1
|
Li W, Wang Y, Mu W, Guan Y, Yang Y, Tang Y, Wang M, Piao Y, Hou T, Guan X. Ginsenoside RB1 Influences Macrophage-DPSC Interactions in Inflammatory Conditions. Int Dent J 2025; 75:1194-1202. [PMID: 39191604 PMCID: PMC11976592 DOI: 10.1016/j.identj.2024.07.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
INTRODUCTION AND AIMS Unresolved inflammation and tissue destruction are supposed to underlie the failure of dental pulp repair. As crucial regulators of the injury response, dental pulp stem cells (DPSCs) play a key role in pulp tissue repair and regeneration. M2 macrophages have been demonstrated to induce osteogenic/odontogenic differentiation of DPSCs. Ginsenoside Rb1 (GRb1) is the major component of ginseng and manifested an anti-inflammatory role by promoting M1 macrophage polarised into M2 macrophage in inflammatory disease. However, whether GRb1 facilitates odontogenic differentiation of DPSCs via promoting M2 macrophage polarisation under inflammatory conditions has yet to be established. METHODS Human monocyte leukemic cells (THP-1) differentiated macrophages were induced into M1 subsets and then treated with GRb1. After that, the conditioned medium was added to DPSCs. The cell co-cultured system was then subjected to odontogenic differentiation in osteogenic media. Effects of GRb1 on human dental pulp stem cells' (hDPSCs') osteogenic/odontogenic differentiation under inflammatory conditions were assessed by alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, and quantitative polymerase chain reaction testing. RESULTS Results demonstrated that GRb1 could facilitate the polarisation of macrophages from the M1 subtype to the M2 subtype. Conditioned medium from GRb1 + M1 macrophages, in comparison with M1 macrophages, may markedly increase the gene expression of ALP, DSPP, and DMP1. Moreover, ALP and ARS staining uncovered that the osteogenic/odontogenic differentiation ability of hDPSCs was strengthened in the M1 + GRb1 co-culture group. CONCLUSIONS GRb1 plays a crucial role in the inflammatory response and reparative dentine formation after dental pulp injury. Findings show that GRb1 modulates the interaction between macrophages and DPSCs during inflammation. The current study discusses modifications of deep caries therapy.
Collapse
Affiliation(s)
- Wenlan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenli Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yonghui Guan
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yao Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yifei Tang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mingfei Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Piao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tiezhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Kang HS, Lim HK, Jang WY, Cho JY. Anti-Colorectal Cancer Activity of Panax and Its Active Components, Ginsenosides: A Review. Int J Mol Sci 2025; 26:2593. [PMID: 40141242 PMCID: PMC11941759 DOI: 10.3390/ijms26062593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Colorectal cancer (CRC) poses a significant health burden worldwide and necessitates novel treatment approaches with fewer side effects than conventional chemotherapy. Many natural compounds have been tested as possible cancer treatments. Plants in the genus Panax have been widely studied due to their therapeutic potential for various diseases such as inflammatory disorders and cancers. Extracts from plants of genus Panax activate upstream signals, including those related to autophagy and the generation of reactive oxygen species, to induce intrinsic apoptosis in CRC cells. The root extract of Panax notoginseng (P. notoginseng) regulated the gut microbiota to enhance the T-cell-induced immune response against CRC. Protopanaxadiol (PPD)-type ginsenosides, especially Rh2, Rg3, Rb1, and Rb2, significantly reduced proliferation of CRC cells and tumor size in a xenograft mouse model, as well as targeting programmed death (PD)-1 to block the immune checkpoint of CRC cells. Moreover, modified nanocarriers with ginsenosides upregulated drug efficacy, showing that ginsenosides can also be utilized as drug carriers. An increasing body of studies has demonstrated the potential of the genus Panax in curing CRC. Ginsenosides are promising active compounds in the genus Panax, which can also support the activity of conventional cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.S.K.); (H.K.L.); (W.Y.J.)
| |
Collapse
|
3
|
Zhang J, Wu Y, Tian Y, Xu H, Lin ZX, Xian YF. Chinese herbal medicine for the treatment of intestinal cancer: preclinical studies and potential clinical applications. Mol Cancer 2024; 23:217. [PMID: 39354520 PMCID: PMC11443726 DOI: 10.1186/s12943-024-02135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Intestinal cancer (IC) poses a significant global health challenge that drives continuous efforts to explore effective treatment modalities. Conventional treatments for IC are effective, but are associated with several limitations and drawbacks. Chinese herbal medicine (CHM) plays an important role in the overall cancer prevention and therapeutic strategies. Recent years have seen a growing body of research focus on the potential of CHM in IC treatment, showing promising results in managing IC and mitigating the adverse effects of radiotherapy and chemotherapy. This review provides updated information from preclinical research and clinical observation on CHM's role in treatment of IC, offering insights into its comprehensive management and guiding future prevention strategies and clinical practice.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yulin Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yuanyang Tian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
| |
Collapse
|
4
|
Li Z, Peng X, Zhu X, Spanos M, Wu L. Traditional Chinese Medicine Monomers Are Potential Candidate Drugs for Cancer-Induced Cardiac Cachexia. Pharmacology 2024; 110:49-61. [PMID: 39250889 DOI: 10.1159/000540915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Cardiovascular diseases are now the second leading cause of death among cancer patients. Heart injury in patients with terminal cancer can lead to significant deterioration of left ventricular morphology and function. This specific heart condition is known as cancer-induced cardiac cachexia (CICC) and is characterized by cardiac dysfunction and wasting. However, an effective pharmacological treatment for CICC remains elusive. SUMMARY The development and progression of CICC are closely related to pathophysiological processes, such as protein degradation, oxidative responses, and inflammation. Traditional Chinese medicine (TCM) monomers offer unique advantages in reversing heart injury, which is the end-stage manifestation of CICC except the regular treatment. This review outlines significant findings related to the impact of eleven TCM monomers, namely Astragaloside IV, Ginsenosides Rb1, Notoginsenoside R1, Salidroside, Tanshinone II A, Astragalus polysaccharides, Salvianolate, Salvianolic acids A and B, and Ginkgolide A and B, on improving heart injury. These TCM monomers are potential therapeutic agents for CICC, each with specific mechanisms that could potentially reverse the pathological processes associated with CICC. Advanced drug delivery strategies, such as nano-delivery systems and exosome-delivery systems, are discussed as targeted administration options for the therapy of CICC. KEY MESSAGE This review summarizes the pathological mechanisms of CICC and explores the pharmacological treatment of TCM monomers that promote anti-inflammation, antioxidation, and pro-survival. It also considers pharmaceutical strategies for administering TCM monomers, highlighting their potential as therapies for CICC.
Collapse
Affiliation(s)
- Zhizheng Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Peng
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Zhu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Clinic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Fu L, Li F, Xue X, Xi H, Sun X, Hu R, Wen H, Liu S. Exploring the potential of thiophene derivatives as dual inhibitors of β-tubulin and Wnt/β-catenin pathways for gastrointestinal cancers in vitro. Heliyon 2024; 10:e32241. [PMID: 38912446 PMCID: PMC11190604 DOI: 10.1016/j.heliyon.2024.e32241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Background Gastrointestinal cancer poses a considerable global health risk, encompassing a heterogeneous spectrum of malignancies that afflict the gastrointestinal tract. It is significant to develop efficacious therapeutic agents, as they are indispensable for both the treatment and prevention of this formidable disease. Methods In this study, we synthesized a novel thiophene derivative, designated as compound 1312. An assessment was performed to investigate its anti-proliferative activity in several cancer cell lines (GES-1, EC9706, SGC7901, and HT-29). Furthermore, we performed molecular biology techniques to investigate the inhibitory impact of compound 1312 on gastrointestinal cell lines SGC-7901 and HT-29. Results Our findings reveal that compound 1312 exhibits significant efficacy in suppressing colony formation of cancer cells. Notably, it triggers cell cycle arrest at the G2/M phase in gastrointestinal cell lines SGC7901 and HT-29. Compound 1312 was confirmed to exert inhibitory effects on cell migration and invasion in SGC7901. Additionally, the compound elicits apoptotic cell death through the activation of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP) and the caspase signaling cascade. Furthermore, in vitro experiments revealed that compound 1312 effectively suppresses both the β-tubulin cytoskeletal network and the Wnt/β-catenin signaling pathway. These multifaceted anti-cancer activities highlight the potential of compound 1312 as a promising therapeutic agent for the treatment of gastrointestinal malignancies. Conclusion This study indicates the promising potential of compound 1312 as a prospective candidate agent for gastrointestinal cancer treatment. Further comprehensive investigations are needed to explore its therapeutic efficacy in greater detail.
Collapse
Affiliation(s)
- Lina Fu
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450063, Henan, China
| | - Fuhao Li
- The First Clinical Medicine College of Zhejiang Chinese Medical University, Zhejiang 310053, Hangzhou, China
| | - Xia Xue
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Huayuan Xi
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangdong Sun
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruoyu Hu
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Huijuan Wen
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450063, Henan, China
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Simeng Liu
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450063, Henan, China
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
6
|
Qian J, Jiang Y, Hu H. Ginsenosides: an immunomodulator for the treatment of colorectal cancer. Front Pharmacol 2024; 15:1408993. [PMID: 38939839 PMCID: PMC11208871 DOI: 10.3389/fphar.2024.1408993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Ginsenosides, the primary bioactive ingredients derived from the root of Panax ginseng, are eagerly in demand for tumor patients as a complementary and alternative drug. Ginsenosides have increasingly become a "hot topic" in recent years due to their multifunctional role in treating colorectal cancer (CRC) and regulating tumor microenvironment (TME). Emerging experimental research on ginsenosides in the treatment and immune regulation of CRC has been published, while no review sums up its specific role in the CRC microenvironment. Therefore, this paper systematically introduces how ginsenosides affect the TME, specifically by enhancing immune response, inhibiting the activation of stromal cells, and altering the hallmarks of CRC cells. In addition, we discuss their impact on the physicochemical properties of the tumor microenvironment. Furthermore, we discuss the application of ginsenosides in clinical treatment as their efficacy in enhancing tumor patient immunity and prolonging survival. The future perspectives of ginsenoside as a complementary and alternative drug of CRC are also provided. This review hopes to open up a new horizon for the cancer treatment of Traditional Chinese Medicine monomers.
Collapse
Affiliation(s)
- Jianan Qian
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Lu YC, Tseng LW, Wu CE, Yang CW, Yang TH, Chen HY. Can Chinese herbal medicine offer feasible solutions for newly diagnosed esophageal cancer patients with malnutrition? a multi-institutional real-world study. Front Pharmacol 2024; 15:1364318. [PMID: 38855746 PMCID: PMC11157104 DOI: 10.3389/fphar.2024.1364318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Background Esophageal cancer (EC) is a major cause of cancer-related mortality in Taiwan and globally. Patients with EC are highly prone to malnutrition, which adversely affects their prognosis. While Chinese herbal medicine (CHM) is commonly used alongside conventional anti-cancer treatments, its long-term impact on EC patients with malnutrition remains unclear. Methods This study utilized a multi-center cohort from the Chang Gung Research Database, focusing on the long-term outcomes of CHM in EC patients with malnutrition between 1 January 2001, and 31 December 2018. Patients were monitored for up to 5 years or until death. Overall survival (OS) rates were calculated using the Kaplan-Meier method. Overlap weighting and landmark analysis were employed to address confounding and immortal time biases. Additionally, the study analyzed prescription data using a CHM network to identify key CHMs for EC with malnutrition, and potential molecular pathways were investigated using the Reactome database. Results EC patients with malnutrition who used CHM had a higher 5-year OS compared with nonusers (22.5% vs. 9% without overlap weighting; 24.3% vs. 13.3% with overlap weighting; log-rank test: p = 0.006 and 0.016, respectively). The median OS of CHM users was significantly longer than that of nonusers (19.8 vs. 12.9 months, respectively). Hazard ratio (HR) analysis showed a 31% reduction in all-cause mortality risk for CHM users compared with nonusers (HR: 0.69, 95% confidence interval: 0.50-0.94, p = 0.019). We also examined 665 prescriptions involving 306 CHM, with Hedyotis diffusa Willd. exhibiting the highest frequency of use. A CHM network was created to determine the primary CHMs and their combinations. The identified CHMs were associated with the regulation of immune and metabolic pathways, particularly in areas related to immune modulation, anti-cancer cachexia, promotion of digestion, and anti-tumor activity. Conclusion The results of this study suggest a correlation between CHM use and improved clinical outcomes in EC patients with malnutrition. The analysis identified core CHMs and combinations of formulations that play a crucial role in immunomodulation and metabolic regulation. These findings lay the groundwork for more extensive research on the use of CHM for the management of malnutrition in patients with EC.
Collapse
Affiliation(s)
- Yi-Chin Lu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Liang-Wei Tseng
- Division of Chinese Acupuncture and Traumatology, Center of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chiao-En Wu
- Division of Haematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Wei Yang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Hsien Yang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsing-Yu Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Ge W, Gao Y, He L, Jiang Z, Zeng Y, Yu Y, Xie X, Zhou F. Developing Chinese herbal-based functional biomaterials for tissue engineering. Heliyon 2024; 10:e27451. [PMID: 38496844 PMCID: PMC10944231 DOI: 10.1016/j.heliyon.2024.e27451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
The role of traditional Chinese medicine (TCM) in treating diseases is receiving increasing attention. Chinese herbal medicine is an important part of TCM with various applications and the active ingredients extracted from Chinese herbal medicines have physiological and pathological effects. Tissue engineering combines cell biology and materials science to construct tissues or organs in vitro or in vivo. TCM has been proposed by the World Health Organization as an effective treatment modality. In recent years, the potential use of TCM in tissue engineering has been demonstrated. In this review, the classification and efficacy of TCM active ingredients and delivery systems are discussed based on the TCM theory. We also summarized the current application status and broad prospects of Chinese herbal active ingredients in different specialized biomaterials in the field of tissue engineering. This review provides novel insights into the integration of TCM and modern Western medicine through the application of Chinese medicine in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Liming He
- Changsha Stomatological Hospital, Changsha, PR China
| | | | - Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yi Yu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Fang Zhou
- Xiangtan Maternal and Child Health Hospital, Xiangtan, PR China
| |
Collapse
|
9
|
Vijayakumar A, Kim JH. Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19). J Ginseng Res 2024; 48:113-121. [PMID: 38465214 PMCID: PMC10920003 DOI: 10.1016/j.jgr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 03/12/2024] Open
Abstract
Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinase-MB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.
Collapse
Affiliation(s)
- Ajay Vijayakumar
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| |
Collapse
|
10
|
Liu L, Lyu J, Yang L, Gao Y, Zhao B. Using Pharmacokinetic-Pharmacodynamic Modeling to Study the Main Active Substances of the Anticancer Effect in Mice from Panax ginseng- Ophiopogon japonicus. Molecules 2024; 29:334. [PMID: 38257247 PMCID: PMC10819458 DOI: 10.3390/molecules29020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Ginseng Radix et Rhizoma Rubra (Panax ginseng C.A. Mey, Hongshen, in Chinese) and Ophiopogonis Radix (Ophiopogon japonicus (L.f) Ker-Gawl., Maidong, in Chinese) are traditional Chinese herbal pairs, which were clinically employed to enhance the immune system of cancer patients. This study employed the pharmacokinetic and pharmacodynamic (PK-PD) spectrum-effect association model to investigate the antitumor active substances of P. ginseng and O. japonicus (PG-OJ). The metabolic processes of 20 major bioactive components were analyzed using Ultra-Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (UPLC-MS/MS) in the lung tissue of tumor-bearing mice treated with PG-OJ. The ELISA method was employed to detect the levels of TGF-β1, TNF-α, and IFN-γ in the lung tissue of mice at various time points, and to analyze their changes after drug administration. The results showed that all components presented a multiple peaks absorption pattern within 0.083 to 24 h post-drug administration. The tumor inhibition rate of tumor and repair rate of IFN-γ, TNF-α, and TGF-β1 all increased, indicating a positive therapeutic effect of PG-OJ on A549 tumor-bearing mice. Finally, a PK-PD model based on the GBDT algorithm was developed for the first time to speculate that Methylophiopogonanone A, Methylophiopogonanone B, Ginsenoside Rb1, and Notoginsenoside R1 are the main active components in PG-OJ for lung cancer treatment.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.L.); (J.L.); (L.Y.)
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Lyu
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.L.); (J.L.); (L.Y.)
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine, Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
| | - Longfei Yang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.L.); (J.L.); (L.Y.)
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine, Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.L.); (J.L.); (L.Y.)
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine, Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
| | - Bonian Zhao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.L.); (J.L.); (L.Y.)
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine, Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
11
|
Wang Y, Dong Z, An Z, Jin W. Cancer cachexia: Focus on cachexia factors and inter-organ communication. Chin Med J (Engl) 2024; 137:44-62. [PMID: 37968131 PMCID: PMC10766315 DOI: 10.1097/cm9.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Cancer cachexia is a multi-organ syndrome and closely related to changes in signal communication between organs, which is mediated by cancer cachexia factors. Cancer cachexia factors, being the general name of inflammatory factors, circulating proteins, metabolites, and microRNA secreted by tumor or host cells, play a role in secretory or other organs and mediate complex signal communication between organs during cancer cachexia. Cancer cachexia factors are also a potential target for the diagnosis and treatment. The pathogenesis of cachexia is unclear and no clear effective treatment is available. Thus, the treatment of cancer cachexia from the perspective of the tumor ecosystem rather than from the perspective of a single molecule and a single organ is urgently needed. From the point of signal communication between organs mediated by cancer cachexia factors, finding a deeper understanding of the pathogenesis, diagnosis, and treatment of cancer cachexia is of great significance to improve the level of diagnosis and treatment. This review begins with cancer cachexia factors released during the interaction between tumor and host cells, and provides a comprehensive summary of the pathogenesis, diagnosis, and treatment for cancer cachexia, along with a particular sight on multi-organ signal communication mediated by cancer cachexia factors. This summary aims to deepen medical community's understanding of cancer cachexia and may conduce to the discovery of new diagnostic and therapeutic targets for cancer cachexia.
Collapse
Affiliation(s)
- Yongfei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zikai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ziyi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weilin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
12
|
Feng L, Liu X, Sun K, Sun Y, Wu W, Chen C, Jin X, Wan X. Ginsenoside Rb1 Inhibits the Proliferation of Lung Cancer Cells by Inducing the Mitochondrial-mediated Apoptosis Pathway. Anticancer Agents Med Chem 2024; 24:928-941. [PMID: 38465430 DOI: 10.2174/0118715206299212240304142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Lung cancer is one of the more common malignant tumors posing a great threat to human life, and it is very urgent to find safe and effective therapeutic drugs. The antitumor effect of ginsenosides has been reported to be a treatment with a strong effect and a high safety profile. OBJECTIVE This paper aimed to investigate the inhibitory effect of ginsenoside Rb1 on 95D and NCI-H460 lung cancer cells and its pathway to promote apoptosis. METHODS We performed the CCK-8 assay, fluorescence staining assay, flow cytometry, scratch healing assay, and Transwell assay to detect the effects of different concentrations of ginsenoside Rb1 on the antitumor activity of 95D and NCI-H460 cells and Western Blot detected the mechanism of antitumor effect. RESULTS Ginsenoside Rb1 treatment significantly increased the inhibition and apoptosis rates of 95D and NCIH460 cells and inhibited the cell cycle transition from S phase to G2/M. Rb1 induces apoptosis by altering the levels of P53, Bax, Cyto-c, Caspase-8, Caspase-3, Cleaved Caspase-3, Bcl-2, MMP-2, and MMP-9 proteins and activating the external apoptotic pathway. CONCLUSION Ginsenoside Rb1 inhibits proliferation and migration and induces apoptosis of 95D and NCI-H460 lung cancer cells by regulating the mitochondrial apoptotic pathway to achieve antitumor activity.
Collapse
Affiliation(s)
- Lin Feng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinze Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Kaijing Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying Sun
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xilin Wan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
13
|
Wan C, Lu R, Zhu C, Wu H, Shen G, Yang Y, Wu X, Fang B, He Y. Ginsenoside Rb1 enhanced immunity and altered the gut microflora in mice immunized by H1N1 influenza vaccine. PeerJ 2023; 11:e16226. [PMID: 37868069 PMCID: PMC10588687 DOI: 10.7717/peerj.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Background Influenza is an acute infectious respiratory disease caused by the influenza virus that seriously damages human health, and the essential way to prevent influenza is the influenza vaccine. Vaccines without adjuvants produce insufficient specific antibodies and therefore require adjuvants to boost antibody titers. Microbes and hosts are a community that needs to "promote bacteria," which could provide new value for the immune effect. Methods (1) The H1N1 influenza vaccine, in combination with Ginsenoside Rb1, was co-injected into mice intraperitoneally (I.P.). Then, immunoglobulin G and antibody subtype levels were tested by enzyme-linked immunosorbent assay (ELISA). Moreover, mice were infected with a lethal dose of the H1N1 influenza virus (A/Michigan/45/2015), and survival status was recorded for 14 days. Lung tissues were stained by hematoxylin and eosin (H&E), and ELISA detected inflammatory factor expression levels. (2) Mice were immunized with Ginsenoside Rb1 combined with quadrivalent influenza inactivated vaccine(IIV4), and then IgG levels were measured by ELISA. (3) Fresh stool was collected for fecal 16S rDNA analysis. Results Ginsenoside Rb1 boosted IgG and antibody subtypes in the H1N1 influenza vaccine, improved survival of mice after virus challenge, attenuated lung histopathological damage, and reduced inflammatory cytokines expression in IL-6 and TNF-α. The results of 16S rDNA showed that Rb1 decreased species diversity but increased species richness compared to the PBS group and increased the abundance of Akkermansiaceae and Murbaculaceae at the Family and Genus levels compared with the HA+Alum group. Conclusion Ginsenoside Rb1 has a boosting effect on the immune efficacy of the H1N1 influenza vaccine and is promising as a novel adjuvant to regulate the microecological balance and achieve an anti-infective effect.
Collapse
Affiliation(s)
- Chuanqi Wan
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Rufeng Lu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| | - Chen Zhu
- Department of ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| | - Haibo Wu
- The First Affiliated Hospital, Zhejiang University, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, National Clinical Research Center for Infectious Diseases, Hangzhou, Shangcheng, China
| | - Guannan Shen
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| | - Yang Yang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| | - Xiaowei Wu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
- Institute of Critical Care, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Yuzhou He
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| |
Collapse
|
14
|
Lian J, Lin D, Huang Y, Chen X, Chen L, Zhang F, Tang P, Xie J, Hou X, Du Z, Deng J, Hao E, Liu J. Exploring the potential use of Chinese herbs in regulating the inflammatory microenvironment of tumours based on the concept of 'state-target identification and treatment': a scooping review. Chin Med 2023; 18:124. [PMID: 37742025 PMCID: PMC10517536 DOI: 10.1186/s13020-023-00834-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/03/2023] [Indexed: 09/25/2023] Open
Abstract
Tumours do not exist in isolation from the organism; their growth, proliferation, motility, and immunosuppressive response are intricately connected to the tumour's microenvironment. As tumour cells and the microenvironment coevolve, an inflammatory microenvironment ensues, propelling the phenomenon of inflammation-cancer transformation-an idea proposed by modern medicine. This review aims to encapsulate the array of representative factors within the tumour's inflammatory microenvironment, such as interleukins (IL-6, IL-10, IL-17, IL-1β), transforming growth factor-beta (TGF-β), interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs). Moreover, drawing upon research in traditional Chinese medicine (TCM) and pharmacology, we explore the delicate interplay between these factors and tumour-associated inflammatory cells: tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs) and dendritic cells (DCs). By analyzing the tumour-promoting effects of these entities, we delve into the connotations of Academician Tong Xiao-lin's novel model of "state-target differentiation" and its application in the diagnosis and treatment of tumours. Our aim is to enhance the precision and targeting of tumour treatment in clinical practice. Delving deeper into our understanding of tumour pathogenesis through the lens of modern medicine, we discern the key etiology and pathogenesis throughout the entire developmental stage of tumours, unveiling the evolutionary patterns of Chinese Medicine (CM) states: heat state → phlegm state → stagnation state → deficiency state. Building upon this foundation, we devised a state-regulating formula. Simultaneously, drawing on pharmacological research in traditional Chinese medicine (TCM), we meticulously identified a range of targeted drugs that effectively modulate the aforementioned tumour-related mediators. This comprehensive strategy-a harmonious integration of state identification, target recognition, and simultaneous regulation-aims to elevate clinical efficacy. The fusion of TCM with Western medicine in tumour treatment introduces novel dimensions to the precise and refined application of TCM in clinical practice.
Collapse
Affiliation(s)
- Jing Lian
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Dongxin Lin
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuchan Huang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaohui Chen
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Lian Chen
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiling Tang
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China.
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China.
| | - Junhui Liu
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China.
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
15
|
Tang XY, Xie J, Qin Y, Liu H, Cheng F, Zhang HC, He D, Li JY, Huang A, Lao J, Chen L, Tang L, Zhou RR, Zeng HL, Zhang SH. Proteomic analysis reveals that Polygonatum cyrtonema Hua polysaccharide ameliorates mice muscle atrophy in chemotherapy-induced cachexia. J Pharm Biomed Anal 2023; 234:115533. [PMID: 37336040 DOI: 10.1016/j.jpba.2023.115533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Polygonatum cyrtonema Hua polysaccharide (PCP) is the main bioactive compound derived from the herb Polygonati Rhizoma, known for its anti-fatigue, antioxidant, immunomodulatory, and anti-inflammatory properties. However, its effectiveness on alleviating chemotherapy-induced muscle atrophy has been unclear. In this study, we utilized proteomic analysis to investigate the effects and mechanisms of PCP on gemcitabine plus cisplatin (GC) induced muscle atrophy in mice. Quality control analysis revealed that the functional PCP, rich in glucose, is a heterogeneous polysaccharide comprised of nine monosaccharides. PCP (64 mg/kg) significantly alleviated body muscle, organ weight loss, and muscle fiber atrophy in chemotherapy-induced cachectic mice. Moreover, PCP suppressed the decrease in serum immunoglobulin levels and the increase in pro-inflammatory factor interleukin-6 (IL-6). Proteomic analysis demonstrated that PCP contributed to the homeostasis of protein metabolism in gastrocnemius muscle. Diacylglycerol kinase (DGKζ) and cathepsin L (CTSL) were identified as primary PCP targets. Furthermore, the IL-6/STAT3/CTSL and DGKζ/FoxO/Atrogin1 signaling pathways were validated. Our findings suggest that PCP exerts an anti-atrophy effect on chemotherapy-induced muscle atrophy by regulating the autophagy-lysosome and ubiquitin-proteasome systems.
Collapse
Affiliation(s)
- Xue-Yang Tang
- Institute of Innovation and Applied Research in Chinses Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, PR China
| | - Jing Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, PR China
| | - You Qin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, PR China
| | - Hao Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, PR China
| | - Fei Cheng
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, PR China
| | - Hai-Chao Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410016, PR China
| | - Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410016, PR China
| | - Jia-Yu Li
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha 410199, PR China
| | - Ao Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410016, PR China
| | - Jia Lao
- Resgreen Group International Inc., Changsha 410329, PR China
| | - Lin Chen
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, PR China
| | - Lin Tang
- The First Hospital, Hunan University of Chinese Medicine, Changsha 410021, PR China
| | - Rong-Rong Zhou
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410016, PR China.
| | - Hong-Liang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha 410013, PR China.
| | - Shui-Han Zhang
- Institute of Innovation and Applied Research in Chinses Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, PR China.
| |
Collapse
|
16
|
Valdés-González JA, Sánchez M, Moratilla-Rivera I, Iglesias I, Gómez-Serranillos MP. Immunomodulatory, Anti-Inflammatory, and Anti-Cancer Properties of Ginseng: A Pharmacological Update. Molecules 2023; 28:molecules28093863. [PMID: 37175273 PMCID: PMC10180039 DOI: 10.3390/molecules28093863] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Ginseng, a medicinal plant of the genus Panax, boasts a rich historical record of usage that dates back to the Paleolithic period. This botanical is extensively acknowledged and consumed in Eastern countries for its therapeutic properties, and, in Western countries, it is becoming increasingly popular as a remedy for fatigue and asthenia. This review provides an update on current research pertaining to ginseng and its isolated compounds, namely, ginsenosides and polysaccharides. The primary focus is on three crucial pharmacological activities, namely, immunomodulation, anti-inflammatory, and anti-cancer effects. The review encompasses studies on both isolated compounds and various ginseng extracts obtained from the root, leaves, and berries.
Collapse
Affiliation(s)
- Jose Antonio Valdés-González
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Marta Sánchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Ignacio Moratilla-Rivera
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Irene Iglesias
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
17
|
Su H, Tian CJ, Wang Y, Shi J, Chen X, Zhen Z, Bai Y, Deng L, Feng C, Ma Z, Liu J. Ginsenoside Rb1 reduces oxidative/carbonyl stress damage and ameliorates inflammation in the lung of streptozotocin-induced diabetic rats. PHARMACEUTICAL BIOLOGY 2022; 60:2229-2236. [PMID: 36367996 PMCID: PMC9662009 DOI: 10.1080/13880209.2022.2140168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Ginsenoside Rb1 (Rb1) is a biologically active component of ginseng [Panax ginseng C.A. Meyer (Araliaceae)]. OBJECTIVE This study determined the underlying mechanisms of Rb1 treatment that acted on diabetes-injured lungs in diabetic rats. MATERIALS AND METHODS Streptozotocin (STZ)-induced diabetic rat model was used. Male Sprague-Dawley (SD) rats were divided into four groups (n = 10): control, Rb1 (20 mg/kg), insulin (15 U/kg to attain the euglycaemic state) and diabetic (untreated). After treatment for six weeks, oxidative stress assay; histological and ultrastructure analyses; TNF-α, TGF-β, IL-1 and IL-6 protein expression analyses; and the detection of apoptosis were performed. RESULTS There was decreased activity of SOD (3.53-fold), CAT (2.55-fold) and GSH (1.63-fold) and increased levels of NO (4.47-fold) and MDA (3.86-fold) in the diabetic group from control. Rb1 treatment increased SOD (2.4-fold), CAT (1.9-fold) and GSH (1.29-fold) and decreased the levels of NO (1.76-fold) and MDA (1.51-fold) as compared with diabetic rats. The expression of IL-6 (5.13-fold), IL-1α (2.35-fold), TNF-α (2.35-fold) and TGF-β (2.39-fold) was increased in diabetic rats from control. IL-6 (2.43-fold), IL-1α (2.27-fold), TNF-α (1.68-fold) and TGF-β (2.3-fold) were decreased in the Rb1 treatment group. Diabetes increased the apoptosis rate (2.23-fold vs. control), and Rb1 treatment decreased the apoptosis rate (1.73-fold vs. the diabetic rats). Rb1 and insulin ameliorated lung tissue injury. DISCUSSION AND CONCLUSIONS These findings indicate that Rb1 could be useful for mitigating oxidative damage and inflammatory infiltration in the diabetic lung.
Collapse
Affiliation(s)
- Hao Su
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Cheng-Ju Tian
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, PR China
| | - Ying Wang
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, PR China
| | - Jiaojiao Shi
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, PR China
| | - Xiaoxiao Chen
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, PR China
| | - Zhong Zhen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yu Bai
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Lan Deng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chunpeng Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Zhuang Ma
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, PR China
| | - Jinfeng Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| |
Collapse
|
18
|
Zha W, Sun Y, Gong W, Li L, Kim W, Li H. Ginseng and ginsenosides: Therapeutic potential for sarcopenia. Biomed Pharmacother 2022; 156:113876. [DOI: 10.1016/j.biopha.2022.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
19
|
Feng Y, Ma F, Wu E, Cheng Z, Wang Z, Yang L, Zhang J. Ginsenosides: Allies of gastrointestinal tumor immunotherapy. Front Pharmacol 2022; 13:922029. [PMID: 36386161 PMCID: PMC9659574 DOI: 10.3389/fphar.2022.922029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/26/2022] [Indexed: 09/25/2023] Open
Abstract
In the past decade, immunotherapy has been the most promising treatment for gastrointestinal tumors. But the low response rate and drug resistance remain major concerns. It is therefore imperative to develop adjuvant therapies to increase the effectiveness of immunotherapy and prevent drug resistance. Ginseng has been used in Traditional Chinese medicine as a natural immune booster for thousands of years. The active components of ginseng, ginsenosides, have played an essential role in tumor treatment for decades and are candidates for anti-tumor adjuvant therapy. They are hypothesized to cooperate with immunotherapy drugs to improve the curative effect and reduce tumor resistance and adverse reactions. This review summarizes the research into the use of ginsenosides in immunotherapy of gastrointestinal tumors and discusses potential future applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Ni B, Song X, Shi B, Wang J, Sun Q, Wang X, Xu M, Cao L, Zhu G, Li J. Research progress of ginseng in the treatment of gastrointestinal cancers. Front Pharmacol 2022; 13:1036498. [PMID: 36313365 PMCID: PMC9603756 DOI: 10.3389/fphar.2022.1036498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer has become one of the major causes of human death. Several anticancer drugs are available; howeve their use and efficacy are limited by the toxic side effects and drug resistance caused by their continuous application. Many natural products have antitumor effects with low toxicity and fewer adverse effects. Moreover, they play an important role in enhancing the cytotoxicity of chemotherapeutic agents, reducing toxic side effects, and reversing chemoresistance. Consequently, natural drugs are being applied as potential therapeutic options in the field of antitumor treatment. As natural medicinal plants, some components of ginseng have been shown to have excellent efficacy and a good safety profile for cancer treatment. The pharmacological activities and possible mechanisms of action of ginseng have been identified. Its broad range of pharmacological activities includes antitumor, antibacterial, anti-inflammatory, antioxidant, anti-stress, anti-fibrotic, central nervous system modulating, cardioprotective, and immune-enhancing effects. Numerous studies have also shown that throuth multiple pathways, ginseng and its active ingredients exert antitumor effects on gastrointestinal (GI) tract tumors, such as esophageal, gastric, colorectal, liver, and pancreatic cancers. Herein, we introduced the main components of ginseng, including ginsenosides, polysaccharides, and sterols, etc., and reviewed the mechanism of action and research progress of ginseng in the treatment of various GI tumors. Futhermore, the pathways of action of the main components of ginseng are discussed in depth to promote the clinical development and application of ginseng in the field of anti-GI tumors.
Collapse
Affiliation(s)
- Baoyi Ni
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotong Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qianhui Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manman Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
21
|
A Panax quinquefolius-Based Preparation Prevents the Impact of 5-FU on Activity/Exploration Behaviors and Not on Cognitive Functions Mitigating Gut Microbiota and Inflammation in Mice. Cancers (Basel) 2022; 14:cancers14184403. [PMID: 36139563 PMCID: PMC9496716 DOI: 10.3390/cancers14184403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Chemotherapy-related cognitive impairment (CRCI) and fatigue worsen the quality of life (QoL) of cancer patients. Multicenter studies have shown that Panax quinquefolius and vitamin C, respectively, were effective in reducing the symptoms of fatigue in treated cancer patients. We developed a behavioral C57Bl/6j mouse model to study the impact of 5-Fluorouracil (5-FU) chemotherapy on activity/fatigue, emotional reactivity and cognitive functions. We used this model to evaluate the potentially beneficial role of a Panax quinquefolius-based solution containing vitamin C (Qiseng®) or vitamin C alone in these chemotherapy side effects. We established that Qiseng® prevents the reduction in activity/exploration and symptoms of fatigue induced by 5-FU and dampens chemotherapy-induced intestinal dysbiosis and systemic inflammation. We further showed that Qiseng® decreases macrophage infiltration in the intestinal compartment, thus preventing, at least in part, the systemic elevation of IL-6 and MCP-1 and further reducing the neuroinflammation likely responsible for the fatigue induced by chemotherapy, a major advance toward improving the QoL of patients. Abstract Chemotherapy-related cognitive impairment (CRCI) and fatigue constitute common complaints among cancer patient survivors. Panax quinquefolius has been shown to be effective against fatigue in treated cancer patients. We developed a behavioral C57Bl/6j mouse model to study the role of a Panax quinquefolius-based solution containing vitamin C (Qiseng®) or vitamin C alone in activity/fatigue, emotional reactivity and cognitive functions impacted by 5-Fluorouracil (5-FU) chemotherapy. 5-FU significantly reduces the locomotor/exploration activity potentially associated with fatigue, evokes spatial cognitive impairments and leads to a decreased neurogenesis within the hippocampus (Hp). Qiseng® fully prevents the impact of chemotherapy on activity/fatigue and on neurogenesis, specifically in the ventral Hp. We observed that the chemotherapy treatment induces intestinal damage and inflammation associated with increased levels of Lactobacilli in mouse gut microbiota and increased expression of plasma pro-inflammatory cytokines, notably IL-6 and MCP-1. We demonstrated that Qiseng® prevents the 5-FU-induced increase in Lactobacilli levels and further compensates the 5-FU-induced cytokine release. Concomitantly, in the brains of 5-FU-treated mice, Qiseng® partially attenuates the IL-6 receptor gp130 expression associated with a decreased proliferation of neural stem cells in the Hp. In conclusion, Qiseng® prevents the symptoms of fatigue, reduced chemotherapy-induced neuroinflammation and altered neurogenesis, while regulating the mouse gut microbiota composition, thus protecting against intestinal and systemic inflammation.
Collapse
|
22
|
Zhao L, Zhang Y, Li Y, Li C, Shi K, Zhang K, Liu N. Therapeutic effects of ginseng and ginsenosides on colorectal cancer. Food Funct 2022; 13:6450-6466. [PMID: 35661189 DOI: 10.1039/d2fo00899h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is among the most common malignant diseases with high morbidity and mortality rates. Ginseng and its major extracts, ginsenosides, have been used in medical fields for thousands of years. In particular, their huge anti-cancer potential has drawn a great deal of attention in recent years. There is a large body of evidence that has shown that ginseng and its extracts could significantly inhibit tumor development and progression by suppressing cell proliferation, tumor growth, invasion and metastasis, inducing tumor cell apoptosis, regulating tumor-associated immune responses, and improving the therapeutic effect of chemotherapy. Notably, different subtypes of ginsenosides, even those extracted from the same ginseng, have exhibited distinct anti-cancer functions through different mechanisms. Over the past few years, a large number of studies have focused on how ginseng or various ginsenosides influence CRC development. Therefore, the roles and the potential of ginseng and ginsenosides in the treatment of CRC are summarized in this review. In addition, the biochemical properties of ginseng and ginsenosides are also briefly described.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Yueming Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Chen Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, Jilin, 130062, China
| | - Kai Shi
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, Jilin, 130062, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Ning Liu
- Department of Central Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|
23
|
Shandilya UK, Lamers K, Zheng Y, Moran N, Karrow NA. Ginsenoside Rb1 selectively improved keratinocyte functions in vitro without affecting tissue regeneration in zebrafish larvae tail regrowth. In Vitro Cell Dev Biol Anim 2022; 58:269-277. [PMID: 35501555 DOI: 10.1007/s11626-022-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Umesh K Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Kristen Lamers
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yashi Zheng
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole Moran
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
24
|
Choi JH, Lee YH, Kwon TW, Ko SG, Nah SY, Cho IH. Can Panax ginseng help control cytokine storm in COVID-19? J Ginseng Res 2022; 46:337-347. [PMID: 35233163 PMCID: PMC8876050 DOI: 10.1016/j.jgr.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/05/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is currently a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 are directly associated with hyper-activation of innate immune response that excessively produce pro-inflammatory cytokines and induce cytokine storm, leading to multi-organ-failure and significant morbidity/mortality. Currently, several antiviral drugs such as Paxlovid (nirmatrelvir and ritonavir) and molnupiravir are authorized to treat mild to moderate COVID-19, however, there are still no drugs that can specifically fight against challenges of SARS-CoV-2 variants. Panax ginseng, a medicinal plant widely used for treating various conditions, might be appropriate for this need due to its anti-inflammatory/cytokine/viral activities, fewer side effects, and cost efficiency. To review Panax ginseng and its pharmacologically active-ingredients as potential phytopharmaceuticals for treating cytokine storm of COVID-19, articles that reporting its positive effects on the cytokine production were searched from academic databases. Experimental/clinical evidences for the effectiveness of Panax ginseng and its active-ingredients in preventing or mitigating cytokine storm, especially for the cascade of cytokine storm, suggest that they might be beneficial as an adjunct treatment for cytokine storm of COVID-19. This review may provide a new approach to discover specific medications using Panax ginseng to control cytokine storm of COVID-19.
Collapse
|
25
|
Lu Q, Li R, Yang Y, Zhang Y, Zhao Q, Li J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem 2022; 368:130610. [PMID: 34419798 DOI: 10.1016/j.foodchem.2021.130610] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 02/09/2023]
Abstract
Inflammation occurs when the immune system responses to external harmful stimuli and infection. Chronic inflammation induces various diseases. A variety of foods are prescribed in the traditional medicines of many countries all over the world, which gave birth to the concept of medicine food homology. Over the past few decades, a number of secondary metabolites from medicine food homology plants have been demonstrated to have anti-inflammatory effects. In the present review, the effects and mechanisms of the medicine food homology plants-derived active components on relieving inflammation and inflammation-mediated diseases were summarized and discussed. The information provided in this review is valuable to future studies on anti-inflammatory ingredients derived from medicine food homology plants as drugs or food supplements.
Collapse
Affiliation(s)
- Qiuxia Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yixi Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yujin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jian Li
- School of Medicine, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
26
|
Apatinib and Ginsenoside-Rb1 Synergetically Control the Growth of Hypopharyngeal Carcinoma Cells. DISEASE MARKERS 2022; 2022:3833489. [PMID: 35069931 PMCID: PMC8776476 DOI: 10.1155/2022/3833489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Background Apatinib is an anticancer drug known to inhibit the vascular endothelial growth factor receptor-2 (VEGFR-2) through regulating tyrosine kinases. Drug resistance and reduced activity in various cancers is the matter of great concern; thus, researchers opt to use combination of the two or more drugs. So far, its gynergetic anticancer role with a traditional Chinese drug Ginsenoside-Rb1 (G-Rb1) has not been studied in cancers including hypopharyngeal carcinoma. Objective The current study is aimed at investigating the anticancer synergetic effects of G-Rb1 and apatinib in hypopharyngeal carcinoma. Methods The synergetic effects of both drugs on cell proliferation, wound healing and cell migration, and cell apoptosis were studied in hypopharyngeal carcinoma cells. Furthermore, the xenograft rat model was generated, and tumor inhibition was monitored after treating rats with both drugs as mono- and combination therapy. In addition, protein expression and localization were performed by western blotting and immunofluorescent staining, respectively. Results The analyses of the data showed that combination therapy of apatinib and G-Rb1 significantly inhibited the proliferation, migration, and wound healing capability of hypopharyngeal carcinoma cells. Moreover, the glycolysis rate of the cells in the combination therapy (apatinib and G-Rb1) group was significantly decreased as compared to that in the monotherapy group or no treatment group, suggesting that the glycolysis inhibition led to the inhibition of tumor growth. Moreover, the combination therapy on xenograft rats dramatically reduced the tumor size. Furthermore, combination therapy also exhibited an increased count of CD3+ and CD4+ T cells, as well as the ratio between CD4+ and CD8+ T cells. Conclusion Interestingly, a combination of apatinib and G-Rb1 induced more tumor cell apoptosis and reduced cell proliferation than the individual drug treatment and promote antitumor immunity by enhancing immunomodulatory molecules. Thus, we believe that this study could serve as a valuable platform to assess the synergetic anticancer effects of the herbal as well as synthetic medicines.
Collapse
|
27
|
Lin Z, Xie R, Zhong C, Huang J, Shi P, Yao H. Recent progress (2015-2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb 1, a main active ingredient in Panax ginseng Meyer. J Ginseng Res 2022; 46:39-53. [PMID: 35058726 PMCID: PMC8753521 DOI: 10.1016/j.jgr.2021.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Ginsenoside Rb1 (Rb1), one of the most important ingredients in Panax ginseng Meyer, has been confirmed to have favorable activities, including reducing antioxidative stress, inhibiting inflammation, regulating cell autophagy and apoptosis, affecting sugar and lipid metabolism, and regulating various cytokines. This study reviewed the recent progress on the pharmacological effects and mechanisms of Rb1 against cardiovascular and nervous system diseases, diabetes, and their complications, especially those related to neurodegenerative diseases, myocardial ischemia, hypoxia injury, and traumatic brain injury. This review retrieved articles from PubMed and Web of Science that were published from 2015 to 2020. The molecular targets or pathways of the effects of Rb1 on these diseases are referring to HMGB1, GLUT4, 11β-HSD1, ERK, Akt, Notch, NF-κB, MAPK, PPAR-γ, TGF-β1/Smad pathway, PI3K/mTOR pathway, Nrf2/HO-1 pathway, Nrf2/ARE pathway, and MAPK/NF-κB pathway. The potential effects of Rb1 and its possible mechanisms against diseases were further predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and disease ontology semantic and enrichment (DOSE) analyses with the reported targets. This study provides insights into the therapeutic effects of Rb1 and its mechanisms against diseases, which is expected to help in promoting the drug development of Rb1 and its clinical applications.
Collapse
Affiliation(s)
- Zuan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Rongfang Xie
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianyong Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Wang H, Zheng Y, Sun Q, Zhang Z, Zhao M, Peng C, Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J Nanobiotechnology 2021; 19:322. [PMID: 34654430 PMCID: PMC8518152 DOI: 10.1186/s12951-021-01062-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides, the main components isolated from Panax ginseng, can play a therapeutic role by inducing tumor cell apoptosis and reducing proliferation, invasion, metastasis; by enhancing immune regulation; and by reversing tumor cell multidrug resistance. However, clinical applications have been limited because of ginsenosides' physical and chemical properties such as low solubility and poor stability, as well as their short half-life, easy elimination, degradation, and other pharmacokinetic properties in vivo. In recent years, developing a ginsenoside delivery system for bifunctional drugs or carriers has attracted much attention from researchers. To create a precise treatment strategy for cancer, a variety of nano delivery systems and preparation technologies based on ginsenosides have been conducted (e.g., polymer nanoparticles [NPs], liposomes, micelles, microemulsions, protein NPs, metals and inorganic NPs, biomimetic NPs). It is desirable to design a targeted delivery system to achieve antitumor efficacy that can not only cross various barriers but also can enhance immune regulation, eventually converting to a clinical application. Therefore, this review focused on the latest research about delivery systems encapsulated or modified with ginsenosides, and unification of medicines and excipients based on ginsenosides for improving drug bioavailability and targeting ability. In addition, challenges and new treatment methods were discussed to support the development of these new tumor therapeutic agents for use in clinical treatment.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
29
|
Xu J, Pan Y, Liu Y, Na S, Zhou H, Li L, Chen F, Song H. A review of anti-tumour effects of ginsenoside in gastrointestinal cancer. J Pharm Pharmacol 2021; 73:1292-1301. [PMID: 33836068 DOI: 10.1093/jpp/rgab048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Gastrointestinal cancer, one of the major causes of cancer-related deaths in the world, refers to malignant conditions of the gastrointestinal (GI) tract and other organs. Although conventional therapy has been successful to some extent in cancer treatment, drug resistance and cancer recurrence still limit the therapeutic efficacy. There is increasing evidence indicating that ginsenoside, as a kind of high nutritional value and widely used traditional Chinese medicine, could contribute to the promotion of treatment in GI cancer, which deserves further investigation. KEY FINDINGS Based on previous studies, the possible mechanisms mainly include regulation of autophagy, apoptosis, proliferation, migration and angiogenesis. However, no studies recently have conducted a more in-depth review of the anti-cancer effects of ginsenoside in GI cancer. SUMMARY Therefore, this review will summarise and analyse the latest developments in the anti-tumour effects of ginsenosides in GI cancer, thus may promote further research of the anti-tumour efficacy of ginsenoside.
Collapse
Affiliation(s)
- Jing Xu
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yunxia Pan
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yanyan Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Sha Na
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Fengyuan Chen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Hang Song
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| |
Collapse
|
30
|
Park JM, Han YM, Lee HJ, Park YJ, Hahm KB. Nicotinamide Riboside Vitamin B3 Mitigated C26 Adenocarcinoma-Induced Cancer Cachexia. Front Pharmacol 2021; 12:665493. [PMID: 34262449 PMCID: PMC8273280 DOI: 10.3389/fphar.2021.665493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/02/2021] [Indexed: 01/17/2023] Open
Abstract
Nicotinamide riboside (NR), vitamin B3, is a substrate for nicotinamide adenine dinucleotide (NAD+)–consuming enzymes and is a coenzyme for hydride-transfer enzymes, including adenosine diphosphate (ADP)–ribose transferases, poly (ADP-ribose) polymerases, cADP-ribose synthases, and sirtuins, which play a central role in the aging process, neurodegenerative processes, and myopathy. Since cancer cachexia is a disease condition presenting with weight loss, skeletal muscle atrophy, and loss of adipose tissue in patients with advanced cancer, we hypothesized that NR intake could ameliorate sarcopenia. In this study, we investigated whether preemptive administration of NR ameliorated C26 adenocarcinoma–induced cancer cachexia and explored anti-cachexic mechanisms focused on the changes in muscle atrophy, cachexic inflammation, and catabolic catastrophe. Dietary intake of the NR-containing pellet diet significantly attenuated cancer cachexia in a mouse model. Starting with significant inhibition of cachexic factors, tumor necrosis factor alpha, and interleukin-6, NR significantly inhibited muscle-specific ubiquitin-proteasome ligases, such as atrogin-1, muscle RING-finger protein-1 (MuRF-1), mitofusin-2, and peroxisome proliferator–activated receptor gamma coactivator-1-alpha (PCG-1α). Significant inhibition of epididymal fat lipolysis was noted with significant inhibition of adipose triglyceride lipase (ATGL) gene. Furthermore, NR administration significantly increased the levels of crucial enzymes involved in the biosynthesis of NAD+ and nicotinamide phosphoribosyl transferase and significantly inhibited the NAD+-sensitive deacetylase sirtuin 1 (SIRT1). Preemptive intake of NR in patients vulnerable to cachexia can be a preemptive option to ameliorate cancer cachexia.
Collapse
Affiliation(s)
- Jong Min Park
- College of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | - Young Min Han
- Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Ho Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, University of Gachon, Incheon, South Korea
| | | | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, Pangyo, South Korea.,Medpacto Research Institute, Medpacto, Seoul, South Korea
| |
Collapse
|
31
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
32
|
Wang D, Chen W, Bi Q, Zong X, Ruan J, Yin X, Wang J, Zhang H, Ji X. Baoyuan Jiedu Decoction Alleviates Cancer-Induced Myotube Atrophy by Regulating Mitochondrial Dynamics Through p38 MAPK/PGC-1α Signaling Pathway. Front Oncol 2020; 10:523577. [PMID: 33102208 PMCID: PMC7556243 DOI: 10.3389/fonc.2020.523577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/11/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by continuous body wasting and loss of skeletal muscle. Impaired mitochondria function is closely associated with muscle atrophy in cancer cachexia. Our previous study confirmed the effectiveness of Baoyuan Jiedu decoction (BJD) in inhibiting cancer-induced muscle atrophy in an in vivo model. However, little is known about its mechanisms in regulating mitochondria dysfunction. In this study, we evaluated the therapeutic effect and action mechanisms of BJD against atrophy both in the Lewis-conditioned medium induced C2C12 myotube atrophy model and in a BALB/c mice xenograft model using mouse colon cancer C26 cells. The mitochondrial content was tested by 10-Non-ylacridine orange staining. Expressions of related proteins and mRNAs were detected by western blotting (WB) and qPCR, respectively. As a result, 18 major components were identified in BJD by ultra-high performance liquid chromatography-quadrupole (UHPLC-Q) Exactive analysis. As shown in the in vitro results, BJD treatment prevented prominent myotube atrophy and increased the myotube diameter of C2C12 cells. Besides, BJD treatment increased mitochondrial content and ATPase activity. Furthermore, the protein and mRNA expressions that were related to mitochondrial functions and generation such as cytochrome-c oxidase IV, Cytochrome C, nuclear respiratory factor 1, and mitochondrial transcription factor A were significantly increased in BJD treatment compared to the control group. The in vivo results showed that BJD treatment prevented body weight loss and improved the gastrocnemius index in cachexia mice. Moreover, the expressions of Atrogin-1 and muscle RING-finger protein-1 were decreased by BJD treatment. Mechanically, BJD increased the expression of peroxisome proliferator-activated receptor-gamma coactivator 1, and consistently, inhibited the expression of p38 MAPK and its phosphorylation both in vivo and in vitro. Taken together, this study identified that BJD effectively relieved cancer-induced myotube atrophy and provided a potential mechanism for BJD in regulating mitochondrial dynamics through p38 MAPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Delong Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Weiqiao Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qianyu Bi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Xin Zong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jiazhao Ruan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiangjun Yin
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jixin Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang, China
| | - Honghua Zhang
- Medical College, Hangzhou Normal University, Zhejiang, China
| | - Xuming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|