1
|
Alkandahri MY, Sadino A, Abriyani E, Hermanto F, Oktoba Z, Sayoeti MFW, Sangging PRA, Wardani D, Hasan N, Sari SW, Safitri NA, Ikhtianingsih W, Safitri S. Evaluation of hepatoprotective and nephroprotective activities of Castanopsis costata extract in rats. Biomed Rep 2025; 22:24. [PMID: 39720299 PMCID: PMC11668127 DOI: 10.3892/br.2024.1902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
The liver and kidneys are important organs for body homeostasis but susceptible to damage or injury caused by different factors. A number of medicinal plants, such as Castanopsis costata have been proven effective in protecting the liver and kidneys from damage. Therefore, the present study aimed to examine the effect of C. costata extract (CcE) on paracetamol-induced hepatotoxicity and gentamicin-induced nephrotoxicity in rat model. Each treatment group was given CcE at doses of 100, 200 and 400 mg/kg for 21 and 8 days for hepatoprotective tests and nephroprotective tests, respectively. To induce liver and kidney damage, rats were given paracetamol 1,000 mg/kg orally for 7 (15-21) and gentamicin 80 mg/kg intraperitoneally for 5 (4-8) days. To assess liver function, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin (TB), total cholesterol (TC), total albumin (TA) and total protein (TP) were measured, as well as liver antioxidant enzymes. Meanwhile, to assess kidney function, the levels of serum creatinine (SCr), serum urea (SU) and uric acid (UA) were measured. TNF-α and IFN-γ were also measured with histopathology testing to assess the effects of liver and kidney organ damage in each experiment. The results showed that CcE reduced the levels of AST, ALT, ALP, TB and TC, increased TA, TP and liver antioxidant enzymes, as well as reducing SCr, SU and UA when compared with the pathological group. Additionally, CcE reduced the levels of TNF-α and IFN-γ, as well as improving the structure of liver and kidney tissue as confirmed by histopathology. CcE had hepatoprotective and nephroprotective effects on paracetamol-induced and gentamicin-induced rats, respectively.
Collapse
Affiliation(s)
- Maulana Yusuf Alkandahri
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Asman Sadino
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Garut, Garut, West Java 44151, Indonesia
| | - Ermi Abriyani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Faizal Hermanto
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, West Java 40525, Indonesia
| | - Zulpakor Oktoba
- Department of Pharmacy, Faculty of Medicine, Universitas Lampung, Bandar Lampung 35141, Indonesia
| | | | | | - Diah Wardani
- Diploma Program of Pharmacy, Karsa Husada Garut College of Health Sciences, Garut, West Java 44151, Indonesia
| | - Nahrul Hasan
- Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java 53122, Indonesia
| | - Suci Wulan Sari
- Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java 53122, Indonesia
| | - Nurul Aeni Safitri
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Windi Ikhtianingsih
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Safitri Safitri
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| |
Collapse
|
2
|
Mili A, Birangal S, Nandakumar K, Lobo R. A computational study to identify Sesamol derivatives as NRF2 activator for protection against drug-induced liver injury (DILI). Mol Divers 2024; 28:1709-1731. [PMID: 37392347 PMCID: PMC11269468 DOI: 10.1007/s11030-023-10686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Drug-induced liver injury can be caused by any drugs, their metabolites, or natural products due to the inefficient functioning of drug-metabolizing enzymes, resulting in reactive oxygen species generation and leading to oxidative stress-induced cell death. For protection against oxidative stress, our cell has various defense mechanisms. One of the mechanisms is NRF2 pathway, when activated, protects the cell against oxidative stress. Natural antioxidants such as Sesamol have reported pharmacological activity (hepatoprotective & cardioprotective) and signaling pathways (NRF2 & CREM) altering potential. A Computational analysis was done using molecular docking, IFD, ADMET, MM-GBSA, and Molecular dynamic simulation of the Schrödinger suite. A total of 63,345 Sesamol derivatives were downloaded for the PubChem database. The protein structure of KEAP1-NRF2 (PDB: 4L7D) was downloaded from the RCSB protein database. The molecular docking technique was used to screen compounds that can form an interaction similar to the co-crystalized ligand (1VX). Based on MM-GBSA, docking score, and interactions, ten compounds were selected for ADMET profiling and IFD. After IFD, five compounds (66867225, 46148111, 12444939, 123892179, & 94817569) were selected for molecular dynamics simulation (MDS). Protein-ligand complex stability was assessed during MDS. The selected compounds (66867225, 46148111, 12444939, 123892179, & 94817569) complex with KEAP1 protein shows good stability and bond retentions. In our study, we observed that the selected compounds show good interaction, PCA, Rg, binding free energy, and ADMET profile. We can conclude that the selected compounds can act as NRF2 activators, which should be validated using proper in-vivo/in-vitro models.
Collapse
Affiliation(s)
- Ajay Mili
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Richard Lobo
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
El-Beltagi HS, Rageb M, El-Saber MM, El-Masry RA, Ramadan KM, Kandeel M, Alhajri AS, Osman A. Green synthesis, characterization, and hepatoprotective effect of zinc oxide nanoparticles from Moringa oleifera leaves in CCl 4-treated albino rats. Heliyon 2024; 10:e30627. [PMID: 38765133 PMCID: PMC11101797 DOI: 10.1016/j.heliyon.2024.e30627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Hepatotoxin carbon tetrachloride (CCl4) causes liver injury. This research aims to create ZnO-NPs using green synthesis from Moringa oleifera (MO) leaves aqueous extract, and chemically prepared and confirming the synthesis by specialized equipment analysis. The sizes formed of ZnO-NPs were 80 and 55 nm for chemical and green methods, respectively. In addition, to study their ability to protect Wistar Albino male rats against oxidative stress exposed to carbon tetrachloride. MO leaf aqueous extract, green synthesized ZnO-NPs, and ZnO-NPs prepared chemically at 100 and 200 mg/kg BW per day were investigated for their hepatoprotective effects on liver enzyme biomarkers, renal biomarkers, antioxidant enzymes, lipid peroxidation, hematological parameters, and histopathological changes. Compared to the control group, all liver and kidney indicators were considerably elevated after the CCl4 injection. However, the activity of antioxidant enzymes in the liver was significantly reduced after the CCl4 injection. These outcomes indicate that MO leaf aqueous extract, greenly synthesized ZnO-NPs, and ZnO-NPs chemically prepared can restore normal liver and kidney function and activity, as well as hematological and antioxidant enzymes. The highest impact on enhancing the hepatoprotective effect was recorded for rats that received green synthesized ZnO-NPs. The increased drug delivery mechanism of green synthesized ZnO-NPs resulted in a higher protective effect than that of MO leaf aqueous extract.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Biochemistry Department, Cairo University, Giza, 12613, Egypt
| | - Marwa Rageb
- Biochemistry Department, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud M. El-Saber
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, 11753, Egypt
| | | | - Khaled M.A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Agricultural Biochemistry, Ain Shams University, P.O. Box 68, Hadayek Shobra, Cairo, 11241, Egypt
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ahlam Saleh Alhajri
- Food Science and Nutrition Department, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ali Osman
- Biochemistry Department, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
4
|
Abou-Elghait AT, Al Adly RM, Radwan E, Meligy FY. Metformin modulates autophagic pathway in renal fibrosis induced by carbon tetrachloride in adult male albino rats. Ultrastruct Pathol 2024; 48:153-171. [PMID: 38654519 DOI: 10.1080/01913123.2024.2342444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUNDS Chronic kidney disease (CKD) is a global public health problem. All progressive chronic kidney disease (CKD) is characterized by tubulointerstitial fibrosis. Exposure to high concentrations of carbon tetrachloride (including vapor) can destroy the kidneys. Autophagy played an important role in maintaining the homeostasis of organs. Impaired autophagy was frequently associated with renal damage and fibrosis. Recent data suggests that metformin protects against a variety of kidney disorders. AIM To investigate the protective role of metformin on carbon tetrachloride induced renal damage via autophagy pathway. MATERIALS AND METHODS Forty adult male albino rats were divided into four equal groups (10 rats, each); Group 1: control group. Group 2: olive oil group received olive oil 1.5 mg/kg twice weekly S.C for 12 weeks. Group 3: The ccl4 group, the rats were received ccl4 1.5 mg/kg twice weekly S.C for 12 weeks. Group 4: CCL4 and Metformin group received concomitant treatment of CCL4, 1.5 mg/kg twice weekly S.C and 100 mg/kg/day Metformin orally for 12 weeks. After sacrifice, kidneys were taken from all animal groups and processed for light and electron microscopy, immunological studies and biochemical tests. Statistical analysis was done. RESULTS Administration of ccl4 resulted in histopathological changes in the kidney tissue in the form of areas of tissue destruction, inflammatory cell infiltration, congestion and fibrosis. Ultrastructurally, irregular thickening of GBM was observed. Improvement was noticed with concomitant treatment of ccl4 with metformin. CONCLUSION Metformin administration can modulate histological and biochemical effects in the renal tissue induced by of ccl4.
Collapse
Affiliation(s)
- Amal T Abou-Elghait
- Histology and Cell Biology Department, Sphinx university, Assiut, Egypt
- Histology and Cell Biology Department, Faculty of Medicine, Assuit University, Assiut, Egypt
| | - Rania M Al Adly
- Histology and Cell Biology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Eman Radwan
- Department of Biochemistry, Sphinx University, Assiut, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fatma Y Meligy
- Histology and Cell Biology Department, Faculty of Medicine, Assuit University, Assiut, Egypt
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan
| |
Collapse
|
5
|
Alamri ES, El Rabey HA. The Protective Effects of Vanillic Acid and Vanillic Acid-Coated Silver Nanoparticles (AgNPs) in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2024; 2024:4873544. [PMID: 38577302 PMCID: PMC10994697 DOI: 10.1155/2024/4873544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
The production of nanoparticles enhances the bioactivity of biological molecules for drug delivery to diseased sites. This study explains how silver nanoparticle (AgNP) coating enhanced the protection effects of vanillic acid in male diabetic rats with streptozotocin- (STZ-) induced diabetes. Twenty-four rats were divided into four groups (n = 6) for this investigation. The first group (G1) is untreated, whereas diabetes was induced in the other three groups through STZ injection. Diabetic rats that were not getting therapy were included in the second group (G2, STZ-positive), whereas the other diabetic rats were divided into the third group (G3, vanillic acid-treated) and the fourth group (G4, vanillic acid-coated AgNPs treated). The treatment lasted four weeks. In G2, the induction of diabetes significantly (at P = 0.05) increased in serum glucose, glycated proteins, renal indices, interleukin-6 (IL-6), K+, immunoglobulins, and lipid peroxidation, while decreased Ca++, Na+, and other antioxidants in the kidney tissue homogenate. In addition, pathological altered signs were present in the pancreas and kidneys of diabetic rats. The renal and pancreatic tissues were effectively enhanced by vanillic acid or vanillic acid-coated AgNPs, bringing them very close to their prediabetic conditions. Vanillic acid-coated AgNPs offered a stronger defense against STZ-induced diabetes and lessened the effects of hyperglycemia compared to ordinary vanillic acid. Additionally, using vanillic acid coated with silver nanoparticles greatly increased the antioxidant and antidiabetic activity and reduced inflammation when compared to using vanillic acid alone.
Collapse
Affiliation(s)
- Eman S. Alamri
- Department of Nutrition and Food Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Haddad A. El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| |
Collapse
|
6
|
Zein N, Yassin F, Ayoub HG, Elewa YHA, Mohamed SKA, Mahmoud MH, Elfeky M, Batiha GES, Zahran MH. In vivo investigation of the anti-liver fibrosis impact of Balanites aegyptiaca/ chitosan nanoparticles. Biomed Pharmacother 2024; 172:116193. [PMID: 38301419 DOI: 10.1016/j.biopha.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Balanites aegyptiaca (B. aegyptiaca) is an African herb with traditional medical applications. Various pathogenic factors cause hepatic fibrosis and require novel treatment alternatives. Nanoformulation-based natural products can overcome the available drug problems by increasing the efficacy of natural products targeting disease markers. The current study investigated B. aegyptiaca methanolic extract using high-pressure liquid chromatography (HPLC), and B. aegyptiaca/chitosan nanoparticles were prepared. In vivo, evaluation tests were performed to assess the curative effect of the successfully prepared B. aegyptiaca/chitosan nanoparticles. For 30 days, the rats were divided into six groups, typical and fibrosis groups, where the liver fibrosis groups received B. aegyptiaca extract, silymarin, chitosan nanoparticles, and B. aegyptiaca/chitosan nanoparticles daily. In the current investigation, phenolic molecules are the major compounds detected in B. aegyptiaca extract. UV showed that the prepared B. aegyptiaca /chitosan nanoparticles had a single peak at 280 nm, a particle size of 35.0 ± 6.0 nm, and a negative charge at - 8.3 mV. The animal studies showed that the synthetic B. aegyptiaca/chitosan nanoparticles showed substantial anti-fibrotic protective effects against CCl4-induced hepatic fibrosis in rats when compared with other groups through optimization of biochemical and oxidative markers, improved histological changes, and modulated the expression of Col1a1, Acta2 and Cxcl9 genes, which manage liver fibrosis. In conclusion, the current research indicated that the prepared B. aegyptiaca/chitosan nanoparticles improved histological structure and significantly enhanced the biochemical and genetic markers of liver fibrosis in an animal model.
Collapse
Affiliation(s)
- Nabila Zein
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Fathy Yassin
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Heba G Ayoub
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Sherif Kh A Mohamed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia
| | - Mohamed Elfeky
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur 22511, AlBeheira, Egypt
| | - Mahmoud Hosny Zahran
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
7
|
El-Kot SM, Wanas W, Hafez AM, Mahmoud NA, Tolba AM, Younis AH, Sayed GE, Abdelwahab HE. Effect of silymarin on the relative gene expressions of some inflammatory cytokines in the liver of CCl 4-intoxicated male rats. Sci Rep 2023; 13:15245. [PMID: 37710007 PMCID: PMC10502111 DOI: 10.1038/s41598-023-42250-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
The intensive exposure of the liver cells to any type of noxae, such as viruses, drugs, alcohols, and xenobiotics could induce hepatic inflammation through the upregulation of gene expression of several fibrotic and inflammatory mediators. So, our study assessed the role of silymarin on the inflammatory response induced by carbon tetrachloride (CCl4) as an example of xenobiotics on liver tissues in male rats. Forty-eight Wister male rats (weight: 130 ± 10) were housed for 14 days and then divided randomly into six groups: control, SLY: rats received only silymarin orally for 12 weeks (daily), CO: rats were injected with corn oil for 8 weeks (3 times weekly), CCl4: rats were injected with CCl4 solubilized in corn oil for 8 weeks (day by day), Treated: rats received silymarin for 4 weeks after CCl4 injection, Protected: rats received silymarin for 4 weeks before and 8 weeks during CCl4 injection. When the treatment period for the rats was over, they underwent scarification after anesthesia. Then, the sera were extracted from the collected blood for the determination of irisin levels, liver functions, and lipid profiles. Liver tissues were separated for the histopathological examinations, the determination of oxidative stress (OS) parameters content, and the relative gene expression of inflammatory cytokines; nuclear factor kappa (NF)-κB, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, cyclooxygenase (COX)-2, and transforming growth factor beta (TGF-β). The findings showed that silymarin reduced liver inflammation by overcoming the OS process and inflammatory cytokines production which was stimulated by CCl4. These results were confirmed by histopathology of liver tissues.
Collapse
Affiliation(s)
- Sarah M El-Kot
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt.
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| | - Wessam Wanas
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Afaf M Hafez
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Nihal A Mahmoud
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Amina M Tolba
- Anatomy Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Abeer H Younis
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, 21556, Egypt
| | - Gamal El Sayed
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
- Waste Water Lab, Baheria Water and Waste Company, Baheria, Damanhur, 107, Egypt
| | - Huda E Abdelwahab
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| |
Collapse
|
8
|
El-Kersh DM, Kotob SE, Ammar NM, Mohawed OAM, Ahmed HH, Farag MA. Unravelling the anti-inflammatory and antioxidant effects of standardized green and black caffeinated coffee, tea, and their mixtures in an obese male rat model: Insights from biochemical, metabolomic, and histopathological analyses. Food Chem Toxicol 2023; 179:113971. [PMID: 37506863 DOI: 10.1016/j.fct.2023.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Obesity is one of the major metabolic syndrome risk factors upon which altered metabolic pathways follow. This study aimed to discern altered metabolic pathways associated with obesity and to pinpoint metabolite biomarkers in serum of obese rats fed on high fructose diet using metabolomics. Further, the effect of standardized green versus black caffeinated aqueous extracts (tea and coffee) in controlling obesity and its comorbidities through monitoring relevant serum biomarkers viz. Leptin, adiponectin, spexin, malondialdehyde, total antioxidant capacity. Liver tissue oxidative stress (catalase, super oxide dismutase and glutathione) and inflammation (IL-1β and IL-6) markers were assessed for green coffee and its mixture with green tea. Results revealed improvement of all parameters upon treatments with more prominence for those treated with green caffeinated extract (coffee and tea) especially in mixture. Upon comparing with obese rat group, the green mixture of coffee and tea exhibited anti-hyperlipidemic action through lowering serum triglycerides by 35.0% and elevating high density lipoprotein by 71.0%. Black tea was likewise effective in lowering serum cholesterol and low density lipoprotein by 28.0 and 50.6%, respectively. GC-MS- based metabolomics of rat serum led to the identification of 34 metabolites with obese rat serum enriched in fatty acids (oleamide).
Collapse
Affiliation(s)
- Dina M El-Kersh
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, 11837, Cairo, Egypt.
| | - Soheir E Kotob
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Naglaa M Ammar
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ola A M Mohawed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562, Cairo, Egypt.
| |
Collapse
|
9
|
Gohari Mahmoudabad A, Gheybi F, Mehrabi M, Masoudi A, Mobasher Z, Vahedi H, Gharravi AM, Bitaraf FS, Rezayat Sorkhabadi SM. Synthesis, characterization and hepatoprotective effect of silymarin phytosome nanoparticles on ethanol-induced hepatotoxicity in rats. BIOIMPACTS : BI 2023; 13:301-311. [PMID: 37645028 PMCID: PMC10460772 DOI: 10.34172/bi.2023.24128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/25/2022] [Accepted: 09/13/2022] [Indexed: 08/31/2023]
Abstract
Introduction Silymarin proved to be a beneficial herbal medicine against many hepatic disorders such as alcoholic liver disease (ALD). However, its application is restricted due to its low bioavailability and consequently decreased efficacy. We herein used a nano-based approach known as "phytosome", to improve silymarin bioavailability and increase its efficacy. Methods Phytosome nanoparticles (NPs) were synthesized using thin film hydration method. NPs size, electrical charge, morphology, stability, molecular interaction, entrapment efficiency (EE %) and loading capacity (LC %) were determined. Moreover, in vitro toxicity of NPs was investigated on mesenchymal stem cells (MSCs) viability using MTT assay. In vivo experiments were performed using 24 adult rats that were divided into four groups including control, ethanol (EtOH) treatment, silymarin/EtOH treatment and silymarin phytosome/EtOH, with 6 mice in each group. Experimental groups were given 40% EtOH, silymarin (50 mg/kg) and silymarin phytosome (200 mg/kg) through the gastric gavage once a day for 3 weeks. Biochemical parameters, containing ALP, ALT, AST, GGT, GPx and MDA were measured before and after experiment to investigate the protective effect of silymarin and its phytosomal form. And histopathological examination was done to evaluate pathological changes. Results Silymarin phytosome NPs with the mean size of 100 nm were produced and were well tolerated in cell culture. These NPs showed a considerable protective effect against ALD through inverting the biochemical parameters (ALP, ALT, AST, GGT, GPx) and histopathological alterations. Conclusion Silymarin phytosomal NPs can be used as an efficient treatment for ALD.
Collapse
Affiliation(s)
- Arezoo Gohari Mahmoudabad
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zeinab Mobasher
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamid Vahedi
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Anneh Mohammad Gharravi
- Tissue Engineering and Stem Cell Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | |
Collapse
|
10
|
Silymarin and Vanillic Acid Silver Nanoparticles Alleviate the Carbon Tetrachloride-Induced Nephrotoxicity in Male Rats. INT J POLYM SCI 2023. [DOI: 10.1155/2023/4120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural copolymer (e.g., chitosan-loaded) and synthetic (e.g., silver nitrate-loaded) nanopolymers have many medical applications in drug delivery research for enhancing the effectuality of traditional medicine. This study aimed to investigate the potential protective activity of vanillic acid, silver nanoparticles (AgNPs) of vanillic acid, and silymarin against carbon tetrachloride (CCl4)-induced nephrotoxicity in male rats. Rats were divided into five groups; the first group (G1) was a negative control, and the other rats were treated intraperitoneally with CCl4 to induce kidney toxicity twice weekly, and then divided into four groups, G2 was a positive control and left without treatment, the third group was treated with vanillic acid, the fourth (G4) was treated with vanillic acid-AgNPs, and the fifth (G5) was treated with silymarin. In G2, renal function indices (urea, creatinine, and uric acid) showed elevated levels indicating renal toxicity. Na, K, and Ca ions were decreased, whereas Cl− was increased. Antioxidants (glutathione S-transferase, glutathione reduced, total antioxidant capacity, superoxide dismutase, and catalase) were decreased, whereas lipid peroxidation was increased in the kidney tissue homogenate. IL1 was increased, whereas CYP-450 was decreased. In the treated group, all biochemical and renal tissue texture were alleviated as a result of treatment with vanillic acid in G3, vanillic acid AgNPs in G4, and silymarin in G5. Vanillic acid AgNPs and silymarin treatment in G4 and G5, respectively, were more efficient than vanillic acid in G5 in protecting the kidneys against CCl4-induced nephrotoxicity.
Collapse
|
11
|
Hepatoprotective Effect of Kaempferol: A Review of the Dietary Sources, Bioavailability, Mechanisms of Action, and Safety. Adv Pharmacol Pharm Sci 2023; 2023:1387665. [PMID: 36891541 PMCID: PMC9988374 DOI: 10.1155/2023/1387665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
The liver is the body's most critical organ that performs vital functions. Hepatic disorders can affect the physiological and biochemical functions of the body. Hepatic disorder is a condition that describes the damage to cells, tissues, structures, and functions of the liver, which can cause fibrosis and ultimately result in cirrhosis. These diseases include hepatitis, ALD, NAFLD, liver fibrosis, liver cirrhosis, hepatic failure, and HCC. Hepatic diseases are caused by cell membrane rupture, immune response, altered drug metabolism, accumulation of reactive oxygen species, lipid peroxidation, and cell death. Despite the breakthrough in modern medicine, there is no drug that is effective in stimulating the liver function, offering complete protection, and aiding liver cell regeneration. Furthermore, some drugs can create adverse side effects, and natural medicines are carefully selected as new therapeutic strategies for managing liver disease. Kaempferol is a polyphenol contained in many vegetables, fruits, and herbal remedies. We use it to manage various diseases such as diabetes, cardiovascular disorders, and cancers. Kaempferol is a potent antioxidant and has anti-inflammatory effects, which therefore possesses hepatoprotective properties. The previous research has studied the hepatoprotective effect of kaempferol in various hepatotoxicity protocols, including acetaminophen (APAP)-induced hepatotoxicity, ALD, NAFLD, CCl4, HCC, and lipopolysaccharide (LPS)-induced acute liver injury. Therefore, this report aims to provide a recent brief overview of the literature concerning the hepatoprotective effect of kaempferol and its possible molecular mechanism of action. It also provides the most recent literature on kaempferol's chemical structure, natural source, bioavailability, and safety.
Collapse
|
12
|
Hepatoprotective effect of Cordia rothii extract against CCl4-induced oxidative stress via Nrf2–NFκB pathways. Biomed Pharmacother 2022; 156:113840. [PMID: 36252356 DOI: 10.1016/j.biopha.2022.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
|
13
|
Alamri ES, El Rabey HA, Alzahrani OR, Almutairi FM, Attia ES, Bayomy HM, Albalwi RA, Rezk SM. Enhancement of the Protective Activity of Vanillic Acid against Tetrachloro-Carbon (CCl 4) Hepatotoxicity in Male Rats by the Synthesis of Silver Nanoparticles (AgNPs). Molecules 2022; 27:8308. [PMID: 36500401 PMCID: PMC9737075 DOI: 10.3390/molecules27238308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
In the current study, the hepatoprotective activity of vanillic acid, silymarin, and vanillic acid-loaded silver nanoparticles (AgNPs) against CCl4-induced hepatotoxicity was tested in male rats for four weeks. Thirty male rats were divided into five groups (n = 6). The 1st group was a negative control, the 2nd group was a positive control, the 3rd group was treated with 100 mg/kg b.w. of vanillic acid, the 4th group was treated with 100 mg/kg b.w. of vanillic acid-AgNPs, and the 5th group was treated with 50 mg/kg b.w. of silymarin. The CCl4-induced hepatic toxicity in the 2nd group was revealed by the liver function and all other biochemical tests. Liver enzymes, bilirubin, lipid peroxidation, lactate dehydrogenase, and interleukin-6 were elevated, whereas, total protein, antioxidant enzymes, and irisin were decreased compared to the negative control. The hepatic tissues were also injured as a result of the CCl4-induced hepatotoxicity. Treating the hepatotoxic rats with vanillic acid moderately protected the rats of the 3rd group, whereas treatment with vanillic AgNPs and silymarin in G4 and G5, respectively, greatly protected the rats against the CCl4 hepatotoxicity, approaching the normal biochemical levels and liver tissue appearance. The biochemical tests were confirmed by the histological investigations of liver tissue.
Collapse
Affiliation(s)
- Eman S. Alamri
- Department of Nutrition and Food Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Haddad A. El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | | | - Fahad M. Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Eman S. Attia
- National Nutrition Institute, Ministry of Health, Cairo 4262114, Egypt
| | - Hala M. Bayomy
- Department of Nutrition and Food Science, University of Tabuk, Tabuk 47512, Saudi Arabia
- Department of Food Science and Technology, Damanhour University, Damanhour 22511, Egypt
| | - Renad A. Albalwi
- Department of Nutrition and Food Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Samar M. Rezk
- Clinical Nutrition Department, Mahalla Hepatology Teaching Hospital, El-Mahalla El-Kubra 4260010, Egypt
| |
Collapse
|
14
|
The potential role of FNDC5/irisin in various liver diseases: awakening the sleeping beauties. Expert Rev Mol Med 2022; 24:e23. [PMID: 35695040 DOI: 10.1017/erm.2022.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibronectin type III domain-containing protein 5 (FNDC5) is a transmembrane protein and the precursor of irisin, which serves as a systemic exerkine/myokine with multiple origins. Since its discovery in 2012, this hormone-like polypeptide has rapidly evolved to a component significantly involved in a gamut of metabolic dysregulations and various liver diseases. After a decade of extensive investigation on FNDC5/irisin, we are still surrounded by lots of open questions regarding its diagnostic and therapeutic values. In this review, we first concentrated on the structure-function relationship of FNDC5/irisin. Next, we comprehensively summarised the current knowledge and research findings regarding pathogenic roles/therapeutic applications of FNDC5/irisin in the context of non-alcoholic fatty liver disease, fibrosis, liver injury due to multiple detrimental insults, hepatic malignancy and intrahepatic cholestasis of pregnancy. Moreover, the prominent molecules involved in the underlying mechanisms and signalling pathways were highlighted. As a result, emerging evidence reveals FNDC5/irisin may act as a proxy for diagnosing liver disease pathology, a sensitive biomarker for assessing damage severity, a predisposing factor for surveilling illness progression and a treatment option with protective/preventive impact, all of which are highly dependent on disease grading and contextually pathological features.
Collapse
|
15
|
Jumaa RS, Abdulmajeed DI, Karim AJ. Evaluation of secondary metabolites of herbal plant extracts as an antiviral effect on infectious bursal disease virus isolates in embryonated chicken eggs. Vet World 2021; 14:2971-2978. [PMID: 35017846 PMCID: PMC8743771 DOI: 10.14202/vetworld.2021.2971-2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND AIM Infectious bursal disease attacks the poultry industry, mainly young chickens, causing immunosuppression, and death with high economic losses. This study aimed to evaluate the effects of the monoextract, diextracts, and triextracts of Quercus infectoria (QI), Citrus aurantifolia (CiA), and Coffea arabica (CoA) on infectious bursal disease virus (IBDV) in embryonated chicken eggs (ECEs). MATERIALS AND METHODS The experimental design consisted of three sets of ECEs at 11 days of age, and each set included seven groups (G1-G7). The extracts of QI, CiA, and CoA were inoculated to ECEs by the chorioallantoic membrane method before, in concomitant (mixed) with, and after IBDV infection to the first, second, and third sets, respectively. The monoextract, diextracts, and triextracts of QI, CiA, and CoA were given at 1%, 2%, 5%, and 10% concentrations to G1-G3, G4-G6, and G7, respectively. Real-time polymerase chain reaction identified and confirmed the virus in accordance with the pathological changes. RESULTS The monoextract (5-10% concentrations) inhibited IBDV and had no effect on viral infection preinoculation, whereas the monoextract (10% concentration) inhibited IBDV during mixed inoculation and post-inoculation. Diextracts (2-10% concentrations) inhibited IBDV and had no effect on viral infection preinoculation, whereas diextracts (5-10% concentrations) inhibited IBDV during mixed inoculation and post-inoculation. Triextracts (1%, 2%, 5%, and 10% concentrations) inhibited IBDV by ameliorating the pathological changes of the virus and preventing the death of ECEs. CONCLUSION The inoculation of herbal extracts, particularly triextracts, alleviates the pathological changes in ECEs infected with IBDV. This study recommends the oral route in evaluating plant extracts against IBDV in poultry.
Collapse
Affiliation(s)
- Rawaa Saladdin Jumaa
- Department of Microbiology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Dhuha Ismael Abdulmajeed
- Department of Microbiology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Abdulkarim Jafar Karim
- Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
16
|
Alleviation of Malathion Toxicity Effect by Coffea arabica L. Oil and Olea europaea L. Oil on Lipid Profile: Physiological and In Silico Study. PLANTS 2021; 10:plants10112314. [PMID: 34834675 PMCID: PMC8619699 DOI: 10.3390/plants10112314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
The community health plans commonly use malathion (MAL), an organophosphate pesticide (OP), to eliminate pathogenic insects. The objective of the present research is to evaluate the consequences of Coffea arabica L. oil and Olea europaea L. oil on MAL-intoxicated male rats. Six equal groups of animals were used for conducting this study (n = 10). Animals in group one were designated as control, animals belonging to group two were exposed to MAL in the measure of hundred mg per kg BW (body weight) for forty-nine days (seven weeks), rats in the third and fourth groups were administered with 400 mg/kg BW of Coffea arabica L. and Olea europaea L. oils, respectively, and the same amount of MAL as given to the second group. Groups five and six were administered with the same amount of Coffea arabica L. oil and Olea europaea L. oil as given to group three. Exposure of rats to 100 mg/kg body weight of MAL resulted in statistical alteration of the serum lipid profile. A marked decline was noticed in the severe changes of these blood parameters when MAL-intoxicated rats were treated with Coffea arabica L. oil and Olea europaea L. oil. Two compounds from Coffea arabica L. oil (Chlorogenic acid) and Olea europaea L. oil (Oleuropein) demonstrated good interaction with xanthine oxidase (XO) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) enzymes that are associated with cholesterol production. The present study indicated that Coffea arabica L. oil and Olea europaea L. oil could be considered prospective and potential healing agents against metabolic conditions induced by MAL.
Collapse
|
17
|
Comparison between the Antioxidant and Antidiabetic Activity of Fenugreek and Buckthorn in Streptozotocin-Induced Diabetic Male Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7202447. [PMID: 34497854 PMCID: PMC8420976 DOI: 10.1155/2021/7202447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022]
Abstract
This study is aimed at comparing the antidiabetic and antioxidant potential of fenugreek and buckthorn which are commonly used in modulating diabetes in the Middle East. In this study, the antioxidant and antidiabetic activity of the aqueous extracts of the leaf and seed of fenugreek and buckthorn was tested in streptozotocin-induced diabetic male rats fed with a fat-rich diet for 8 weeks. Thirty-six male albino rats were divided into 6 groups (n = 6); the 1st group was the negative control. Diabetes was induced in the other 30 rats using streptozotocin, which were then divided into 5 groups; the 2nd was the untreated positive diabetic group, the 3rd was treated with fenugreek leaf aqueous extract, the 4th was treated with the fenugreek seed aqueous extract, the 5th was treated with buckthorn leaf aqueous extract, and the 6th was treated with buckthorn seed aqueous extract. The positive control group showed an increase in blood sugar, glycated hemoglobin, liver function enzymes, lactate dehydrogenase, kidney indices, total cholesterol, triglycerides, low- and very-low-density lipoprotein, immunoglobulins, and lipid peroxidation and a decrease in high-density lipoprotein, albumin, and antioxidant activity. The histology of the liver and testes showed severe histopathological alterations. Rats of groups 4-6 that were treated with the aqueous extract of the leaf and seed extract of fenugreek and buckthorn showed improvement of all biochemical and histopathological parameters. The seed extract of fenugreek and buckthorn showed more antioxidant activity than their leaves.
Collapse
|