1
|
Lv C, Xu J, Pan T, Shi W, Zhang W, Wu Y, Li Y, Cao L, Zhan F, Fan S, Deng J, Zhang L. Spectroscopic study and in vitro anticancer effect toward colorectal cancer cells of a hydroxyaurone leptosidin compound complexed with transferrin. Int J Biol Macromol 2024; 282:136874. [PMID: 39476908 DOI: 10.1016/j.ijbiomac.2024.136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
This paper investigated the interaction between leptosidin, an aurone-based derivative and a subset of the flavone family, and transferrin using a variety of spectroscopic, molecular docking, and molecular dynamic investigations. The anticancer mechanism of leptosidin and transferrin-leptosidin complex against colorectal cancer cells was then assessed. It was demonstrated that the addition of leptosidin resulted in a significant quenching of transferrin's fluorescence intensity and a redshift of 8 nm. Moreover, a static transferrin-leptosidin complex with a single binding capability and logKa values ranging from 4.80 to 4.43 was generated, mostly by hydrogen bonding and electrostatic interactions. Fluctuations and disruptions in the transferrin structure and binding site properties were discovered through molecular docking, synchronous fluorescence spectroscopy, second derivative fluorescence spectroscopy, circular dichroism (CD), and molecular dynamic simulation studies after interaction with leptosidin. Cellular assays showed that complexing leptosidin with transferrin improved its anticancer effects in colorectal cancer cells. Better cellular internalization, membrane leakage, inhibition of colony formation, and upregulation of caspase-9 and -3 expression and activity in comparison with leptosidin were the mechanisms underlying the improved anticancer effect of complex species. Finally, it was demonstrated that the leptosidin-transferrin complex's antiproliferative actions were mediated by the downregulation of the PI3K/Akt signaling pathway in colorectal cancer cells. Further research is necessary to fully understand the evolution of anticancer drug-protein complexes, although this paper may provide insightful information in the interim.
Collapse
Affiliation(s)
- Chunxin Lv
- Oncology Department, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China
| | - Jiayi Xu
- Geriatric Department, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Wen Shi
- Department of Dermatology, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuesong Wu
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Diagnosis and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing 404100, China; Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Wanzhou District, Chongqing 404100, China; School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yaoxu Li
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Diagnosis and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Wanzhou District, Chongqing 404100, China; Department of Stomatology, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing 404100, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing University, School of Medicine, Chongqing, 404000, China
| | - Shanshan Fan
- Oncology Department, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China.
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, SE1 1UL, United Kingdom.
| | - Lei Zhang
- Department of Gastroenterology, Shanghai Punan Hospital of Pudong New District, Shanghai 200125, China.
| |
Collapse
|
2
|
Minocha T, Das M, Rai V, Verma SS, Awasthee N, Gupta SC, Haldar C, Yadav SK. Melatonin induces apoptosis and cell cycle arrest in cervical cancer cells via inhibition of NF-κB pathway. Inflammopharmacology 2022; 30:1411-1429. [DOI: 10.1007/s10787-022-00964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
|
3
|
Doan CC, Le TL, Ho NQC, Tran TLG, Le NTL, Vu QD, La THL, Nguyen VC, Nguyen TPT, Hoang NS. Investigation of bioactive chemical constituents and anti-cancer activity of ethanol extract of Curcuma singularis Gagnep rhizomes. Nat Prod Res 2021; 36:4757-4762. [PMID: 34794366 DOI: 10.1080/14786419.2021.2005595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Curcuma singularis Gagnep is a Vietnamese medicinal plant which has been commonly used in traditional and folk medicines for the treatment of different diseases. The goals of the present study are to investigate chemical composition and anti-proliferative activity of Curcuma singularis rhizome extract (CSE). The in vitro cytotoxicity of CSE was evaluated using WST-1 and LDH assays. The apoptosis induction was determined using nuclei DAPI staining and FACS assays. The main compounds of extract were identified and quantitatively analyzed using the validated HPLC method. The extract showed cytotoxic effects in various liver and breast cancer cells but had minimal effects on normal cells. It induced apoptosis on both Hep3B and SKBR3 cells in a dose-dependent manner. In addition, three sesquiterpene compounds, such as germacrone (3.25 ± 0.32 mg/g), ar-turmerone (1.12 ± 0.24 mg/g), and curcumol (0.31 ± 0.12 mg/g) were found as the main components of CSE. This is the first report on the in vitro cytotoxic effect of Curcuma singularis rhizomes against cancer cells.
Collapse
Affiliation(s)
- Chinh Chung Doan
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Thanh Long Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Linh Giang Tran
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nguyen Tu Linh Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Quang Dao Vu
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Hong Lan La
- Faculty of Pharmacy, Lac Hong University, Bien Hoa City, Vietnam
| | | | - Thi Phuong Thao Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Nghia Son Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| |
Collapse
|
4
|
Aiello P, Sharghi M, Mansourkhani SM, Ardekan AP, Jouybari L, Daraei N, Peiro K, Mohamadian S, Rezaei M, Heidari M, Peluso I, Ghorat F, Bishayee A, Kooti W. Medicinal Plants in the Prevention and Treatment of Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2075614. [PMID: 32377288 PMCID: PMC7187726 DOI: 10.1155/2019/2075614] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
The standard treatment for cancer is generally based on using cytotoxic drugs, radiotherapy, chemotherapy, and surgery. However, the use of traditional treatments has received attention in recent years. The aim of the present work was to provide an overview of medicinal plants effective on colon cancer with special emphasis on bioactive components and underlying mechanisms of action. Various literature databases, including Web of Science, PubMed, and Scopus, were used and English language articles were considered. Based on literature search, 172 experimental studies and 71 clinical cases on 190 plants were included. The results indicate that grape, soybean, green tea, garlic, olive, and pomegranate are the most effective plants against colon cancer. In these studies, fruits, seeds, leaves, and plant roots were used for in vitro and in vivo models. Various anticolon cancer mechanisms of these medicinal plants include induction of superoxide dismutase, reduction of DNA oxidation, induction of apoptosis by inducing a cell cycle arrest in S phase, reducing the expression of PI3K, P-Akt protein, and MMP as well; reduction of antiapoptotic Bcl-2 and Bcl-xL proteins, and decrease of proliferating cell nuclear antigen (PCNA), cyclin A, cyclin D1, cyclin B1 and cyclin E. Plant compounds also increase both the expression of the cell cycle inhibitors p53, p21, and p27, and the BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9 proteins levels. In fact, purification of herbal compounds and demonstration of their efficacy in appropriate in vivo models, as well as clinical studies, may lead to alternative and effective ways of controlling and treating colon cancer.
Collapse
Affiliation(s)
- Paola Aiello
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
- Department of Physiology and Pharmacology “V. Erspamer”, La Sapienza University of Rome, Rome, Italy
| | - Maedeh Sharghi
- Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azam Pourabbasi Ardekan
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nahid Daraei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Peiro
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | - Sima Mohamadian
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Rezaei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Heidari
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ilaria Peluso
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Fereshteh Ghorat
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Wesam Kooti
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
5
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
6
|
Lans C, Taylor-Swanson L, Westfall R. Herbal fertility treatments used in North America from colonial times to 1900, and their potential for improving the success rate of assisted reproductive technology. REPRODUCTIVE BIOMEDICINE & SOCIETY ONLINE 2018; 5:60-81. [PMID: 30023440 PMCID: PMC6047296 DOI: 10.1016/j.rbms.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 09/19/2016] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
This paper serves to fill a gap in the literature regarding evidence for the use of botanical remedies in the promotion of fertility. It examines the botanical remedies that were used in North America (1492-1900) for all stages of reproduction from preconception to birth, and discusses their potential for future use with present-day infertility treatments. Each medicinal plant discussed in this paper is assessed using an ethnomedicinal methodology that entails examining the published ethnobotanical, phytochemical and pharmacological data. A few clinical trials have shown that there is potential for medicinal plants to improve the success rate of assisted reproductive technology (ART) treatment if used in an integrated manner, similar to the integrated use of traditional Chinese medicine with ART treatment. For example, research has shown that older women who become pregnant have a high miscarriage rate, and this is one area that complementary and alternative medicines can address.
Collapse
Affiliation(s)
- Cheryl Lans
- Institute for Ethnobotany and Zoopharmacognosy, Beek, The Netherlands
| | - Lisa Taylor-Swanson
- College of Nursing University of Utah, Annette Cummings Building, 10 South 2000 East Salt Lake City, UT, USA
| | - Rachel Westfall
- Yukon Bureau of Statistics, Government of Yukon, Yukon, Canada
| |
Collapse
|
7
|
Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen N. The apoptotic effects of Brucea javanica fruit extract against HT29 cells associated with p53 upregulation and inhibition of NF-κB translocation. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:657-671. [PMID: 29636600 PMCID: PMC5881282 DOI: 10.2147/dddt.s155115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Brucea javanica (L.) Merr. is a plant from the genus Brucea, which is used in local traditional medicine to treat various diseases. Recent studies revealed an impressive anticancer efficiency of B. javanica extract in different types of cancer cells. Purpose In this study, we have investigated the cytotoxic effects of the B. javanica hexane, ethanolic extracts against colon cancer cells. HT29 colon cells were selected as an in vitro cancer model to evaluate the anticancer activity of B. javanica ethanolic extract (BJEE) and the possible mechanisms of action that induced apoptosis. Methods 3-(4,5-dimethylthiazol-2-yl)-2, 5,-diphenyltetrazolium bromide (MTT), lactate dehydrogenase, acridine orange/propidium iodide, and annexin-V-fluorescein isothiocyanate assays were performed to determine the antiproliferative and apoptosis validation of BJEE on cancer cells. Measurement of reactive oxygen species (ROS) production, caspase activities, nucleus factor-κB activity, and gene expression experiments was done to investigate the potential mechanisms of action in the apoptotic process. Results The results obtained from this study illustrated the significant antiproliferative effect of BJEE on colorectal cancer cells, with a concentration value that inhibits 50% of the cell growth of 25±3.1 µg/mL after 72 h of treatment. MTT assay demonstrated that the BJEE is selectively toxic to cancer cells, and BJEE induced cell apoptosis via activation of caspase-8 along with modulation of apoptosis-related proteins such as Fas, CD40, tumor necrosis factor-related apoptosis-inducing ligands, and tumor necrosis factor receptors, which confirmed the contribution of extrinsic pathway. Meanwhile, increased ROS production in treated cells subsequently activated caspase-9 production, which triggered the intrinsic pathways. In addition, overexpression of cytochrome-c, Bax, and Bad proteins along with suppression of Bcl-2 illustrated that mitochondrial-dependent pathway also contributed to BJEE-induced cell death. Consistent with the findings from this study, BJEE-induced cancer cell death proceeds via extrinsic and intrinsic mitochondrial-dependent and -independent events. Conclusion From the evidence obtained from this study, it is concluded that the BJEE is a promising natural extract to combat colorectal cancer cells (HT29 cells) via induction of apoptosis through activation of extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Elham Bagheri
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatemeh Hajiaghaalipour
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Shaik Nyamathulla
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nur'Ain Salehen
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Ke M, Wang H, Zhou Y, Li J, Liu Y, Zhang M, Dou J, Xi T, Shen B, Zhou C. SEP enhanced the antitumor activity of 5-fluorouracil by up-regulating NKG2D/MICA and reversed immune suppression via inhibiting ROS and caspase-3 in mice. Oncotarget 2018; 7:49509-49526. [PMID: 27385218 PMCID: PMC5226525 DOI: 10.18632/oncotarget.10375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy and immunotherapy are the main remedies used in cancer treatment. Because immunotherapy can not only reduce the toxicity of chemotherapeutics but also enhance antitumor effects in vivo, combining these two therapies is a trend that continues to gain more attention in clinic. SEP, a polysaccharide isolated from Strongylocentrotus nudus egg, has been reported to display antitumor activity by stimulating immune cells, including NK and T cells, via TLR2 and TLR4. In the present study, the synergistic effect between SEP and 5-fluorouracil (5-FU), a traditional cytotoxic drug, in vitro and in vivo was investigated. The results obtained indicated that SEP alone stimulated NK-92 cytotoxicity and coordinated with 5-FU to augment the cytotoxicity of NK-92 cells against HepG-2 or A549 cells in vitro. SEP promoted NK-92 activity by stimulating NKG2D and its downstream DAP10/PI3K/Erk signaling pathway. Additionally, 5-FU could increase MICA expression on HepG-2 or A549 cells and prevent membrane MICA from shedding as soluble MICA, which were abrogated in the tumor cells transfected with ADAM 10 overexpression plasmid. Moreover, in H22- or Lewis lung cancer (LLC)-bearing mouse models, SEP reversed 5-FU-induced atrophy and apoptosis in both the spleen and bone marrow in vivo by suppressing ROS generation and caspase-3 activation. All of these results highlight the potential for the combination of SEP and 5-FU in cancer therapy in the future.
Collapse
Affiliation(s)
- Mengyun Ke
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.,Research Institute of Advanced Surgical Techniques and Engineering of Xi'an Jiaotong University, Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province, First Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, PR China
| | - Hui Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Yiran Zhou
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, PR China
| | - Jingwen Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Min Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Tao Xi
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Baiyong Shen
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, PR China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| |
Collapse
|
9
|
Rajkumari S, Sanatombi K. Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1387556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - K. Sanatombi
- Department of Biotechnology, Manipur University, Imphal, India
| |
Collapse
|
10
|
Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen NA. Ethanolic extract of Brucea javanica inhibit proliferation of HCT-116 colon cancer cells via caspase activation. RSC Adv 2018; 8:681-689. [PMID: 35538944 PMCID: PMC9076850 DOI: 10.1039/c7ra09618f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022] Open
Abstract
Brucea javanica (L.) Merr. is a well-known plant in Chinese System of Medicine. Its fruits and seeds have been reported to possess curative properties against various ailments. The chemical constituents and biological activity of this plant have been an interesting area in plant and chemistry medicine. The aim of this study is to evaluate the antiproliferative effects of the B. javanica extract against a colon cancer cell line and identification of the chemical components derived from the extract. An ethanolic extract from B. javanica fruits was prepared by cold maceration method, subjected to LC-MS profiling to elucidate the composition abbreviated as BJEE. The extract was screened for the cytotoxicity effects on HCT-116 colon cancer cells via MTT and LDH methods. Additionally, AO/PI staining verified apoptosis features in HCT-116 cells through microscopic analysis. ROS, caspase activity, and gene expression has been performed to identify its possible mechanism of actions which contribute to apoptosis. Output data from this study showed BJEE inhibited the cell proliferation of HCT-116 colon cancer cells at IC50 value of 8.9 ± 1.32 (μg mL-1) and significantly increased the levels of caspase-8, 9, and 3/7 in treated cells in comparison to untreated. The changes in expression of caspase genes and some apoptosis genes like Bax and Bcl-2 were confirmed using RT-PCR. Phytochemical analysis by LC-MS identified six major active compounds (bruceine D, isobrucein A, quassimarin, C16 sphinganine, phytosphingosine, and enigmol) in BJEE that may play a key role in cell apoptosis. The current study showed BJEE could be a promising agent for colorectal cancer therapy by significant increase in caspase activity level, and up-regulation of the specific apoptotic genes.
Collapse
Affiliation(s)
- E Bagheri
- Department of Pharmacy, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - F Hajiaghaalipour
- Institute of Biological Science, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| | - S Nyamathulla
- Department of Pharmacy, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - N A Salehen
- Department of Biomedical Science, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
11
|
Yu L, Wang X, Chen ZF, Jiang B, Shang DY, Sun YX, Yang JH, Zhang LF, Ji YB. Cytisine induces apoptosis of HepG2 cells. Mol Med Rep 2017; 16:3363-3370. [DOI: 10.3892/mmr.2017.6991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 03/03/2017] [Indexed: 11/06/2022] Open
|
12
|
A new approach for the assessment of the toxicity of polyphenol-rich compounds with the use of high content screening analysis. PLoS One 2017; 12:e0180022. [PMID: 28662177 PMCID: PMC5491109 DOI: 10.1371/journal.pone.0180022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022] Open
Abstract
The toxicity of in vitro tested compounds is usually evaluated based on AC50 values calculated from dose-response curves. However, there is a large group of compounds for which a standard four-parametric sigmoid curve fitting may be inappropriate for estimating AC50. In the present study, 22 polyphenol-rich compounds were prioritized from the least to the most toxic based on the total area under and over the dose-response curves (AUOC) in relation to baselines. The studied compounds were ranked across three key cell indicators (mitochondrial membrane potential, cell membrane integrity and nuclear size) in a panel of five cell lines (HepG2, Caco-2, A549, HMEC-1, and 3T3), using a high-content screening (HCS) assay. Regarding AUOC score values, naringin (negative control) was the least toxic phenolic compound. Aronox, spent hop extract and kale leaf extract had very low cytotoxicity with regard to mitochondrial membrane potential and cell membrane integrity, as well as nuclear morphology (nuclear area). Kaempferol (positive control) exerted strong cytotoxic effects on the mitochondrial and nuclear compartments. Extracts from buckthorn bark, walnut husk and hollyhock flower were highly cytotoxic with regard to the mitochondrion and cell membrane, but not the nucleus. We propose an alternative algorithm for the screening of a large number of agents and for identifying those with adverse cellular effects at an early stage of drug discovery, using high content screening analysis. This approach should be recommended for series of compounds producing a non-sigmoidal cell response, and for agents with unknown toxicity or mechanisms of action.
Collapse
|
13
|
Xie X, Zhou Y, Wang X, Guo J, Li J, Fan H, Dou J, Shen B, Zhou C. Enhanced antitumor activity of gemcitabine by polysaccharide-induced NK cell activation and immune cytotoxicity reduction in vitro/vivo. Carbohydr Polym 2017; 173:360-371. [PMID: 28732877 DOI: 10.1016/j.carbpol.2017.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/15/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022]
Abstract
The polysaccharide SEP has been reported to activate NK and T cells via TLR2/4. Here, the combination of gemcitabine (GEM) and SEP against HepG-2 was investigated. SEP apparently enhanced antitumor activity of gemcitabine against liver cancer through stimulating NKG2D and DAP10/Akt pathway to activate NK cells. The NKG2D upregulation could improve the sensitivity of NK-92 cells targeting to its ligand MICA expressed on HepG-2 cells. Meanwhile, GEM up-regulated MICA expression and attenuated soluble MICA secretion through inhibiting ADAM10 expression, which in turn enhanced the cytotoxicity of NK-92 cells against cancer cells. SEP remarkably enhanced GEM antitumor activity with an inhibitory rate of 79.1% in an H22-bearing mouse model. Moreover, SEP reversed atrophy and apoptosis caused by GEM in both spleen and bone marrow through suppressing ROS secretion in vivo. The data indicated that the combination of SEP and GEM is a potential chemo-immunotherapy strategy for liver cancer treatment clinically.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Yiran Zhou
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China
| | - Xue Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Jian Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Jingwen Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Baiyong Shen
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
14
|
Jiang Y, Wang X, Hu D. Furanodienone induces G0/G1 arrest and causes apoptosis via the ROS/MAPKs-mediated caspase-dependent pathway in human colorectal cancer cells: a study in vitro and in vivo. Cell Death Dis 2017; 8:e2815. [PMID: 28542135 PMCID: PMC5520734 DOI: 10.1038/cddis.2017.220] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
Furanodienone, a major bioactive constituents of sesquiterpene derived from Rhizoma Curcumae, has been proven to possess the potent anticancer efficacy on human breast cancer cells. Here, we investigated the cytotoxicity of furanodienone on human colorectal carcinoma cell lines in vitro and in vivo, as well as its underlying molecular mechanisms in the induction of apoptosis. In this study, we found that furanodienone significantly inhibited proliferation of RKO and HT-29 cells, induced mitochondrial dysfunction characterized by collapse of mitochondrial transmembrane potential and reduction of ATP level, and promoted the production of reactive oxygen species (ROS) that functions upstream of caspase-dependent apoptosis. The antioxidant N-acetyl cysteine, a ROS scavenger, abolished this apoptosis induced by furanodienone. In addition, furanodienone elevated the expression of p-p38, p-JNK, but decreased p-ERK, as a result of the produced ROS. The specific inhibitors U0126, SP600125 and SB202190 attenuated the expression of MAPKs, and regulated the expression of cleaved caspase-8, -9 and -3. Furthermore, the potential inhibitory effect of furanodienone on CRC cells was also corroborated in mouse xenograft model. In conclusion, the results demonstrated that furanodienone-triggered ROS plays a pivotal role in apoptosis as an upstream molecule-modulating activity of caspases in mitochondrial pathway via stimulating MAPKs signaling pathway. Our finding may provide a novel candidate for development of antitumor drugs targeting on colorectal cancer.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Xiaoqin Wang
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Daode Hu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
15
|
Fani S, Kamalidehghan B, Lo KM, Nigjeh SE, Keong YS, Dehghan F, Soori R, Abdulla MA, Chow KM, Ali HM, Hajiaghaalipour F, Rouhollahi E, Hashim NM. Anticancer activity of a monobenzyltin complex C1 against MDA-MB-231 cells through induction of Apoptosis and inhibition of breast cancer stem cells. Sci Rep 2016; 6:38992. [PMID: 27976692 PMCID: PMC5157033 DOI: 10.1038/srep38992] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 11/16/2016] [Indexed: 12/30/2022] Open
Abstract
In the present study, we examined the cytotoxic effects of Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, and C1 on MDA-MB-231 cells and derived breast cancer stem cells from MDA-MB-231 cells. The acute toxicity experiment with compound C1 revealed no cytotoxic effects on rats. Fluorescent microscopic studies using Acridine Orange/Propidium Iodide (AO/PI) staining and flow cytometric analysis using an Annexin V probe confirmed the occurrence of apoptosis in C1-treated MDA-MB-231 cells. Compound C1 triggered intracellular reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) releases in treated MDA-MB-231 cells. The Cellomics High Content Screening (HCS) analysis showed the induction of intrinsic pathways in treated MDA-MB-231 cells, and a luminescence assay revealed significant increases in caspase 9 and 3/7 activity. Furthermore, flow cytometric analysis showed that compound C1 induced G0/G1 arrest in treated MDA-MB-231 cells. Real time PCR and western blot analysis revealed the upregulation of the Bax protein and the downregulation of the Bcl-2 and HSP70 proteins. Additionally, this study revealed the suppressive effect of compound C1 against breast CSCs and its ability to inhibit the Wnt/β-catenin signaling pathways. Our results demonstrate the chemotherapeutic properties of compound C1 against breast cancer cells and derived breast cancer stem cells, suggesting that the anticancer capabilities of this compound should be clinically assessed.
Collapse
Affiliation(s)
- Somayeh Fani
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Behnam Kamalidehghan
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran-Karaj Highway, Tehran, Iran
| | - Kong Mun Lo
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Yeap Swee Keong
- Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Malaysia
| | - Firouzeh Dehghan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, 14174 Tehran, Iran
- Department of exercise science, Sports Center, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rahman Soori
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, 14174 Tehran, Iran
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kit May Chow
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Center for Natural Products and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatemeh Hajiaghaalipour
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Elham Rouhollahi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Center for Natural Products and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Meng L, Xu G, Li J, Liu W, Jia W, Ma J, Wei D. Bovine lactoferricin P13 triggers ROS-mediated caspase-dependent apoptosis in SMMC7721 cells. Oncol Lett 2016; 13:511-517. [PMID: 28123590 DOI: 10.3892/ol.2016.5415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/30/2016] [Indexed: 01/17/2023] Open
Abstract
Bovine lactoferricin P13 (LfcinB-P13) is a peptide derived from LfcinB. In the present study, the effect of LfcinB-P13 on the human liver cancer cell line SMMC7721 was investigated in vitro and in vivo. The results of the present study indicate that LfcinB-P13 significantly decreased SMMC7721 cell viability in vitro (P=0.032 vs. untreated cells), while exhibiting low cytotoxicity in the wild-type liver cell line L02. In addition, the rate of apoptosis in SMMC7721 cells was significantly increased following treatment with 40 and 60 µg/ml LfcinB-P13 (P=0.0053 vs. the control group), which was associated with an increase in the level of reactive oxygen species (ROS) and the activation of caspase-3 and -9. Furthermore, ROS chelation led to the suppression of LfcinB-P13-mediated caspase-3 and -9 activation in SMMC7721 cells. LfcinB-P13 was demonstrated to markedly inhibit tumor growth in an SMMC7721-xenograft nude mouse model. The results of the present study indicate that LfcinB-P13 is a novel candidate therapeutic agent for the treatment of liver cancer.
Collapse
Affiliation(s)
- Lixiang Meng
- Department of Hepatic Surgery and Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China; Department of General Surgery, Anhui Provincial Children's Hospital, Beijing Children's Hospital Group, Hefei, Anhui 230051, P.R. China
| | - Geliang Xu
- Department of Hepatic Surgery and Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Jiansheng Li
- Department of Hepatic Surgery and Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Wenbin Liu
- Department of Hepatic Surgery and Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Weidong Jia
- Department of Hepatic Surgery and Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Jinliang Ma
- Department of Hepatic Surgery and Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Decheng Wei
- Department of General Surgery, Anhui Provincial Children's Hospital, Beijing Children's Hospital Group, Hefei, Anhui 230051, P.R. China
| |
Collapse
|
17
|
Fani S, Kamalidehghan B, Lo KM, Hashim NM, Chow KM, Ahmadipour F. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells. Drug Des Devel Ther 2015; 9:6191-201. [PMID: 26648695 PMCID: PMC4664434 DOI: 10.2147/dddt.s87064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 μg/mL after 48 hours treatment. The IC50 value was >30 μg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells.
Collapse
Affiliation(s)
- Somayeh Fani
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Behnam Kamalidehghan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kong Mun Lo
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kit May Chow
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatemeh Ahmadipour
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Rouhollahi E, Moghadamtousi SZ, Hajiaghaalipour F, Zahedifard M, Tayeby F, Awang K, Abdulla MA, Mohamed Z. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5805-13. [PMID: 26604683 PMCID: PMC4629958 DOI: 10.2147/dddt.s88196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats. MATERIALS AND METHODS Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1-4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson's trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates. RESULTS Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson's trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation. CONCLUSION These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis effect and anti-inflammatory responses involving Hsp70/Bax.
Collapse
Affiliation(s)
- Elham Rouhollahi
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Fatemeh Hajiaghaalipour
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Maryam Zahedifard
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Faezeh Tayeby
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Rouhollahi E, Moghadamtousi SZ, Al-Henhena N, Kunasegaran T, Hasanpourghadi M, Looi CY, Abd Malek SN, Awang K, Abdulla MA, Mohamed Z. The chemopreventive potential of Curcuma purpurascens rhizome in reducing azoxymethane-induced aberrant crypt foci in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3911-22. [PMID: 26251570 PMCID: PMC4524378 DOI: 10.2147/dddt.s84560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Curcuma purpurascens BI. rhizome, a member of the Zingiberaceae family, is a popular spice in Indonesia that is traditionally used in assorted remedies. Dichloromethane extract of C. purpurascens BI. rhizome (DECPR) has previously been shown to have an apoptosis-inducing effect on colon cancer cells. In the present study, we examined the potential of DECPR to prevent colon cancer development in rats treated with azoxymethane (AOM) (15 mg/kg) by determining the percentage inhibition in incidence of aberrant crypt foci (ACF). Starting from the day immediately after AOM treatment, three groups of rats were orally administered once a day for 2 months either 10% Tween 20 (5 mL/kg, cancer control), DECPR (250 mg/kg, low dose), or DECPR (500 mg/kg, high dose). Meanwhile, the control group was intraperitoneally injected with 5-fluorouracil (35 mg/kg) for 5 consecutive days. After euthanizing the rats, the number of ACF was enumerated in colon tissues. Bax, Bcl-2, and proliferating cell nuclear antigen (PCNA) protein expressions were examined using immunohistochemical and Western blot analyses. Antioxidant enzymatic activity was measured in colon tissue homogenates and associated with malondialdehyde level. The percentage inhibition of ACF was 56.04% and 68.68% in the low- and high-dose DECPR-treated groups, respectively. The ACF inhibition in the treatment control group was 74.17%. Results revealed that DECPR exposure at both doses significantly decreased AOM-induced ACF formation, which was accompanied by reduced expression of PCNA. Upregulation of Bax and downregulation of Bcl-2 suggested the involvement of apoptosis in the chemopreventive effect of DECPR. In addition, the oxidative stress resulting from AOM treatment was significantly attenuated after administration of DECPR, which was shown by the elevated antioxidant enzymatic activity and reduced malondialdehyde level. Taken together, the present data clearly indicate that DECPR significantly inhibits ACF formation in AOM-treated rats and may offer protection against colon cancer development.
Collapse
Affiliation(s)
- Elham Rouhollahi
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Nawal Al-Henhena
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Thubasni Kunasegaran
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohadeseh Hasanpourghadi
- Cell Biology and Drug Discovery Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Cell Biology and Drug Discovery Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Zahurin Mohamed
- Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Wu C, Geng X, Wan S, Hou H, Yu F, Jia B, Wang L. Cecropin-P17, an analog of Cecropin B, inhibits human hepatocellular carcinoma cell HepG-2 proliferation via regulation of ROS, Caspase, Bax, and Bcl-2. J Pept Sci 2015; 21:661-8. [PMID: 26010398 DOI: 10.1002/psc.2786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
Cecropin-P17 is a peptide derived from Cecropin B. In this study, we investigated the effects and relative mechanisms of Cecropin-P17 in a human liver cancer cell line (HepG-2) in vitro and in vivo. A cell viability assay, Annexin V/propidium iodide assay, western blot, flow cytometry, quantitative real-time polymerase chain reaction, and a tumor-xenograft model were applied to elucidate the mechanism exerted by Cecropin-P17 on HepG-2 cells. Cecropin-P17 significantly inhibited the proliferation of HepG-2 cells and demonstrated low cytotoxicity to normal liver cells in vitro. The apoptotic rate of HepG-2 cells was increased after Cecropin-P17 treatment together with increased production of reactive oxygen species. Moreover, Cecropin-P17 stimulated caspase-3, caspase-9, and Bax and inhibited Bcl-2 on both the transcriptional and translational levels. Finally, Cecropin-P17 significantly suppressed tumor growth in a HepG-2-bearing nude mouse model. All of these results indicated that Cecropin-P17 could be a potential agent for the treatment of liver cancer.
Collapse
Affiliation(s)
- Chunli Wu
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Xiaoping Geng
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Shengyun Wan
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Hui Hou
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Fanzong Yu
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Benli Jia
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Lei Wang
- The General Department of the Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| |
Collapse
|