone levels; however, the conclusions are inconsistent across studies. Consequently, we performed a meta-analysis to systematically evaluate the association between PFAS exposure and male sex hormones. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) standards were followed during the meta-analysis. PubMed, Wed of Science, Embase, Cochrane Library, and Ovid databases were used to identify suitable articles before June 2023. The 95% CI and β values were calculated to assess the association between male sex hormone levels and PFAS exposure. Heterogeneity among the included studies was tested using inconsistency statistics (I2). RESULTS The literature search identified 12 published articles that met our search criteria, involving 7506 participants. Our results revealed that perfluorononanoic acid (PFNA) and perfluorooctanoic acid (PFOA) exposures were negatively correlated with testosterone (β = -0.05; 95% CI: -0.09, -0.02, P = 0.003) and (β = -0.04; 95% CI: -0.08, 0.00, P = 0.049), respectively. CONCLUSION Exposure to PFNA and PFOA is negatively correlated with changes in male testosterone levels. This correlation suggests that we need to pay attention in the future to whether they are potential risk factors for male reproductive health.
Collapse
Affiliation(s)
- Lingli Sang
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Yue Ge
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Fucun Liu
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Kai Wei
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Xingyu Shen
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Yuxin Zhang
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Zheng Li
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Wencen Lu
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery of Xuzhou Cancer Hospital, XuZhou 2210000, China.
| | - Yan Zhang
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 222000, China.
| |
Collapse
|
8
|
Abstract
The adrenal glands drive physiologic homeostasis, with dysregulation in any direction causing multisystem dysfunction. Adrenal excess states include hyperaldosteronism which manifests with refractory hypertension and electrolyte abnormalities including hypernatremia and hypokalemia. Paragangliomas including pheochromocytoma can cause multisystem end-organ dysfunction due to catecholaminergic storm, which require rapid blood pressure control with phentolamine and identification of lesions amenable to surgical resection. Adrenal insufficiency states in contrast can result in hypotension and decompensation refractory to vasopressor administration, requiring adrenal supplementation via hydrocortisone.
Collapse
Affiliation(s)
- Rachel E Bridwell
- Department of Emergency Medicine, Madigan Army Medical Center, 9040A Jackson Avenue, JBLM, WA 98433, USA.
| | - Michael D April
- Department of Emergency and Military Medicine, USUHS, 2233 Gulick Avenue, Building 816A, Fort Stewart, GA 31314, USA
| |
Collapse
|