1
|
Annaházi A, Bauer R, Efferth T, Khayyal MT, Schemann M, Ulrich-Merzenich G, Feinle-Bisset C. A Review of the Mechanisms of Action of the Herbal Medicine, STW 5-II, Underlying Its Efficacy in Disorders of Gut-Brain Interaction. Neurogastroenterol Motil 2025:e70047. [PMID: 40275491 DOI: 10.1111/nmo.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are disorders of gut-brain interaction (DGBIs). Patients with these disorders experience abdominal symptoms, frequently in relation to meal intake, and often are treated using pharmacological approaches that offer limited symptom relief. In addition to various pharmacotherapies, established treatment options include lifestyle modifications (such as diet) and, in certain patients, psychological interventions. Because of the limitations of the currently available treatments, many patients look for alternative options, including herbal preparations. PURPOSE In this review, we summarize the preclinical and clinical evidence informing the use of the herbal preparation, STW 5-II, for the treatment of patients with FD and IBS. Data from clinical trials provide evidence that STW 5-II is superior to placebo in offering symptom relief. Moreover, a substantial body of preclinical data on the mechanisms of action of STW 5-II suggests that its ingredients target multiple mechanisms relevant to pathophysiology and symptom generation that may underlie its beneficial clinical effects in patients with DGBIs.
Collapse
Affiliation(s)
- Anita Annaházi
- Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed T Khayyal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Michael Schemann
- Chair of Human Biology, Technical University of Munich, Freising, Germany
| | - Gudrun Ulrich-Merzenich
- Synergy Research and Experimental Medicine Research Group, Medical Clinic III, University Hospital Bonn, Bonn, Germany
| | - Christine Feinle-Bisset
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Sun X, Zhuang Y, Wang Y, Zhang Z, An L, Xu Q. Polyethylene terephthalate microplastics affect gut microbiota distribution and intestinal damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118119. [PMID: 40164037 DOI: 10.1016/j.ecoenv.2025.118119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Polyethylene terephthalate microplastics (PET-MPs) have been detected in the environment and human metabolites or tissues; however, their potential effects on humans under actual exposure doses remain unclear. Herein, male adult mice were exposed to 10 µm PET-MPs at concentrations of 10, 50, and 250 mg/kg per body weight consecutively for 28 days. Changes in blood biochemistry, inflammatory factors, colonic histopathology, colonic mucus gene mRNA levels, and the gut microflora were monitored to study PET-MPs toxicity. The results showed that PET-MPs exposure increased relative serum alanine aminotransferase (ALT) and glucose (GLU) levels in 50 mg/kg bw PET-MPs exposure group, and altered relative levels of inflammatory factors, thereby inducing the inflammatory response. Moreover, PET-MPs exposure increased mRNA expression levels of colonic mucus secretion related and barrier function related genes, indicating intestinal mucus secretion and barrier integrity dysfunction, which was consistent with the results of histopathological results. In addition, gut microbiota analysis revealed that the diversity and community composition were altered after PET-MPs exposure, suggesting a metabolic disorder. Therefore, our results demonstrated that exposure to PET-MPs led to intestinal injury and changes in the gut microbiome composition in mice. Overall, the study findings provided basic data about the health risks of PET-MPs to humans, highlighting that MPs-induced toxicity warrants more concern in the future.
Collapse
Affiliation(s)
- Xiangying Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Science, Beijing 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan 475000, China
| | - Yin Zhuang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yubang Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Zhenbo Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Science, Beijing 100012, China.
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Science, Beijing 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Yu F, Wang X, Ren H, Chang J, Guo J, He Z, Shi R, Hu X, Jin Y, Lu S, Li Y, Liu Z, Hu P. Lactobacillus paracasei Jlus66 relieves DSS-induced ulcerative colitis in a murine model by maintaining intestinal barrier integrity, inhibiting inflammation, and improving intestinal microbiota structure. Eur J Nutr 2024; 63:2185-2197. [PMID: 38733401 DOI: 10.1007/s00394-024-03419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE Ulcerative colitis (UC) is a serious health problem with increasing morbidity and prevalence worldwide. The pathogenesis of UC is complex, currently believed to be influenced by genetic factors, dysregulation of the host immune system, imbalance in the intestinal microbiota, and environmental factors. Currently, UC is typically managed using aminosalicylates, immunosuppressants, and biologics as adjunctive therapies, with the risk of relapse and development of drug resistance upon discontinuation. Therefore, further research into the pathogenesis of UC and exploration of potential treatment strategies are necessary to improve the quality of life for affected patients. According to previous studies, Lactobacillus paracasei Jlus66 (Jlus66) reduced inflammation and may help prevent or treat UC. METHODS We used dextran sulfate sodium (DSS) to induce a mouse model of UC to assess the effect of Jlus66 on the progression of colitis. During the experiment, we monitored mouse body weight, food and water consumption, as well as rectal bleeding. Hematoxylin-eosin staining was performed to assess intestinal pathological damage. Protein imprinting and immunohistochemical methods were used to evaluate the protein levels of nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and tight junction (TJ) proteins in intestinal tissues. Fecal microbiota was analyzed based on partial 16S rRNA gene sequencing. RESULTS Jlus66 supplementation reduced the degree of colon tissue damage, such as colon shortening, fecal occult blood, colon epithelial damage, and weight loss. Supplementation with Jlus66 reduced DSS-induced upregulation of cytokine levels such as TNF-α, IL-1β, and IL-6 (p < 0.05). The NF-κB pathway and MAPK pathway were inhibited, and the expression of TJ proteins (ZO-1, Occludin, and Claudin-3) was upregulated. 16S rRNA sequencing of mouse cecal contents showed that Jlus66 effectively regulated the structure of the intestinal biota. CONCLUSION In conclusion, these data indicate that Jlus66 can alter the intestinal biota and slow the progression of UC, providing new insights into potential therapeutic strategies for UC.
Collapse
Affiliation(s)
- Fazheng Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiang Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jian Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhaoqi He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruoran Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xueyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuanyuan Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shiying Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Thumann TA, Pferschy-Wenzig EM, Kumpitsch C, Duller S, Högenauer C, Kump P, Aziz-Kalbhenn H, Ammar RM, Rabini S, Moissl-Eichinger C, Bauer R. Rapid biotransformation of STW 5 constituents by human gut microbiome from IBS- and non-IBS donors. Microbiol Spectr 2024; 12:e0403123. [PMID: 38738925 PMCID: PMC11237759 DOI: 10.1128/spectrum.04031-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/03/2024] [Indexed: 05/14/2024] Open
Abstract
STW 5, a blend of nine medicinal plant extracts, exhibits promising efficacy in treating functional gastrointestinal disorders, notably irritable bowel syndrome (IBS). Nonetheless, its effects on the gastrointestinal microbiome and the role of microbiota on the conversion of its constituents are still largely unexplored. This study employed an experimental ex vivo model to investigate STW 5's differential effects on fecal microbial communities and metabolite production in samples from individuals with and without IBS. Using 560 fecal microcosms (IBS patients, n = 6; healthy controls, n = 10), we evaluated the influence of pre-digested STW 5 and controls on microbial and metabolite composition at time points 0, 0.5, 4, and 24 h. Our findings demonstrate the potential of this ex vivo platform to analyze herbal medicine turnover within 4 h with minimal microbiome shifts due to abiotic factors. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products, such as 18β-glycyrrhetinic acid, davidigenin, herniarin, 3-(3-hydroxyphenyl)propanoic acid, and 3-(2-hydroxy-4-methoxyphenyl)propanoic acid occurred. For davidigenin, 3-(3-hydroxyphenyl)propanoic acid and 18β-glycyrrhetinic acid, anti-inflammatory, cytoprotective, or spasmolytic activities have been previously described. Notably, the microbiome-driven metabolic transformation did not induce a global microbiome shift, and the detected metabolites were minimally linked to specific taxa. Observed biotransformations were independent of IBS diagnosis, suggesting potential benefits for IBS patients from biotransformation products of STW 5. IMPORTANCE STW 5 is an herbal medicinal product with proven clinical efficacy in the treatment of functional gastrointestinal disorders, like functional dyspepsia and irritable bowel syndrome (IBS). The effects of STW 5 on fecal microbial communities and metabolite production effects have been studied in an experimental model with fecal samples from individuals with and without IBS. While only minor taxonomic disparities were noted between IBS- and non-IBS samples and upon treatment with STW 5, rapid metabolic turnover of STW 5 components into specific degradation products with reported anti-inflammatory, cytoprotective, or spasmolytic activities was observed, which may be relevant for the pharmacological activity of STW 5.
Collapse
Affiliation(s)
- Timo A. Thumann
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Stefanie Duller
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | | | - Patrizia Kump
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Heba Aziz-Kalbhenn
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Darmstadt, Germany
| | - Ramy M. Ammar
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Darmstadt, Germany
- Department of Pharmacology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sabine Rabini
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Darmstadt, Germany
| | - Christine Moissl-Eichinger
- BioTechMed, Graz, Austria
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
5
|
Yu F, Hu X, Ren H, Wang X, Shi R, Guo J, Chang J, Zhou X, Jin Y, Li Y, Liu Z, Hu P. Protective effect of synbiotic combination of Lactobacillus plantarum SC-5 and olive oil extract tyrosol in a murine model of ulcerative colitis. J Transl Med 2024; 22:308. [PMID: 38528541 PMCID: PMC10964655 DOI: 10.1186/s12967-024-05026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/24/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Ulcerative colitisis (UC) classified as a form of inflammatory bowel diseases (IBD) characterized by chronic, nonspecific, and recurrent symptoms with a poor prognosis. Common clinical manifestations of UC include diarrhea, fecal bleeding, and abdominal pain. Even though anti-inflammatory drugs can help alleviate symptoms of IBD, their long-term use is limited due to potential side effects. Therefore, alternative approaches for the treatment and prevention of inflammation in UC are crucial. METHODS This study investigated the synergistic mechanism of Lactobacillus plantarum SC-5 (SC-5) and tyrosol (TY) combination (TS) in murine colitis, specifically exploring their regulatory activity on the dextran sulfate sodium (DSS)-induced inflammatory pathways (NF-κB and MAPK) and key molecular targets (tight junction protein). The effectiveness of 1 week of treatment with SC-5, TY, or TS was evaluated in a DSS-induced colitis mice model by assessing colitis morbidity and colonic mucosal injury (n = 9). To validate these findings, fecal microbiota transplantation (FMT) was performed by inoculating DSS-treated mice with the microbiota of TS-administered mice (n = 9). RESULTS The results demonstrated that all three treatments effectively reduced colitis morbidity and protected against DSS-induced UC. The combination treatment, TS, exhibited inhibitory effects on the DSS-induced activation of mitogen-activated protein kinase (MAPK) and negatively regulated NF-κB. Furthermore, TS maintained the integrity of the tight junction (TJ) structure by regulating the expression of zona-occludin-1 (ZO-1), Occludin, and Claudin-3 (p < 0.05). Analysis of the intestinal microbiota revealed significant differences, including a decrease in Proteus and an increase in Lactobacillus, Bifidobacterium, and Akkermansia, which supported the protective effect of TS (p < 0.05). An increase in the number of Aspergillus bacteria can cause inflammation in the intestines and lead to the formation of ulcers. Bifidobacterium and Lactobacillus can regulate the micro-ecological balance of the intestinal tract, replenish normal physiological bacteria and inhibit harmful intestinal bacteria, which can alleviate the symptoms of UC. The relative abundance of Akkermansia has been shown to be negatively associated with IBD. The FMT group exhibited alleviated colitis, excellent anti-inflammatory effects, improved colonic barrier integrity, and enrichment of bacteria such as Akkermansia (p < 0.05). These results further supported the gut microbiota-dependent mechanism of TS in ameliorating colonic inflammation. CONCLUSION In conclusion, the TS demonstrated a remission of colitis and amelioration of colonic inflammation in a gut microbiota-dependent manner. The findings suggest that TS could be a potential natural medicine for the protection of UC health. The above results suggest that TS can be used as a potential therapeutic agent for the clinical regulation of UC.
Collapse
Affiliation(s)
- Fazheng Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xueyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - HongLin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, China
| | - Ruoran Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jian Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiang Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoshi Zhou
- Jilin Academy of Animal Husbandry and Veterinary Sciences, Changchun, 130062, China
| | - Yuanyuan Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
6
|
Liu Y, Bu Y, Cao J, Liu Y, Zhang T, Hao L, Yi H. Effect of Fermented Milk Supplemented with Nisin or Plantaricin Q7 on Inflammatory Factors and Gut Microbiota in Mice. Nutrients 2024; 16:680. [PMID: 38474811 DOI: 10.3390/nu16050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Lactic-acid-bacteria-derived bacteriocins are used as food biological preservatives widely. Little information is available on the impact of bacteriocin intake with food on gut microbiota in vivo. In this study, the effects of fermented milk supplemented with nisin (FM-nisin) or plantaricin Q7 (FM-Q7) from Lactiplantibacillus plantarum Q7 on inflammatory factors and the gut microbiota of mice were investigated. The results showed that FM-nisin or FM-Q7 up-regulated IFN-γ and down-regulated IL-17 and IL-12 in serum significantly. FM-nisin down-regulated TNF-α and IL-10 while FM-Q7 up-regulated them. The results of 16S rRNA gene sequence analysis suggested that the gut microbiome in mice was changed by FM-nisin or FM-Q7. The Firmicutes/Bacteroides ratio was reduced significantly in both groups. It was observed that the volume of Akkermansia_Muciniphila was significantly reduced whereas those of Lachnospiraceae and Ruminococcaceae were increased. The total number of short-chain fatty acids (SCFAs) in the mouse feces of the FM-nisin group and FM-Q7 group was increased. The content of acetic acid was increased while the butyric acid content was decreased significantly. These findings indicated that FM-nisin or FM-Q7 could stimulate the inflammation response and alter gut microbiota and metabolic components in mice. Further in-depth study is needed to determine the impact of FM-nisin or FM-Q7 on the host's health.
Collapse
Affiliation(s)
- Yisuo Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yushan Bu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jiayuan Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yinxue Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Tai Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Linlin Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Huaxi Yi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
7
|
Wadie W, Mohamed SS, Abd El-Haleim EA, Khayyal MT. Niacin modulates depressive-like behavior in experimental colitis through GPR109A-dependent mechanisms. Life Sci 2023; 330:122004. [PMID: 37544378 DOI: 10.1016/j.lfs.2023.122004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
AIMS Depression is one of the common neurological comorbidities in patients with inflammatory bowel disease (IBD). The current study aimed to investigate the potential impact of niacin on colitis-induced depressive-like behavior in rats. MATERIALS AND METHODS Animals were given 5 % dextran sulfate sodium (DSS) in drinking water for one week to induce colitis. Niacin (80 mg/kg), with or without mepenzolate bromide (GPR109A blocker), was administered once per day throughout the experimental period. Rats were tested for behavioral changes using open field and forced swimming tests. KEY FINDINGS Niacin significantly ameliorated DSS-induced behavioral deficits and alleviated macroscopic and microscopic colonic inflammatory changes. It also augmented the hippocampal levels of ZO-1, occludin, and claudin-5 proteins, indicating the ability of niacin to restore the blood-brain barrier (BBB) integrity. Moreover, niacin decreased hippocampal IL-1ꞵ and NF-ĸB contents but increased GSH, Sirt-1, Nrf-2, HO-1 concentrations. All these beneficial effects were partially abolished by the co-administration of mepenzolate bromide. SIGNIFICANCE The neuroprotective effect of niacin against DSS-induced depressive-like behavior was partially mediated through GPR109A-mediated mechanisms. Such mechanisms are also involved in modulating neuronal oxidative stress and inflammation via Sirt-1/Nrf-2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Sarah S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Enas A Abd El-Haleim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Mohamed T Khayyal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
8
|
Vanni A, Carnasciali A, Mazzoni A, Russo E, Farahvachi P, Gloria LD, Ramazzotti M, Lamacchia G, Capone M, Salvati L, Calosi L, Bani D, Liotta F, Cosmi L, Amedei A, Ballerini C, Maggi L, Annunziato F. Musculin does not modulate the disease course of Experimental Autoimmune Encephalomyelitis and DSS colitis. Immunol Lett 2023; 255:21-31. [PMID: 36848960 DOI: 10.1016/j.imlet.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Previous evidences show that Musculin (Msc), a repressor member of basic helix-loop-helix transcription factors, is responsible in vitro for the low responsiveness of human Th17 cells to the growth factor IL-2, providing an explanation for Th17 cells rarity in inflammatory tissue. However, how and to what extent Musculin gene can regulate the immune response in vivo in an inflammatory context is still unknown. Here, exploiting two animal models of inflammatory diseases, the Experimental Autoimmune Encephalomyelitis (EAE) and the dextran sodium sulfate (DSS)-induced colitis, we evaluated the effect of Musculin gene knock-out on clinical course, performing also a deep immune phenotypical analysis on T cells compartment and an extended microbiota analysis in colitis-sick mice. We found that, at least during the early phase, Musculin gene has a very marginal role in modulating both the diseases. Indeed, the clinical course and the histological analysis showed no differences between wild type and Msc knock-out mice, whereas immune system appeared to give rise to a regulatory milieu in lymph nodes of EAE mice and in the spleen of DSS colitis-sick mice. Moreover, in the microbiota analysis, we found irrelevant differences between wild type and Musculin knock-out colitis-sick mice, with a similar bacterial strains' frequency and diversity after the DSS treatment. This work strengthened the idea of a negligible Msc gene involvement in these models.
Collapse
Affiliation(s)
- Anna Vanni
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Alberto Carnasciali
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Parham Farahvachi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Giulia Lamacchia
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy.
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| |
Collapse
|
9
|
Hao H, Zhang X, Tong L, Liu Q, Liang X, Bu Y, Gong P, Liu T, Zhang L, Xia Y, Ai L, Yi H. Effect of Extracellular Vesicles Derived From Lactobacillus plantarum Q7 on Gut Microbiota and Ulcerative Colitis in Mice. Front Immunol 2021; 12:777147. [PMID: 34925349 PMCID: PMC8674835 DOI: 10.3389/fimmu.2021.777147] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics plays an important role in regulating gut microbiota and maintaining intestinal homeostasis. Extracellular vesicles (EVs) derived from probiotics have emerged as potential mediators of host immune response and anti-inflammatory effect. However, the anti-inflammatory effect and mechanism of probiotics derived EVs on inflammatory bowel disease (IBD) remains unclear. In this study, the effect of Lactobacillus plantarum Q7-derived extracellular vesicles (Q7-EVs) on gut microbiota and intestinal inflammation was investigated in C57BL/6J mice. The results showed that Q7-EVs alleviated DSS-induced colitis symptoms, including colon shortening, bleeding, and body weight loss. Consumption of Q7-EVs reduced the degree of histological damage. DSS-upregulated proinflammatory cytokine levels including IL-6, IL-1β, IL-2 and TNF-α were reduced significantly by Q7-EVs (p < 0.05). 16S rRNA sequencing results showed that Q7-EVs improved the dysregulation of gut microbiota and promoted the diversity of gut microbiota. It was observed that the pro-inflammatory bacteria (Proteobacteria) were reduced and the anti-inflammatory bacteria (Bifidobacteria and Muribaculaceae) were increased. These findings indicated that Q7-EVs might alleviate DSS-induced ulcerative colitis by regulating the gut microbiota.
Collapse
Affiliation(s)
- Haining Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinyi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lingjun Tong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yushan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Houshyar Y, Massimino L, Lamparelli LA, Danese S, Ungaro F. Going Beyond Bacteria: Uncovering the Role of Archaeome and Mycobiome in Inflammatory Bowel Disease. Front Physiol 2021; 12:783295. [PMID: 34938203 PMCID: PMC8685520 DOI: 10.3389/fphys.2021.783295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multifaceted class of relapsing-remitting chronic inflammatory conditions where microbiota dysbiosis plays a key role during its onset and progression. The human microbiota is a rich community of bacteria, viruses, fungi, protists, and archaea, and is an integral part of the body influencing its overall homeostasis. Emerging evidence highlights dysbiosis of the archaeome and mycobiome to influence the overall intestinal microbiota composition in health and disease, including IBD, although they remain some of the least understood components of the gut microbiota. Nonetheless, their ability to directly impact the other commensals, or the host, reasonably makes them important contributors to either the maintenance of the mucosal tissue physiology or to chronic intestinal inflammation development. Therefore, the full understanding of the archaeome and mycobiome dysbiosis during IBD pathogenesis may pave the way to the discovery of novel mechanisms, finally providing innovative therapeutic targets that can soon implement the currently available treatments for IBD patients.
Collapse
Affiliation(s)
| | - Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|