1
|
Du J, Shen E. Anthocyanin-Mediated Autophagy in Hepatocellular Carcinoma: Gene Associations and Prognostic Implications. Endocr Metab Immune Disord Drug Targets 2025; 25:140-151. [PMID: 38616759 DOI: 10.2174/0118715303280877240130065512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a globally prevalent malignancy accompanied by high incidence, poor outcomes, and high mortality. Anthocyanins can inhibit tumor proliferation, migration, invasion, and promote apoptosis. Moreover, autophagy-related genes (ARGs) may play vital roles in HCC progression. This study aimed to decipher the mechanisms through which anthocyanins influence HCC via ARGs and to establish a novel prognostic model. METHODS Based on data from public databases, differential analysis and the Venn algorithm were employed to detect intersecting genes among differentially expressed genes (DEGs), anthocyanin- related targets, and ARGs. Consensus clustering was implemented to delineate molecular subtypes of HCC. The prognostic model was developed by Cox regression analyses. CIBIRSORT was engaged to assess the immune cell infiltration. Kaplan-Meier (KM) analysis and receiver operating characteristic (ROC) curve were utilized to evaluate the predictive efficiency of the prognostic signature. RESULTS A total of 36 intersecting genes were identified from overlapping 1524 ARGs, 537 anthocyanin- related targets, and 5247 DEGs. Consensus clustering determined three molecular subtypes (cluster 1, cluster 2, and cluster 3). Cluster 1 showed worse outcomes and remarkably higher abundances of plasma cells and T follicular helper cells. Furthermore, four prognostic signatures (KDR (Kinase insert domain receptor), BAK1 (BCL2 antagonist/killer 1), HDAC1 (Histone deacetylase 1), and CDK2 (Cyclin-dependent kinase 2)) were identified and showing substantial predictive efficacy. CONCLUSION This investigation identified three molecular subtypes of HCC patients and proposed a promising prognostic signature comprising KDR, BAK1, HDAC1, and CDK2, which could supply further robust evidence for additional clinical and functional studies.
Collapse
Affiliation(s)
- Juan Du
- Second Internal Medicine, Jilin Cancer Hospital, Changchun, Jilin, 130012, China
| | - Enhua Shen
- Department of Infectious Diseases, Jilin Province Faw General Hospital, Changchun, Jilin, 130013, China
| |
Collapse
|
2
|
Hsu CY, Rajabi S, Hamzeloo-Moghadam M, Kumar A, Maresca M, Ghildiyal P. Sesquiterpene lactones as emerging biomolecules to cease cancer by targeting apoptosis. Front Pharmacol 2024; 15:1371002. [PMID: 38529189 PMCID: PMC10961375 DOI: 10.3389/fphar.2024.1371002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Apoptosis is a programmed cell death comprising two signaling cascades including the intrinsic and extrinsic pathways. This process has been shown to be involved in the therapy response of different cancer types, making it an effective target for treating cancer. Cancer has been considered a challenging issue in global health. Cancer cells possess six biological characteristics during their developmental process known as cancer hallmarks. Hallmarks of cancer include continuous growth signals, unlimited proliferation, resistance to proliferation inhibitors, apoptosis escaping, active angiogenesis, and metastasis. Sesquiterpene lactones are one of the large and diverse groups of planet-derived phytochemicals that can be used as sources for a variety of drugs. Some sesquiterpene lactones possess many biological activities such as anti-inflammatory, anti-viral, anti-microbial, anti-malarial, anticancer, anti-diabetic, and analgesic. This review article briefly overviews the intrinsic and extrinsic pathways of apoptosis and the interactions between the modulators of both pathways. Also, the present review summarizes the potential effects of sesquiterpene lactones on different modulators of the intrinsic and extrinsic pathways of apoptosis in a variety of cancer cell lines and animal models. The main purpose of the present review is to give a clear picture of the current knowledge about the pro-apoptotic effects of sesquiterpene lactones on various cancers to provide future direction in cancer therapeutics.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Liao Y, Gui Y, Li Q, An J, Wang D. The signaling pathways and targets of natural products from traditional Chinese medicine treating gastric cancer provide new candidate therapeutic strategies. Biochim Biophys Acta Rev Cancer 2023; 1878:188998. [PMID: 37858623 DOI: 10.1016/j.bbcan.2023.188998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Gastric cancer (GC) is one of the severe malignancies with high incidence and mortality, especially in Eastern Asian countries. Significant advancements have been made in diagnosing and treating GC over the past few decades, resulting in tremendous improvements in patient survival. In recent years, traditional Chinese medicine (TCM) has garnered considerable attention as an alternative therapeutic approach for GC due to its multicomponent and multitarget characteristics. Consequently, natural products found in TCM have attracted researchers' attention, as growing evidence suggests that these natural products can impede GC progression by regulating various biological processes. Nevertheless, their molecular mechanisms are not systematically uncovered. Here, we review the major signaling pathways involved in GC development. Additionally, clinical GC samples were analyzed. Moreover, the anti-GC effects of natural products, their underlying mechanisms and potential targets were summarized. These summaries are intended to facilitate further relevant research, and accelerate the clinical applications of natural products in GC treatment.
Collapse
Affiliation(s)
- Yile Liao
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Gui
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Qingzhou Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun An
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Han L, Li T, Wang Y, Lai W, Zhou H, Niu Z, Su J, Lv G, Zhang G, Gao J, Huang J, Lou Z. Weierning, a Chinese patent medicine, improves chronic atrophic gastritis with intestinal metaplasia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116345. [PMID: 36906155 DOI: 10.1016/j.jep.2023.116345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weierning tablet (WEN) is a traditional Chinese patent medicine widely used in clinical for chronic atrophic gastritis (CAG) therapy for years. However, the underlying mechanisms of WEN on anti-CAG are still unveiled. AIM OF THE STUDY The present study aimed to elucidate the characteristic function of WEN on anti-CAG and to illuminate its potential mechanism. METHODS The CAG model was established by gavage rats with a modeling solution (consisting of 2% sodium salicylate and 30% alcohol) with irregular diets and free access to 0.1% ammonia solution for two months on end. An enzyme-linked immunosorbent assay was used to measure the serum levels of gastrin, pepsinogen, and inflammatory cytokines. qRT-PCR was applied to measure mRNA expressions of IL-6, IL-18, IL-10, TNF-α, and γ-IFN in gastric tissue. Pathological changes and the ultrastructure of gastric mucosa were examined by hematoxylin and eosin staining and transmission electron microscopy, respectively. AB-PAS staining was applied to observe the intestinal metaplasia of gastric mucosa. Immunohistochemistry and Western blot were used to measure the expression levels of mitochondria apoptosis-related proteins and Hedgehog pathway-related proteins in gastric tissues. Expressions of Cdx2 and Muc2 protein were determined by immunofluorescent staining. RESULTS WEN could dose-dependently lower the serum level of IL-1β and the mRNA expressions of IL-6, IL-8, IL-10, TNF-α, and γ-IFN in gastric tissue. Also, WEN significantly alleviated the collagen deposition in gastric submucosa, regulated the expressions of Bax, Cleaved-caspase9, Bcl2, and Cytochrome c to reduce the apoptosis of gastric mucosa epithelial cells, and maintained the integrity of the gastric mucosal barrier. Moreover, WEN could reduce protein expressions of Cdx2, Muc2, Shh, Gli1, and Smo, and reverse intestinal metaplasia of gastric mucosa to block the progress of CAG. CONCLUSION This study demonstrated a positive effect of WEN on improving CAG and reverse intestinal metaplasia. These functions were related to the suppression of gastric mucosal cells' apoptosis and the inhibition of Hedgehog pathways' activation.
Collapse
Affiliation(s)
- Liping Han
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Ting Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Yingying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Weizi Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Hengpu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Zhuangwei Niu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| | - Jianbo Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Hu Q, Li Z, Li Y, Deng X, Chen Y, Ma X, Zeng J, Zhao Y. Natural products targeting signaling pathways associated with regulated cell death in gastric cancer: Recent advances and perspectives. Phytother Res 2023. [PMID: 37157181 DOI: 10.1002/ptr.7866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with high morbidity and mortality. The complexity of GC process lies in the multi-phenotypic linkage regulation, in which regulatory cell death (RCD) is the core link, which largely dominates the fate of GC cells and becomes a key determinant of GC development and prognosis. In recent years, increasing evidence has been reported that natural products can prevent and inhibit the development of GC by regulating RCDs, showing great therapeutic potential. In order to further clarify its key regulatory characteristics, this review focused on specific expressions of RCDs, combined with a variety of signaling pathways and their crosstalk characteristics, sorted out the key targets and action rules of natural products targeting RCD. It is highlighted that a variety of core biological pathways and core targets are involved in the decision of GC cell fate, including the PI3K/Akt signaling pathway, MAPK-related signaling pathways, p53 signaling pathway, ER stress, Caspase-8, gasdermin D (GSDMD), and so on. Moreover, natural products target the crosstalk of different RCDs by modulating above signaling pathways. Taken together, these findings suggest that targeting various RCDs in GC with natural products is a promising strategy, providing a reference for further clarifying the molecular mechanism of natural products treating GC, which warrants further investigations in this area.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Choi YJ, Choi YK, Ko SG, Cheon C, Kim TY. Investigation of Molecular Mechanisms Involved in Sensitivity to the Anti-Cancer Activity of Costunolide in Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24044009. [PMID: 36835418 PMCID: PMC9965698 DOI: 10.3390/ijms24044009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Costunolide (CTL), an active compound isolated from Saussurea lappa Clarke and Laurus nobilis L, has been shown to induce apoptosis via reactive oxygen species (ROS) generation in various types of cancer cells. However, details of molecular mechanisms underlying the difference in sensitivity of cancer cells to CTL are still largely unknown. Here, we tested the effect of CTL on the viability of breast cancer cells and found that CTL had a more efficient cytotoxic effect against SK-BR-3 cells than MCF-7 cells. Mechanically, ROS levels were significantly increased upon CTL treatment only in SK-BR-3 cells, which leads to lysosomal membrane permeabilization (LMP) and cathepsin D release, and subsequent activation of the mitochondrial-dependent intrinsic apoptotic pathway by inducing mitochondrial outer membrane permeabilization (MOMP). In contrast, treatment of MCF-7 cells with CTL activated PINK1/Parkin-dependent mitophagy to remove damaged mitochondria, which prevented the elevation of ROS levels, thereby contributing to their reduced sensitivity to CTL. These results suggest that CTL is a potent anti-cancer agent, and its combination with the inhibition of mitophagy could be an effective method for treating breast cancer cells that are less sensitive to CTL.
Collapse
Affiliation(s)
- Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youn Kyung Choi
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chunhoo Cheon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (C.C.); (T.Y.K.); Tel.: +82-2-961-0329 (C.C.); +82-42-878-9155 (T.Y.K.)
| | - Tai Young Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Correspondence: (C.C.); (T.Y.K.); Tel.: +82-2-961-0329 (C.C.); +82-42-878-9155 (T.Y.K.)
| |
Collapse
|
7
|
Zhao M, Yang Y, Nian Q, Shen C, Xiao X, Liao W, Zheng Q, Zhang G, Chen N, Gong D, Tang J, Wen Y, Zeng J. Phytochemicals and mitochondria: Therapeutic allies against gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154608. [PMID: 36586205 DOI: 10.1016/j.phymed.2022.154608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mitochondria are the energy factories of cells with the ability to modulate the cell cycle, cellular differentiation, signal transduction, growth, and apoptosis. Existing drugs targeting mitochondria in cancer treatment have disadvantages of drug resistance and side effects. Phytochemicals, which are widely found in plants, are bioactive compounds that could facilitate the development of new drugs for gastric cancer. Studies have shown that some phytochemicals can suppress the development of gastric cancer. METHODS We searched for data from PubMed, China National Knowledge Infrastructure, Web of Science, and Embase databases from initial establishment to December 2021 to review the mechanism by which phytochemicals suppress gastric cancer cell growth by modulating mitochondrial function. Phytochemicals were classified and summarized by their mechanisms of action. RESULTS Phytochemicals can interfere with mitochondria through several mechanisms to reach the goal of promoting apoptosis in gastric cancer cells. Some phytochemicals, e.g., daidzein and tetrandrine promoted cytochrome c spillover into the cytoplasm by modulating the members of the B-cell lymphoma-2 protein family and induced apoptotic body activity by activating the caspase protein family. Phytochemicals (e.g., celastrol and shikonin) could promote the accumulation of reactive oxygen species and reduce the mitochondrial membrane potential. Several phytochemicals (e.g., berberine and oleanolic acid) activated mitochondrial apoptotic submission via the phosphatidylinositol-3-kinase/Akt signaling pathway, thereby triggering apoptosis in gastric cancer cells. Several well-known phytochemicals that target mitochondria, including berberine, ginsenoside, and baicalein, showed the advantages of multiple targets, high efficacy, and fewer side effects. CONCLUSIONS Phytochemicals could target the mitochondria in the treatment of gastric cancer, providing potential directions and evidence for clinical translation. Drug discovery focused on phytochemicals has great potential to break barriers in cancer treatment.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Caifei Shen
- Department of Endoscopy center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Daoyin Gong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| |
Collapse
|
8
|
Huang ZQ, Luo W, Li WX, Chen P, Wang Z, Chen RJ, Wang Y, Huang WJ, Liang G. Costunolide alleviates atherosclerosis in high-fat diet-fed ApoE -/- mice through covalently binding to IKKβ and inhibiting NF-κB-mediated inflammation. Acta Pharmacol Sin 2023; 44:58-70. [PMID: 35710877 PMCID: PMC9813247 DOI: 10.1038/s41401-022-00928-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 01/18/2023]
Abstract
Costunolide (CTD) is a sesquiterpene lactone isolated from costus root and exhibits various biological activities including anti-inflammation. Since atherosclerosis is a chronic inflammatory disease, we herein investigated the anti-atherosclerotic effects of CTD and the underlying mechanism. Atherosclerosis was induced in ApoE-/- mice by feeding them with a high-fat diet (HFD) for 8 weeks, followed by administration of CTD (10, 20 mg ·kg-1·d-1, i.g.) for 8 weeks. We showed that CTD administration dose-dependently alleviated atherosclerosis in HFD-fed ApoE-/- mice. Furthermore, we found that CTD dose-dependently reduced inflammatory responses in aortas of the mice, as CTD prevented infiltration of inflammatory cells in aortas and attenuated oxLDL uptake in macrophages, leading to reduced expression of pro-inflammatory and pro-fibrotic molecules in aortas. Similar results were observed in oxLDL-stimulated mouse primary peritoneal macrophages (MPMs) in vitro. We showed that pretreatment with CTD (2.5, 5. 10 μM) restrained oxLDL-induced inflammatory responses in MPMs by blocking pro-inflammatory NF-κB/p65 signaling pathway. We further demonstrated that CTD inactivated NF-κB via covalent binding to cysteine 179 on IKKβ, a canonical upstream regulator of NF-κB, reducing its phosphorylation and leading to conformational change in the active loop of IKKβ. Our results discover IKKβ as the target of CTD for its anti-inflammatory activity and elucidate a molecular mechanism underlying the anti-atherosclerosis effect of CTD. CTD is a potentially therapeutic candidate for retarding inflammatory atherosclerotic diseases.
Collapse
Affiliation(s)
- Zhu-Qi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Xin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhe Wang
- Department of Pharmacy, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rui-Jie Chen
- Department of Pharmacy, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Jian Huang
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
9
|
Cheikh IA, El-Baba C, Youssef A, Saliba NA, Ghantous A, Darwiche N. Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention. Expert Opin Drug Discov 2022; 17:1377-1405. [PMID: 36373806 DOI: 10.1080/17460441.2023.2147920] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Sesquiterpene lactones (SLs) are one of the most diverse bioactive secondary metabolites found in plants and exhibit a broad range of therapeutic properties . SLs have been showing promising potential in cancer clinical trials, and the molecular mechanisms underlying their anticancer potential are being uncovered. Recent evidence also points to a potential utility of SLs in cancer prevention. AREAS COVERED This work evaluates SLs with promising anticancer potential based on cell, animal, and clinical models: Artemisinin, micheliolide, thapsigargin dehydrocostuslactone, arglabin, parthenolide, costunolide, deoxyelephantopin, alantolactone, isoalantolactone, atractylenolide 1, and xanthatin as well as their synthetic derivatives. We highlight actionable molecular targets and biological mechanisms underlying the anticancer therapeutic properties of SLs. This is complemented by a unique assessment of SL mechanisms of action that can be exploited in cancer prevention. We also provide insights into structure-activity and pharmacokinetic properties of SLs and their potential use in combination therapies. EXPERT OPINION We extract seven major lessons learned and present evidence-based solutions that can circumvent some scientific limitations or logistic impediments in SL anticancer research. SLs continue to be at the forefront of cancer drug discovery and are worth a joint interdisciplinary effort in order to leverage their potential in cancer therapy and prevention.
Collapse
Affiliation(s)
- Israa A Cheikh
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali Youssef
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Najat A Saliba
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Jiao J, Cheng CS, Xu P, Yang P, Zhang K, Jing Y, Chen Z. Mechanisms of pancreatic tumor suppression mediated by Xiang-lian pill: An integrated in silico exploration and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115586. [PMID: 35931303 DOI: 10.1016/j.jep.2022.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiang-lian pill, consisting of Coptis chinensis Franch. coprocessed with Tetradium ruticarpum (A.Juss.) T.G.Hartley (Yu-huang-lian) and Aucklandia lappa DC. (Mu-xiang), is traditionally used to relieve fever, abdominal pain, and gastrointestinal inflammatory symptoms observed in patients with malignancies of the gastrointestinal tract. Each of the three herbs contained in Xiang-lian pill has been indicated to have anticancer effects on a variety of cancers, but its effects on pancreatic cancer remain unexplored. The main extracts of these herbs have anti-pancreatic cancer effects, but the comprehensive mechanism of this compound prescription of Xiang-lian pill in pancreatic cancer remains to be revealed. AIM OF THE STUDY To explore the main active ingredients, potential anti-pancreatic cancer targets, and related mechanisms of the Xiang-lian pill and to determine its therapeutic value in vivo. MATERIALS AND METHODS Network pharmacology and bioinformatics analysis were applied to screen the potential effective ingredients and key targets. Liquid/gas-mass spectrometry was performed for ingredients validation. Molecular docking and the cellular thermal shift assay were performed to test the binding efficiency between ingredients and targets. A murine pancreatic cancer model was established and administered different doses of the Xiang-lian pill. Hematoxylin-eosin staining was used for histopathological observation. Immunohistochemistry and immunoblotting were conducted for target validation. In vitro studies (cell viability and clonogenicity assays) were conducted to investigate the impact of three main ingredients in Xiang-lian pill on pancreatic cancer cells. PTGS2 overexpression was performed to reversely confirm the antitumor mechanisms of rutaecarpine as a specific PTGS2 inhibitor. RESULTS Xiang-lian pill suppressed pancreatic cancer growth in the dose range of 0.78-2.34g/kg with no significant toxicity. Sixteen potentially active ingredients and 26 corresponding therapeutic targets for pancreatic cancer were identified. PTGS2, PTGS1, KCNH2, PRSS1, and HSP90AA1 were the top 5 significant genes targeted by the Xiang-lian pill. Evodiamine, rutaecarpine and stigmasterol bound to PTGS2 and PTGS1 with different affinities and inhibited pancreatic cancer cell proliferation. The PTGS2-associated metabolic pathway MEK/ERK was downregulated by rutaecarpine in vitro and the Xiang-lian pill in vivo. CONCLUSIONS Xiang-lian pill mainly regulates inflammation, apoptosis, metastasis, and metabolism to exert an antitumor effect. The main active ingredients in Xiang-lian pill exhibit antitumor roles through directly binding to key targets in pancreatic cancer. PTGS2 mediated MEK/ERK inhibition by rutaecarpine represents a key therapeutic mechanism of Xiang-lian pill.
Collapse
Affiliation(s)
- Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Panling Xu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Peiwen Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yanhua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Li J, Duan B, Cheng Z, Kou M. Costunolide enhances cisplatin-induced cytotoxicity in hypopharyngeal SCC FaDu cells by increasing the production of reactive oxygen species. Pathol Res Pract 2022; 236:153966. [DOI: 10.1016/j.prp.2022.153966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
|
12
|
Song S, Zhou J, Li Y, Liu J, Li J, Shu P. Network pharmacology and experimental verification based research into the effect and mechanism of Aucklandiae Radix-Amomi Fructus against gastric cancer. Sci Rep 2022; 12:9401. [PMID: 35672352 PMCID: PMC9174187 DOI: 10.1038/s41598-022-13223-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
To investigate the mechanism of the Aucklandiae Radix–Amomi Fructus (AR–AF) herb pair in treating gastric cancer (GC) by using network pharmacology and experimental verification. Using the traditional Chinese medicine system pharmacology database and analysis platform (TCMSP), the major active components and their corresponding targets were estimated and screened out. Using Cytoscape 3.7.2 software, a visual network was established using the active components of AR–AF and the targets of GC. Based on STRING online database, the protein interaction network of vital targets was built and analyzed. With the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways of the target enrichment were performed. AutoDock Vina was used to perform molecular docking and calculate the binding affinity. The mRNA and protein expression levels of the hub targets were analyzed by the Oncomine, GEPIA, HPA databases and TIMER online tool, and the predicted targets were verified by qRT–PCR in vitro. Eremanthin, cynaropicrin, and aceteugenol were identified as vital active compounds, and AKT1, MAPK3, IL6, MAPK1, as well as EGFR were considered as the major targets. These targets exerted therapeutic effects on GC by regulating the cAMP signaling pathway, and PI3K-Akt signaling pathway. Molecular docking revealed that these active compounds and targets showed good binding interactions. The validation in different databases showed that most of the results were consistent with this paper. The experimental results confirmed that eremanthin could inhibit the proliferation of AGS by reducing the mRNA expression of hub targets. As predicted by network pharmacology and validated by the experimental results, AR–AF exerts antitumor effects through multiple components, targets, and pathways, thereby providing novel ideas and clues for the development of preparations and the treatment of GC.
Collapse
Affiliation(s)
- Siyuan Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jiayu Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Ye Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jiatong Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jingzhan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China. .,Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China. .,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
13
|
Cloning and Functional Characterization of Two Germacrene A Oxidases Isolated from Xanthium sibiricum. Molecules 2022; 27:molecules27103322. [PMID: 35630799 PMCID: PMC9145264 DOI: 10.3390/molecules27103322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Sesquiterpene lactones (STLs) from the cocklebur Xanthium sibiricum exhibit significant anti-tumor activity. Although germacrene A oxidase (GAO), which catalyzes the production of Germacrene A acid (GAA) from germacrene A, an important precursor of germacrene-type STLs, has been reported, the remaining GAOs corresponding to various STLs’ biosynthesis pathways remain unidentified. In this study, 68,199 unigenes were studied in a de novo transcriptome assembly of X. sibiricum fruits. By comparison with previously published GAO sequences, two candidate X. sibiricum GAO gene sequences, XsGAO1 (1467 bp) and XsGAO2 (1527 bp), were identified, cloned, and predicted to encode 488 and 508 amino acids, respectively. Their protein structure, motifs, sequence similarity, and phylogenetic position were similar to those of other GAO proteins. They were most strongly expressed in fruits, according to a quantitative real-time polymerase chain reaction (qRT-PCR), and both XsGAO proteins were localized in the mitochondria of tobacco leaf epidermal cells. The two XsGAO genes were cloned into the expression vector for eukaryotic expression in Saccharomyces cerevisiae, and the enzyme reaction products were detected by gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) methods. The results indicated that both XsGAO1 and XsGAO2 catalyzed the two-step conversion of germacrene A (GA) to GAA, meaning they are unlike classical GAO enzymes, which catalyze a three-step conversion of GA to GAA. This cloning and functional study of two GAO genes from X. sibiricum provides a useful basis for further elucidation of the STL biosynthesis pathway in X. sibiricum.
Collapse
|
14
|
Xu C, Huang X, Lei X, Jin Z, Wu M, Liu X, Huang Y, Zhao X, Xiong Y, Sun J, Duan X, Wang J. Costunolide-Induced Apoptosis via Promoting the Reactive Oxygen Species and Inhibiting AKT/GSK3β Pathway and Activating Autophagy in Gastric Cancer. Front Cell Dev Biol 2021; 9:722734. [PMID: 34869312 PMCID: PMC8633576 DOI: 10.3389/fcell.2021.722734] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Costunolide (Cos) is a sesquiterpene lactone extracted from chicory. Although it possesses anti-tumor effects, the underlying molecular mechanism against gastric cancer cells remains unclear. This study aimed to explore the effect and potential mechanism of Cos on gastric cancer. Methods: The effect of Cos on HGC-27 and SNU-1 proliferation was detected by CCK-8 and clone formation assay. The changes in cell apoptosis were determined using Hoechst 33258 and tunel staining. The morphology of autophagy was analyzed by autophagosomes with the electron microscope and LC3-immunofluorescence with the confocal microscope. The related protein levels of the cell cycle, apoptosis, autophagy and AKT/GSK3β pathway were determined by Western blot. The anti-tumor activity of Cos was evaluated by subcutaneously xenotransplanting HGC-27 into Balb/c nude mice. The Ki67 and P-AKT levels were examined by immunohistochemistry. Results: Cos significantly inhibited HGC-27 and SNU-1 growth and induced cell cycle arrest in the G2/M phase. Cos activated intrinsic apoptosis and autophagy through promoting cellular reactive oxygen species (ROS) levels and inhibiting the ROS-AKT/GSK3β signaling pathway. Moreover, preincubating gastric carcinoma cells with 3-methyladenine (3-MA), a cell-autophagy inhibitor, significantly alleviated the effects of Cos in inducing cell apoptosis. Conclusion: Cos induced apoptosis of gastric carcinoma cells via promoting ROS and inhibiting AKT/GSK3β pathway and activating pro-death cell autophagy, which may be an effective strategy to treat gastric cancer.
Collapse
Affiliation(s)
- Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Wu
- Department of Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiao Liu
- Department of Graduate School, Xi'an Medical University, Xi'an, China.,Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yubin Huang
- Department of Graduate School, Xi'an Medical University, Xi'an, China.,Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yue Xiong
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jianhua Wang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
15
|
Mangisa M, Peter XK, Khosa MC, Fouche G, Nthambeleni R, Senabe J, Tarirai C, Tembu VJ. Ethnomedicinal and phytochemical properties of sesquiterpene lactones from Dicoma (Asteraceae) and their anticancer pharmacological activities: A review. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Zhuang K, Xia Q, Zhang S, Maharajan K, Liu K, Zhang Y. A comprehensive chemical and pharmacological review of three confusable Chinese herbal medicine-Aucklandiae radix, Vladimiriae radix, and Inulae radix. Phytother Res 2021; 35:6655-6689. [PMID: 34431559 DOI: 10.1002/ptr.7250] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/05/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022]
Abstract
Aucklandiae radix (AR, Muxiang), vladimiriae radix (VR, Chuanmuxiang), and inulae radix (IR, Tumuxiang) are widely used in clinical or folk medicine in China. Their Chinese names all have the Chinese character "Muxiang," which makes it confusable in usage, especially AR and VR, because VR was used as a substitute for AR during a historical period. The National Health Commission of the People's Republic of China has approved AR as a functional food. However, VR and IR are not listed. Many research articles on three kinds of "Muxiang" have been published. However, no review was appeared to compare similarities and differences among the three kinds of "Muxiang." Here, the morphological characterization, phytochemistry, and pharmaceutical effects of AR, VR, and IR were reviewed. We found that only six compounds were common in the three species. Twenty-six compounds were common to AR and VR. Twenty-two compounds were common to AR and IR. Only seven compounds were common to VR and IR. The extracts of AR, VR, and IR were all reported with antiinflammatory effects, which is the most important activity of "Muxiang" species. The volatile oil of AR, VR, and IR had antibacterial activities. Extracts of AR and VR showed anti-gastric ulcers and anti-diarrhea effects. Extracts of AR and IR exhibited anticancer effects. In addition, AR extract had liver protective effect. It is worth mentioning that costunolide and dehydrocostus lactone, which were the common representative compounds of "Muxiang" species, showed antiinflammatory, anticancer, anti-gastric ulcers, and liver protective effects. This review will be a benefit reference for correct understanding and application of the three "Muxiang" species.
Collapse
Affiliation(s)
- Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| |
Collapse
|
17
|
El-Far AH, Godugu K, Salaheldin TA, Darwish NHE, Saddiq AA, Mousa SA. Nanonutraceuticals: Anti-Cancer Activity and Improved Safety of Chemotherapy by Costunolide and Its Nanoformulation against Colon and Breast Cancer. Biomedicines 2021; 9:990. [PMID: 34440193 PMCID: PMC8391151 DOI: 10.3390/biomedicines9080990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Costunolide (COS) is a sesquiterpene lactone with anticancer properties. The present study investigated the anticancer effects of COS against the human colon (HCT116) and breast (MDA-MB-231-Luc) cancer cell lines. Inhibition of cell lines viability and IC50 of COS were assessed via an MTT assay. Furthermore, the apoptotic rate was detected by assessment of Bcl2-associated X (Bax) and B-cell lymphoma 2 (Bcl2) protein levels by flow cytometry. Xenograft mice model of HCT116 and MDA-MB-231-Luc were carried out to determine the effect of COS and its nanoparticles (COS-NPs). The results demonstrated that COS inhibited the viability of HCT116 and MDA-MB-231-Luc cells, with a half maximal inhibitory concentration value (IC50) of 39.92 µM and 100.57 µM, respectively. COS significantly increased Bax and decreased Bcl2 levels in treated cells. COS and COS-NPs, in combination with doxorubicin (DOX), significantly decreased the tumor growth of HCT116 and MDA-MB-231-Luc implants in mice. Furthermore, oral administration of COS and COS-NPs significantly decreased the viable cells and increased necrotic/apoptotic cells of HCT116 and MDA-MB-231-Luc implants. Interestingly, both COS and COS-NPs protected the cardiac muscles against DOX's cardiotoxicity. The current results indicated the promising anticancer and cardiac muscles protection of COS and COS-NPs when administered with chemotherapy.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Taher A. Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Noureldien H. E. Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Amna A. Saddiq
- Department of Biology, College of Sciences, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| |
Collapse
|
18
|
Huang H, Yi JK, Lim SG, Park S, Zhang H, Kim E, Jang S, Lee MH, Liu K, Kim KR, Kim EK, Lee Y, Kim SH, Ryoo ZY, Kim MO. Costunolide Induces Apoptosis via the Reactive Oxygen Species and Protein Kinase B Pathway in Oral Cancer Cells. Int J Mol Sci 2021; 22:7509. [PMID: 34299129 PMCID: PMC8305390 DOI: 10.3390/ijms22147509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
Oral cancer (OC) has been attracted research attention in recent years as result of its high morbidity and mortality. Costunolide (CTD) possesses potential anticancer and bioactive abilities that have been confirmed in several types of cancers. However, its effects on oral cancer remain unclear. This study investigated the potential anticancer ability and underlying mechanisms of CTD in OC in vivo and in vitro. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of CTD on OC cells; assessments for migration and invasion of OC cells were conducted by transwell; Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. The results revealed that CTD suppressed the proliferation, migration and invasion of oral cancer cells effectively and induced cell cycle arrest and apoptosis; regarding the mechanism, CTD bound to AKT directly by binding assay and repressed AKT activities through kinase assay, which thereby downregulating the downstream of AKT. Furthermore, CTD remarkably promotes the generation of reactive oxygen species by flow cytometry assay, leading to cell apoptosis. Notably, CTD strongly suppresses cell-derived xenograft OC tumor growth in an in vivo mouse model. In conclusion, our results suggested that costunolide might prevent progression of OC and promise to be a novel AKT inhibitor.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.H.); (H.Z.); (E.K.)
| | - Jun-Koo Yi
- Gyeongbuk Livestock Research Institute, Yeongju 36052, Korea;
| | - Su-Geun Lim
- School of Life Science, Kyungpook National University, Daegu 41566, Korea; (S.-G.L.); (S.P.); (S.J.)
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu 41566, Korea; (S.-G.L.); (S.P.); (S.J.)
| | - Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.H.); (H.Z.); (E.K.)
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.H.); (H.Z.); (E.K.)
| | - Soyoung Jang
- School of Life Science, Kyungpook National University, Daegu 41566, Korea; (S.-G.L.); (S.P.); (S.J.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
| | - Kangdong Liu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450008, China;
| | - Ki-Rim Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju 37224, Korea; (K.-R.K.); (E.-K.K.)
| | - Eun-Kyong Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju 37224, Korea; (K.-R.K.); (E.-K.K.)
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41566, Korea;
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam 34134, Korea;
| | - Zae-Young Ryoo
- Gyeongbuk Livestock Research Institute, Yeongju 36052, Korea;
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.H.); (H.Z.); (E.K.)
| |
Collapse
|
19
|
Zhang B, Mao S, Liu X, Li S, Zhou H, Gu Y, Liu W, Fu L, Liao C, Wang P. MiR-125b inhibits cardiomyocyte apoptosis by targeting BAK1 in heart failure. Mol Med 2021; 27:72. [PMID: 34238204 PMCID: PMC8268255 DOI: 10.1186/s10020-021-00328-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/10/2021] [Indexed: 01/27/2023] Open
Abstract
Background Although miR-125b plays a crucial role in many human cancers. However, its function in heart failure (HF) remains unclear. Our study aimed to investigate its involvement in heart failure. Methods In this study, the mouse HF model was successfully constructed through transverse aortic constriction (TAC) operation. Changes in mRNA and protein levels in isolated myocytes and heart tissues were examined using qRT-PCR, Western blot and Immunohistochemical staining and immunofluorescent staining. Changes in cardiac functions were examined using ultrasound. Interactions between miR-125b and BAK1 was analyzed using the luciferase reporter assay. Cardiomyocyte apoptosis was evaluated using the TUNEL staining. Results We found that miR-125b expression was significantly downregulated in myocardial tissues of HF mice. Moreover, miR-125b upregulation in HF mice injected with agomir-125b efficiently ameliorated cardiac function. Further, miR-125b upregulation significantly decreased the protein levels of apoptosis-related makers c-caspase 3 and Bax, while increased Bcl-2 expression. In addition, BAK1 was identified as a direct target of miR-125b. As expected, BAK1 overexpression observably reversed the effect of agomir-125b on cardiac function and on the expression of apoptosis-related makers in the heart tissues of HF mice. Conclusions Taken together, miR-125b overexpression efficiently attenuated cardiac function injury of HF mice by targeting BAK1 through inhibiting cardiomyocyte apoptosis, suggesting that miR-125b/BAK1 axis might be a potential target for the diagnosis or treatment of HF. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00328-w.
Collapse
Affiliation(s)
- Bei Zhang
- Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China.,Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Shanyong Mao
- Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China.,Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Xingde Liu
- Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China. .,Department of Cardiology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Sha Li
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Haiyan Zhou
- Departmentof Clinical Research Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Ying Gu
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Wupeng Liu
- Department of Cardiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang City, Guizhou, 550014, People's Republic of China
| | - Lei Fu
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Chunyan Liao
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Pengzhen Wang
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| |
Collapse
|
20
|
Hepatoprotective effect of anemoside B4 against sepsis-induced acute liver injury through modulating the mTOR/p70S6K-mediated autophagy. Chem Biol Interact 2021; 345:109534. [PMID: 34051206 DOI: 10.1016/j.cbi.2021.109534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/25/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
Sepsis triggers liver dysfunction with high morbidity and mortality. Here, we elucidated the effect of anemoside B4 on sepsis in cecal ligation and puncture (CLP)-induced mouse model and LPS-induced primary hepatocytes. Following CLP surgery, septic mice were intraperitoneally injected with anemoside B4 (50 or 100 mg/kg). Anemoside B4 improved septic mouse survival rate, decreased serum AST and ALT levels and attenuated liver histopathologic damages. Western blot analysis showed that anemoside B4 elevated the expression of Beclin-1, LC3II/LC3I, Atg3, Atg5, and Atg7, and reduced p62, suggesting the restoration of autophagy flux in liver. More autophagic vesicles were observed in liver after anemoside B4 treatment using transmission electron microscopy. Using ELISA and commercial enzyme kits, we found that anemoside B4 decreased serum TNF-α, IL-6, and IL-1β levels and increased CAT, SOD and GSH activities. TUNEL staining and western blot revealed that anemoside B4 suppressed cell apoptosis, along with decreased Bax, leaved caspase-3, cleaved PARP, but increased Bcl-2. Consistent with in vivo findings, anemoside B4 inhibited apoptosis, inflammatory response, and oxidative stress and enhanced autophagy in LPS-induced primary hepatocytes. Importantly, these cellular processes were possibly mediated by mTOR/p70S6K signaling, as reflected by the offset of 3-MA in the immunosuppression of anemoside B4.
Collapse
|
21
|
Metabolomic Study on the Therapeutic Effect of the Jianpi Yangzheng Xiaozheng Decoction on Gastric Cancer Treated with Chemotherapy Based on GC-TOFMS Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8832996. [PMID: 33790982 PMCID: PMC7994103 DOI: 10.1155/2021/8832996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Objective This study aimed to find new biomarkers of prognosis and metabolomic therapy for gastric carcinoma (GC) treated with chemotherapy and investigate the metabolic mechanism of the Jianpi Yangzheng Xiaozheng (JPYZXZ) decoction in the treatment of GC. Methods First, 36 patients with GC were randomly assigned to the treatment (chemotherapy plus JPYZXZ) and control (chemotherapy alone) groups. The clinical efficacy, side effects, and quality of life of patients in the two groups were evaluated after treatment. Then, the serum samples taken from 16 randomly selected patients (eight treatment cases and eight control cases with no evident pattern characters) and eight healthy volunteers were tested to identify the differential metabolite under the gas chromatography-time-of-fight mass spectrometry platform. The relevant metabolic pathways of differential substances were analyzed using multidimensional statistical analysis. Results JPYZXZ combined with chemotherapy resulted in a lower risk of leucopenia, thrombocytopenia, and gastrointestinal reaction (P < 0.05). Additionally, patients in the treatment group showed a higher Karnofsky (KPS) scale (P < 0.05). Compared with healthy persons, patients with GC were found to have 26 significant differential metabolites after chemotherapy; these metabolites are mainly involved in 12 metabolic pathways, such as valine, leucine, and isoleucine biosynthesis. JPYZXZ primarily influences the pentose phosphate pathway; glutathione metabolism; glyoxylate and dicarboxylate metabolism; porphyrin and chlorophyll metabolism; and glycine, serine, and threonine metabolism of patients with GC treated with chemotherapy. Conclusions The metabolic characteristics of patients with GC after chemotherapy are mainly various amino acid metabolic defects, especially L-glutamine, L-leucine, L-alloisoleucine, and L-valine. These defects lead to a series of problems, such as decreased tolerance and effectiveness of chemotherapy, increased side effects, decreased immunity, and shortened survival time. In addition, the remarkable upregulation of the gluconolactone level in patients with GC suggests the high proliferative activity of GC cells. Thus, gluconolactone may be used as a potential prognostic and diagnostic evaluation index. Moreover, JPYZXZ can reduce the incidence of ADRs and improve the life quality of patients by the correction of L-glutamine, L-leucine, L-alloisoleucine, and L-valine metabolism deficiency. In addition, gluconolactone metabolism is inhibited by JPYZXZ. Such inhibition may be one of the antitumor mechanisms of JPYZXZ.
Collapse
|
22
|
Kim Y, Sengupta S, Sim T. Natural and Synthetic Lactones Possessing Antitumor Activities. Int J Mol Sci 2021; 22:ijms22031052. [PMID: 33494352 PMCID: PMC7865919 DOI: 10.3390/ijms22031052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer is one of the leading causes of death globally, accounting for an estimated 8 million deaths each year. As a result, there have been urgent unmet medical needs to discover novel oncology drugs. Natural and synthetic lactones have a broad spectrum of biological uses including anti-tumor, anti-helminthic, anti-microbial, and anti-inflammatory activities. Particularly, several natural and synthetic lactones have emerged as anti-cancer agents over the past decades. In this review, we address natural and synthetic lactones focusing on their anti-tumor activities and synthetic routes. Moreover, we aim to highlight our journey towards chemical modification and biological evaluation of a resorcylic acid lactone, L-783277 (4). We anticipate that utilization of the natural and synthetic lactones as novel scaffolds would benefit the process of oncology drug discovery campaigns based on natural products.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Sandip Sengupta
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Severance Biomedical Science Institute, Graduate School of Medical Science (Brain Korea 21 Project), College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-0797
| |
Collapse
|
23
|
El-Far AH, Godugu K, Noreldin AE, Saddiq AA, Almaghrabi OA, Al Jaouni SK, Mousa SA. Thymoquinone and Costunolide Induce Apoptosis of Both Proliferative and Doxorubicin-Induced-Senescent Colon and Breast Cancer Cells. Integr Cancer Ther 2021; 20:15347354211035450. [PMID: 34490824 PMCID: PMC8427913 DOI: 10.1177/15347354211035450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 11/15/2022] Open
Abstract
Doxorubicin (Dox) induces senescence in numerous cancer cell types, but these senescent cancer cells relapse again if they are not eliminated. On this principle, we investigated the apoptotic effect of thymoquinone (TQ), the active ingredient of Nigella sativa seeds and costunolide (COS), the active ingredient of Costus speciosus, on the senescent colon (Sen-HCT116) and senescent breast (Sen-MCF7) cancer cell lines in reference to their corresponding proliferative cells to rapidly eliminate the senescent cancer cells. The senescence markers of Sen-HCT116 and Sen-MCF7 were determined by a significant decrease in bromodeoxyuridine (BrdU) incorporation and significant increases in SA-β-gal, p53, and p21 levels. Then proliferative, Sen-HCT116, and Sen-MCF7 cells were subjected to either TQ (50 µM) or COS (30 µM), the Bcl2-associated X protein (Bax), B-cell lymphoma 2 (Bcl2), caspase 3 mRNA expression and its activity were established. Results revealed that TQ significantly increased the Bax/Bcl2 ratio in HCT116 + Dox5 + TQ, MCF7 + TQ, and MCF7 + Dox5 + TQ compared with their corresponding controls. COS significantly increased the Bax/Bcl2 ratio in HCT116 + Dox5 + TQ and MCF7 + Dox5 + TQ compared with their related controls. Also, TQ and COS were significantly increased caspase 3 activity and cell proliferation of Sen-HCT116 and Sen-MCF7. The data revealed a higher sensitivity of senescent cells to TQ or COS than their corresponding proliferative cells.
Collapse
Affiliation(s)
- Ali H El-Far
- Damanhour University, Damanhour, Al-Beheira, Egypt
| | - Kavitha Godugu
- Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | | | | | | | | | - Shaker A. Mousa
- Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
24
|
Nakonieczna S, Grabarska A, Kukula-Koch W. The Potential Anticancer Activity of Phytoconstituents against Gastric Cancer-A Review on In Vitro, In Vivo, and Clinical Studies. Int J Mol Sci 2020; 21:E8307. [PMID: 33167519 PMCID: PMC7663924 DOI: 10.3390/ijms21218307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer belongs to the heterogeneous malignancies and, according to the World Health Organization, it is the fifth most commonly diagnosed cancer in men. The aim of this review is to provide an overview on the role of natural products of plant origin in the therapy of gastric cancer and to present the potentially active metabolites which can be used in the natural therapeutical strategies as the support to the conventional treatment. Many of the naturally spread secondary metabolites have been proved to exhibit chemopreventive properties when tested on the cell lines or in vivo. This manuscript aims to discuss the pharmacological significance of both the total extracts and the single isolated metabolites in the stomach cancer prevention and to focus on their mechanisms of action. A wide variety of plant-derived anticancer metabolites from different groups presented in the manuscript that include polyphenols, terpenes, alkaloids, or sulphur-containing compounds, underlines the multidirectional nature of natural products.
Collapse
Affiliation(s)
- Sylwia Nakonieczna
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki str., 20-093 Lublin, Poland;
| | - Aneta Grabarska
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1, Chodźki, 20-093 Lublin, Poland
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki str., 20-093 Lublin, Poland;
| |
Collapse
|
25
|
Wei M, Li J, Qiu J, Yan Y, Wang H, Wu Z, Liu Y, Shen X, Su C, Guo Q, Pan Y, Zhang P, Zhang J. Costunolide induces apoptosis and inhibits migration and invasion in H1299 lung cancer cells. Oncol Rep 2020; 43:1986-1994. [PMID: 32236584 PMCID: PMC7160540 DOI: 10.3892/or.2020.7566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
Costunolide being a sesquiterpene lactone, is known to have anticancer properties. The present study investigated the anticancer effects of costunolide against the H1299 human non‑small‑cell lung cancer (NSCLC) cell line. Inhibition of cell viability by costunolide was assessed via a MTT assay. Furthermore, the apoptotic rate was detected using Annexin V/propidium iodide labeling. A colony forming cell assay was performed to investigate the antiproliferative effects of costunolide. Wound healing and Transwell assays were performed to determine the inhibitory effects of costunolide on migration and invasion, respectively. Western blot analysis was undertaken to determine protein expression, and reverse transcription‑quantitative PCR was performed to assess mRNA expression levels. The results demonstrated that costunolide inhibited the viability of H1299 cells, with a half maximal inhibitory concentration value of 23.93±1.67 µM and induced cellular apoptosis in a dose‑dependent manner. Furthermore, the colony formation, migrative and invasive abilities of the H1299 cells were inhibited in a dose‑ or time‑dependent manner. The protein expression levels of E‑cadherin increased and those of N‑cadherin decreased following treatment with costunolide, which suggested that costunolide inhibited epithelial‑to‑mesenchymal transition. The mRNA levels of B‑Raf, E‑cadherin, N‑cadherin, integrins α2 and β1, as well as matrix metalloproteinases 2 were also found to be regulated costunolide. These findings indicate the potential of costunolide in the treatment of NSCLC.
Collapse
Affiliation(s)
- Minyan Wei
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jiajun Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jianhua Qiu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yanyan Yan
- Department of Pharmacology, Institute of Respiratory and Occupational Diseases, Collaborative Innovation Center for Cancer, Medical College, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Hui Wang
- Department of Thoracic Surgery, Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Zengbao Wu
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yun Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaoyun Shen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Chaoyue Su
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Qiaoru Guo
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yanrui Pan
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Peiquan Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jianye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
26
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
27
|
Nan L, Nam HH, Park BY, Kim BT, Choo BK. Ameliorative effects of Magnolia sieboldii buds hexane extract on experimental reflux esophagitis. Phytother Res 2020; 34:2385-2396. [PMID: 32255235 DOI: 10.1002/ptr.6689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
Gastroesophageal reflux disease (GERD) is a disease that stomach contents continually refluxing into esophagus causes symptoms and/or complications. The study was working to find natural plant extracts with good effects and small side effects to treat reflux esophagitis (RE). The anti-inflammatory effects of hexane extract of Magnolia sieboldii (MsHE) were conducted on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The ameliorative effects of MsHE on esophageal damage in rats induced by gastric acid reflux was explored in vivo. The results showed that MsHE decreased the production of nitric oxide (NO) and expression levels of iNOS, COX-2 and TNF-α on LPS-stimulated RAW 264.7 cells and MsHE treatment ameliorated the rats' esophageal tissue damage induced by gastric acid and inhibited the increase of inflammatory mediators and pro-inflammatory cytokines by regulating NF-κB signaling pathway. In addition, MsHE protected the function of barrier of epithelial cells against inflammatory conditions through increasing the expression of tight junctions. Furthermore, liquid chromatography-mass spectrometry analysis was used for determine the active ingredients contained in MsHE. The results show that MsHE can alleviate experimental rat RE by regulating NF-κB signaling pathway. In summary, MsHE may be used as a source material of drug candidate for the treatment of RE.
Collapse
Affiliation(s)
- Li Nan
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Hyeon Hwa Nam
- Herbal Medicine Resources Research Center Korea Institute of Oriental Medicine, Naju-si, South Korea
| | - Byung Yong Park
- College of Medicine and Biosafety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Beom Tae Kim
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
| | - Byung Kil Choo
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
28
|
Jin X, Wang C, wang L. Costunolide inhibits osteosarcoma growth and metastasis via suppressing STAT3 signal pathway. Biomed Pharmacother 2020; 121:109659. [DOI: 10.1016/j.biopha.2019.109659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
|