1
|
Lu Q, Zhang Z, Xu Y, Chen Y, Li C. Sanguinarine, a major alkaloid from Zanthoxylum nitidum (Roxb.) DC., inhibits urease of Helicobacter pylori and jack bean: Susceptibility and mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115388. [PMID: 35577159 DOI: 10.1016/j.jep.2022.115388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicine and mainly adopted to treat gastric ulcer, gastritis and stomach cancer. Sanguinarine (SNG), a natural alkaloid isolated from Z. nitidum, possesses significant anti-Helicobacter pylori and gastric protection effects. However, the underlying mechanism is sparsely elucidated. AIM OF THIS STUDY The present study aims to explore the inhibition effect, kinetics and potential mechanism of SNG against H. pylori urease (HPU) and jack bean urease (JBU). MATERIALS AND METHODS The improved spectrophotometric berthelot method was applied to estimate the inhibitory effect of SNG against HPU and JBU. The Lineweaver-Burk plots were adopted for investigating the inhibitory pattern in enzymatic kinetics. Sulfydryl-containing compounds and competitive active-site Ni2+ binding depressors were used for mechanism research. RESULTS SNG remarkably suppressed the activities of HPU and JBU in concentration-and time-dependent mode with IC50 of 0.48 ± 0.14 mM and 0.11 ± 0.02 mM, respectively, in comparison with urease retardant acetohydroxamic acid (0.06 ± 0.01 mM for HPU and 0.03 ± 0.00 mM for JBU, respectively). Kinetic analysis demonstrated that the inhibition of SNG against HPU and JBU were separately characterized by slow-binding, mixed-type and slow-binding, non-competitive type. Addition of sulfydryl-containing reagents (dithiothreitol, glutathione and L-cysteine) and competitive Ni2+ binding restrainers (boric acid and sodium fluoride) significantly abrogated the urease inhibitory effect of SNG, suggesting the significant role of the thiols and Ni2+ for the urease inhibition by SNG. By contrast, interaction with thiol groups possibly contributed to the repression of SNG on JBU. Furthermore, the urease suppression was proved to be partially reversible since the SNG-blocked enzyme could be partly reactivated by glutathione. CONCLUSION SNG could observably inhibit H. pylori urease targeting the thiols and Ni2+, which indicated that SNG was a new urease suppressant with great promise. The present research also provided scientific evidence for the application of SNG and Z. nitidum treating H. pylori-associated gastrointestinal diseases.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Zhenshan Zhang
- Analysis & Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518005, PR China
| | - Yujia Chen
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
2
|
Bai DS, Yang X, Lai JL, Wang YW, Zhang Y, Luo XG. In situ restoration of soil ecological function in a coal gangue reclamation area after 10 years of elm/poplar phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114400. [PMID: 34995941 DOI: 10.1016/j.jenvman.2021.114400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/26/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The soil ecological health risks and toxic effects of coal gangue accumulation were examined after 10 years of elm/poplar phytoremediation. The changes in soil enzyme activities, ionome metabolism, and microbial community structure were analyzed at shallow (5-15 cm), intermediate (25-35 cm), and deep (45-55 cm) soil depths. Soil acid phosphatase activity in the restoration area increased significantly by 4.36-7.18 fold (p < 0.05). Soil concentrations of the metal ions Cu, Pb, Ni, Co, Bi, U, and Th were significantly reduced, as were concentrations of the non-metallic element S. The repair effect was shallow > middle > deep. The soil community structure, determined by 16S diversity results, was changed significantly in the restoration area, and the abundance of microorganisms increased at shallow soil depths. Altererythrobacter and Sphingomonas species were at the center of the microbial weight network in the restoration area. Redundancy analysis (RDA) showed that S and Na are important driving forces for the microbial community distributions at shallow soil depths. The KEGG function prediction indicated enhancement of the microbial function of the middle depth soil layers in the restoration area. Overall, phytoremediation enhanced the biotransformation of soil phosphorus in the coal gangue restoration area, reduced the soil content of several harmful metal elements, significantly changed the structure and function of the microbial community, and improved the overall soil ecological environment.
Collapse
Affiliation(s)
- Dong-Sheng Bai
- College of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yi-Wang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xue-Gang Luo
- College of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
3
|
Qu J, Liu Q, You G, Ye L, Jin Y, Kong L, Guo W, Xu Q, Sun Y. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Med Res Rev 2021; 42:1147-1178. [PMID: 34877672 DOI: 10.1002/med.21873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022]
Abstract
Andrographolide, a well-known natural lactone having a range of pharmacological actions in traditional Chinese medicine. It has long been used to cure a variety of ailments. In this review, we cover the pharmacokinetics and pharmacological activity of andrographolide which supports its further clinical application in cancers and inflammatory diseases. Growing evidence shows a good therapeutic effect in inflammatory diseases, including liver diseases, joint diseases, respiratory system diseases, nervous system diseases, heart diseases, inflammatory bowel diseases, and inflammatory skin diseases. As a result, the effects of andrographolide on immune cells and the processes that underpin them are discussed. The preclinical use of andrographolide to different organs in response to malignancies such as colorectal, liver, gastric, breast, prostate, lung, and oral cancers has also been reviewed. In addition, several clinical trials of andrographolide in inflammatory diseases and cancers have been summarized. This review highlights recent advances in ameliorating inflammatory diseases as well as cancers by andrographolide and its analogs, providing a new perspective for subsequent research of this traditional natural product.
Collapse
Affiliation(s)
- Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Guoquan You
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Ling Ye
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Tran QTN, Tan WSD, Wong WSF, Chai CLL. Polypharmacology of andrographolide: beyond one molecule one target. Nat Prod Rep 2020; 38:682-692. [PMID: 33021616 DOI: 10.1039/d0np00049c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Covering: 1951 to 2020Andrographolide is one of the most widely studied plant secondary metabolites, known to display diverse pharmacological actions. Current literature has documented a sizeable list of pharmacological targets for andrographolide, suggesting its multi-targeting nature. Many of these targets are central to the pathophysiology of highly prevalent diseases such as cardiovascular diseases, neurodegenerative disorders, autoimmunity, and even cancer. Despite its well-documented therapeutic efficacy in various disease models, for years, the discrepancies between in vivo bioavailability and bioactivity of andrographolide and the debate surrounding its multi-targeting properties (polypharmacology or promiscuity?) have hindered the development of this versatile molecule into a potential therapeutic agent. Is andrographolide a valuable lead for therapeutic development or a potential invalid metabolic panacea (IMP)? This perspective article aims to discuss this by considering various contributing factors to the polypharmacology of andrographolide.
Collapse
Affiliation(s)
- Quy T N Tran
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543, Singapore.
| | | | | | | |
Collapse
|
5
|
Li C, Huang P, Wong K, Xu Y, Tan L, Chen H, Lu Q, Luo C, Tam C, Zhu L, Su Z, Xie J. Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process. J Enzyme Inhib Med Chem 2018; 33:1362-1375. [PMID: 30191728 PMCID: PMC6136390 DOI: 10.1080/14756366.2018.1501044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this study, we examined the anti-Helicobactor pylori effects of the main protoberberine-type alkaloids in Rhizoma Coptidis. Coptisine exerted varying antibacterial and bactericidal effects against three standard H. pylori strains and eleven clinical isolates, including four drug-resistant strains, with minimum inhibitory concentrations ranging from 25 to 50 μg/mL and minimal bactericidal concentrations ranging from 37.5 to 125 μg/mL. Coptisine’s anti-H. pylori effects derived from specific inhibition of urease in vivo. In vitro, coptisine inactivated urease in a concentration-dependent manner through slow-binding inhibition and involved binding to the urease active site sulfhydryl group. Coptisine inhibition of H. pylori urease (HPU) was mixed type, while inhibition of jack bean urease was non-competitive. Importantly, coptisine also inhibited HPU by binding to its nickel metallocentre. Besides, coptisine interfered with urease maturation by inhibiting activity of prototypical urease accessory protein UreG and formation of UreG dimers and by promoting dissociation of nickel from UreG dimers. These findings demonstrate that coptisine inhibits urease activity by targeting its active site and inhibiting its maturation, thereby effectively inhibiting H. pylori. Coptisine may thus be an effective anti-H. pylori agent.
Collapse
Affiliation(s)
- Cailan Li
- a Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Ping Huang
- b School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Kambo Wong
- c School of Life Sciences , Center for Protein Science and Crystallography, The Chinese University of Hong Kong , P. R. China
| | - Yifei Xu
- b School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Lihua Tan
- a Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Hanbin Chen
- d The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Qiang Lu
- e Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Chaodan Luo
- a Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Chunlai Tam
- c School of Life Sciences , Center for Protein Science and Crystallography, The Chinese University of Hong Kong , P. R. China
| | - Lixiang Zhu
- b School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Ziren Su
- a Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| | - Jianhui Xie
- f Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome , The Second Affiliated Hospital, Guangzhou University of Chinese Medicine , Guangzhou , P. R. China
| |
Collapse
|
6
|
Kafarski P, Talma M. Recent advances in design of new urease inhibitors: A review. J Adv Res 2018; 13:101-112. [PMID: 30094085 PMCID: PMC6077125 DOI: 10.1016/j.jare.2018.01.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Urease is a nickel-dependent metalloenzyme found in plants, some bacteria, and fungi. Bacterial enzyme is of special importance since it has been demonstrated as a potent virulence factor for some species. Especially it is central to Helicobacter pylori metabolism and virulence being necessary for its colonization of the gastric mucosa, and is a potent immunogen that elicits a vigorous immune response. Therefore, it is not surprising that efforts to design, synthesize and evaluate of new inhibitors of urease are and active field of medicinal chemistry. In this paper recent advances on this field are reviewed.
Collapse
Affiliation(s)
- Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
7
|
Liu Q, Shi WK, Ren SZ, Ni WW, Li WY, Chen HM, Liu P, Yuan J, He XS, Liu JJ, Cao P, Yang PZ, Xiao ZP, Zhu HL. Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection. Eur J Med Chem 2018; 156:126-136. [DOI: 10.1016/j.ejmech.2018.06.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/17/2018] [Accepted: 06/29/2018] [Indexed: 11/26/2022]
|
8
|
Li Y, Zhou Y, Han W, Shi M, Zhao H, Liu Y, Zhang F, Zhang J. Novel lipidic and bienzymatic nanosomes for efficient delivery and enhanced bioactivity of catalase. Int J Pharm 2017; 532:157-165. [DOI: 10.1016/j.ijpharm.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/08/2017] [Accepted: 09/03/2017] [Indexed: 01/19/2023]
|
9
|
Hassan STS, Švajdlenka E, Berchová-Bímová K. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-enzymatic Properties against Urease by an ESI-MS Based Assay. Molecules 2017; 22:molecules22050722. [PMID: 28468298 PMCID: PMC6154344 DOI: 10.3390/molecules22050722] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022] Open
Abstract
For decades, Hibiscus sabdariffa L. and its phytochemicals have been shown to possess a wide range of pharmacologic properties. In this study, aqueous extract of Hibiscus sabdariffa (AEHS) and its bioactive constituent protocatechuic acid (PCA), have been evaluated in vitro for their antiviral activity against HSV-2 clinical isolates and anti-enzymatic activity against urease. Antiherpetic activity was evaluated by the titer reduction assay in infected Vero cells, and cytotoxicity was evaluated by the neutral red dye-uptake method. Anti-urease activity was determined by a developed Electrospray Ionization-Mass Spectrometry (ESI-MS)-based assay. PCA showed potent anti-HSV-2 activity compared with that of acyclovir, with EC50 values of 0.92 and 1.43 µg∙mL−1, respectively, and selectivity indices > 217 and > 140, respectively. For the first time, AEHS was shown to exert anti-urease inhibition activity, with an IC50 value of 82.4 µg∙mL−1. This, combined with its safety, could facilitate its use in practical applications as a natural urease inhibitor. Our results present Hibiscus sabdariffa L. and its bioactive compound PCA as potential therapeutic agents in the treatment of HSV-2 infection and the treatment of diseases caused by urease-producing bacteria.
Collapse
Affiliation(s)
- Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic.
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha-Suchdol, Czech Republic.
| | - Emil Švajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic.
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha-Suchdol, Czech Republic.
| |
Collapse
|
10
|
Zhou JT, Li CL, Tan LH, Xu YF, Liu YH, Mo ZZ, Dou YX, Su R, Su ZR, Huang P, Xie JH. Inhibition of Helicobacter pylori and Its Associated Urease by Palmatine: Investigation on the Potential Mechanism. PLoS One 2017; 12:e0168944. [PMID: 28045966 PMCID: PMC5207512 DOI: 10.1371/journal.pone.0168944] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/08/2016] [Indexed: 01/17/2023] Open
Abstract
In this paper, we evaluated the anti-Helicobacter pylori activity and the possible inhibitory effect on its associated urease by Palmatine (Pal) from Coptis chinensis, and explored the potential underlying mechanism. Results indicated that Pal exerted inhibitory effect on four tested H. pylori strains (ATCC 43504, NCTC 26695, SS1 and ICDC 111001) by the agar dilution test with minimum inhibitory concentration (MIC) values ranging from 100 to 200 μg/mL under neutral environment (pH 7.4), and from 75 to 100 μg/mL under acidic conditions (pH 5.3), respectively. Pal was observed to significantly inhibit both H. pylori urease (HPU) and jack bean urease (JBU) in a dose-dependent manner, with IC50 values of 0.53 ± 0.01 mM and 0.03 ± 0.00 mM, respectively, as compared with acetohydroxamic acid, a well-known urease inhibitor (0.07 ± 0.01 mM for HPU and 0.02 ± 0.00 mM for JBU, respectively). Kinetic analyses showed that the type of urease inhibition by Pal was noncompetitive for both HPU and JBU. Higher effectiveness of thiol protectors against urease inhibition than the competitive Ni2+ binding inhibitors was observed, indicating the essential role of the active-site sulfhydryl group in the urease inhibition by Pal. DTT reactivation assay indicated that the inhibition on the two ureases was reversible, further supporting that sulfhydryl group should be obligatory for urease inhibition by Pal. Furthermore, molecular docking study indicated that Pal interacted with the important sulfhydryl groups and inhibited the active enzymatic conformation through N-H ∙ π interaction, but did not interact with the active site Ni2+. Taken together, Pal was an effective inhibitor of H. pylori and its urease targeting the sulfhydryl groups, representing a promising candidate as novel urease inhibitor. This investigation also gave additional scientific support to the use of C. chinensis to treat H. pylori-related gastrointestinal diseases in traditional Chinese medicine. Pal might be a potentially beneficial therapy for gastritis and peptic ulcers induced by H. pylori infection and other urease-related diseases.
Collapse
Affiliation(s)
- Jiang-Tao Zhou
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Cai-Lan Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Li-Hua Tan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yi-Fei Xu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yu-Hong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zhi-Zhun Mo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yao-Xing Dou
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Rui Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ping Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jian-Hui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| |
Collapse
|
11
|
Enzyme and inhibition assay of urease by continuous monitoring of the ammonium formation based on capillary electrophoresis. Electrophoresis 2016; 37:2692-2698. [DOI: 10.1002/elps.201600162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/24/2016] [Accepted: 07/13/2016] [Indexed: 01/14/2023]
|
12
|
Hou JQ, Wang BL, Huang XJ, Zhang XQ, Li GQ, Wang H, Ye WC, Li P. Isolation and characterization of related impurities in andrographolide sodium bisulphite injection. RSC Adv 2016. [DOI: 10.1039/c5ra28178d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Andrographolide sodium bisulphite (ASB) injection was widely used in China for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Ji-Qin Hou
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Department of Natural Medicinal Chemistry
| | - Bao-Lin Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Department of Natural Medicinal Chemistry
| | - Xiao-Jun Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- China
| | - Xiao-Qi Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- China
| | - Guo-Qiang Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- China
| | - Hao Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Department of Natural Medicinal Chemistry
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
- Jinan University
- Guangzhou 510632
- China
| | - Ping Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|