1
|
Kunchala SR, van Dijk A, Veldhuizen EJA, Haagsman HP, Orgeig S. Adaptation and conservation of CL-10/11 in avian lungs: implications for their role in pulmonary innate immune protection. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230425. [PMID: 40010397 DOI: 10.1098/rstb.2023.0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/18/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025] Open
Abstract
The common avian origin of many zoonotic infections and epidemics warrants investigation into the mechanism of respiratory surface protection in reservoir species such as birds. Our recent molecular investigations on the evolution and pulmonary expression of an ancient family of proteins, the C-type lectins, have revealed unique molecular adaptations in the surfactant proteins avian SP-A1 (aSP-A1), aSP-A2 and aSP-C coupled with the loss of surfactant protein-D (SP-D) in the avian lineage. As surfactant proteins are members of the collectin family, a subgroup of the C-type lectins, an in silico search for related non-surfactant collectin proteins (Collectin-10 (CL-10) and Collectin-11 (CL-11)) in the NCBI genome database was conducted to understand their evolution in the avian lineage. In addition, both CL-10 and CL-11 gene expression in the lungs and other organs of zebra finches and turkeys was confirmed by PCR. These PCR-confirmed zebra finch and turkey CL-10 and CL-11 sequences were compared with sequenced and in silico-predicted vertebrate homologues to develop a phylogenetic tree. Compared with avian surfactant proteins, CL-10 and CL-11 are highly conserved among vertebrates, suggesting a critical role in development and innate immune protection. The conservation of CL-11 EPN and collagen domain motifs may compensate to some extent for the loss of SP-D in the avian lineage.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
| | - Albert van Dijk
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P Haagsman
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sandra Orgeig
- Clinical and Health Sciences, University of South Australia, Adelaide SA 5000, Australia
| |
Collapse
|
2
|
Gaffar NR, Valand N, Venkatraman Girija U. Candidiasis: Insights into Virulence Factors, Complement Evasion and Antifungal Drug Resistance. Microorganisms 2025; 13:272. [PMID: 40005639 PMCID: PMC11858274 DOI: 10.3390/microorganisms13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Invasive fungal infections constitute a substantial global health burden, with invasive candidiasis representing approximately 70% of reported cases worldwide. The emergence of antifungal resistance among Candida species has further exacerbated this challenge to healthcare systems. Recent epidemiological studies have documented a concerning shift towards non-albicans Candida species, exhibiting reduced antifungal susceptibility, in invasive candidiasis cases. The complement system serves as a crucial first-line defence mechanism against Candida infections. These fungal pathogens can activate the complement cascade through three conventional pathways-classical, lectin, and alternative-in addition to activation through the coagulation system. While these pathways are initiated by distinct molecular triggers, they converge at C3 convertase formation, ultimately generating biologically active products and the membrane attack complex. Candida species have evolved sophisticated mechanisms to evade complement-mediated host defence, including the masking of cell wall components, proteolytic cleavage and inhibition of complement proteins, recruitment of complement regulators, and acquisition of host proteins. This review examines the intricate interplay between Candida species and the host complement system, with emphasis on complement evasion strategies. Furthermore, we highlight the importance of exploring the crosstalk between antifungal resistance and immune evasion strategies employed by Candida species. Understanding these interactions may facilitate the development of novel therapeutic approaches and strategies to overcome treatment failures in Candida species infections.
Collapse
Affiliation(s)
| | | | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
3
|
Wu KY, Cao B, Chen WB, Wu W, Zhao S, Min XY, Yang J, Han J, Dong X, Wang N, Wu Y, Garred P, Sacks SH, Zhou W, Li K. Collectin 11 has a pivotal role in host defense against kidney and bladder infection in mice. Kidney Int 2024; 105:524-539. [PMID: 38158182 DOI: 10.1016/j.kint.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
The urinary tract is constantly exposed to microorganisms. Host defense mechanisms in protection from microbial colonization and development of urinary tract infections require better understanding to control kidney infection. Here we report that the lectin collectin 11 (CL-11), particularly kidney produced, has a pivotal role in host defense against uropathogen infection. CL-11 was found in mouse urine under normal and pathological conditions. Mice with global gene ablation of Colec11 had increased susceptibility to and severity of kidney and to an extent, bladder infection. Mice with kidney-specific Colec11 ablation exhibited a similar disease phenotype to that observed in global Colec11 deficient mice, indicating the importance of kidney produced CL-11 for protection against kidney and bladder infection. Conversely, intravesical or systemic administration of recombinant CL-11 reduced susceptibility to and severity of kidney and bladder infection. Mechanism analysis revealed that CL-11 can mediate several key innate defense mechanisms (agglutination, anti- adhesion, opsonophagocytosis), and limit local inflammatory responses to pathogens. Furthermore, CL-11-mediated innate defense mechanisms can act on clinically relevant microorganisms including multiple antibiotic resistant strains. CL-11 was detectable in eight of 24 urine samples from patients with urinary tract infections but not detectable in urine samples from ten healthy individuals. Thus, our findings demonstrate that CL-11 is a key factor of host defense mechanisms in kidney and bladder infection with therapeutic potential for human application.
Collapse
Affiliation(s)
- Kun-Yi Wu
- Core Research Laboratory, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bo Cao
- Core Research Laboratory, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wan-Bing Chen
- Core Research Laboratory, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weiju Wu
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Shujuan Zhao
- Core Research Laboratory, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Yun Min
- Core Research Laboratory, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Han
- Department of Nephrology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xia Dong
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Na Wang
- Core Research Laboratory, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Steven H Sacks
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Wuding Zhou
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - Ke Li
- Core Research Laboratory, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Mo J, Li J, Qiu L, Wang Y, Mu L, Ye J. Collectin-K1 Plays a Role in the Clearance of Streptococcus agalactiae in Nile Tilapia ( Oreochromis niloticus). Int J Mol Sci 2024; 25:2508. [PMID: 38473757 DOI: 10.3390/ijms25052508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Collectin-K1 (CL-K1) is a multifunctional C-type lectin that has been identified as playing a crucial role in innate immunity. It can bind to carbohydrates on pathogens, leading to direct neutralization, agglutination, and/or opsonization, thereby inhibiting pathogenic infection. In this study, we investigated a homolog of CL-K1 (OnCL-K1) in Nile tilapia (Oreochromis niloticus) and its role in promoting the clearance of the pathogen Streptococcus agalactiae (S. agalactiae) and enhancing the antibacterial ability of the fish. Our analysis of bacterial load displayed that OnCL-K1 substantially reduced the amount of S. agalactiae in tissues of the liver, spleen, anterior kidney, and brain in Nile tilapia. Furthermore, examination of tissue sections revealed that OnCL-K1 effectively alleviated tissue damage and inflammatory response in the liver, anterior kidney, spleen, and brain tissue of tilapia following S. agalactiae infection. Additionally, OnCL-K1 was found to decrease the expression of the pro-inflammatory factor IL-6 and migration inhibitor MIF, while increasing the expression of anti-inflammatory factor IL-10 and chemokine IL-8 in the spleen, anterior kidney, and brain tissues of tilapia. Moreover, statistical analysis of survival rates demonstrated that OnCL-K1 significantly improved the survival rate of tilapia after infection, with a survival rate of 90%. Collectively, our findings suggest that OnCL-K1 plays a vital role in the innate immune defense of resisting bacterial infection in Nile tilapia. It promotes the removal of bacterial pathogens from the host, inhibits pathogen proliferation in vivo, reduces damage to host tissues caused by pathogens, and improves the survival rate of the host.
Collapse
Affiliation(s)
- Jinfeng Mo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yiqing Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Mu L, Yin X, Qiu L, Li J, Mo J, Bai H, Zeng Q, Ye J. CL-K1 Promotes Complement Activation and Regulates Opsonophagocytosis of Macrophages with CD93 Interaction in a Primitive Vertebrate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:645-662. [PMID: 38180157 PMCID: PMC10828182 DOI: 10.4049/jimmunol.2300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Collectin is a crucial component of the innate immune system and plays a vital role in the initial line of defense against pathogen infection. In mammals, collectin kidney 1 (CL-K1) is a soluble collectin that has recently been identified to have significant functions in host defense. However, the evolutionary origins of immune defense of CL-K1 and its mechanism in clearance of pathogenic microorganisms remain unclear, especially in early vertebrates. In this study, the Oreochromis niloticus CL-K1 (OnCL-K1) protein was purified and identified, which was capable of binding to two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila. Interestingly, OnCL-K1 exhibited direct bactericidal activity by binding to lipoteichoic acid or LPS on cell walls, disrupting the permeability and integrity of the bacterial membrane in vitro. Upon bacterial challenge, OnCL-K1 significantly inhibited the proliferation of pathogenic bacteria, reduced the inflammatory response, and improved the survival of tilapia. Further research revealed that OnCL-K1 could associate with OnMASPs to initiate and regulate the lectin complement pathway. Additionally, OnCD93 reduced the complement-mediated hemolysis by competing with OnMASPs for binding to OnCL-K1. More importantly, OnCL-K1 could facilitate phagocytosis by collaborating with cell surface CD93 in a lectin pathway-independent manner. Moreover, OnCL-K1 also promoted the formation of phagolysosomes, which degraded and killed ingested bacteria. Therefore, this study reveals the antibacterial response mechanism of CL-K1 in primitive vertebrates, including promoting complement activation, enhancing opsonophagocytosis, and killing of macrophages, as well as its internal links, all of which provide (to our knowledge) new insights into the understanding of the evolutionary origins and regulatory roles of the collectins in innate immunity.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Xiaoxue Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Jinfen Mo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Hao Bai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Qingliang Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People’s Republic of China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Cedzyński M, Świerzko AS. Collectins and ficolins in neonatal health and disease. Front Immunol 2023; 14:1328658. [PMID: 38193083 PMCID: PMC10773719 DOI: 10.3389/fimmu.2023.1328658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The immune system starts to develop early in embryogenesis. However, at birth it is still immature and associated with high susceptibility to infection. Adaptation to extrauterine conditions requires a balance between colonization with normal flora and protection from pathogens. Infections, oxidative stress and invasive therapeutic procedures may lead to transient organ dysfunction or permanent damage and perhaps even death. Newborns are primarily protected by innate immune mechanisms. Collectins (mannose-binding lectin, collectin-10, collectin-11, collectin-12, surfactant protein A, surfactant protein D) and ficolins (ficolin-1, ficolin-2, ficolin-3) are oligomeric, collagen-related defence lectins, involved in innate immune response. In this review, we discuss the structure, specificity, genetics and role of collectins and ficolins in neonatal health and disease. Their clinical associations (protective or pathogenic influence) depend on a variety of variables, including genetic polymorphisms, gestational age, method of delivery, and maternal/environmental microflora.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | | |
Collapse
|
7
|
Dudler T, Yaseen S, Cummings WJ. Development and characterization of narsoplimab, a selective MASP-2 inhibitor, for the treatment of lectin-pathway-mediated disorders. Front Immunol 2023; 14:1297352. [PMID: 38022610 PMCID: PMC10663225 DOI: 10.3389/fimmu.2023.1297352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Overactivation of the lectin pathway of complement plays a pathogenic role in a broad range of immune-mediated and inflammatory disorders; mannan-binding lectin-associated serine protease-2 (MASP-2) is the key effector enzyme of the lectin pathway. We developed a fully human monoclonal antibody, narsoplimab, to bind to MASP-2 and specifically inhibit lectin pathway activation. Herein, we describe the preclinical characterization of narsoplimab that supports its evaluation in clinical trials. Methods and results ELISA binding studies demonstrated that narsoplimab interacted with both zymogen and enzymatically active forms of human MASP-2 with high affinity (KD 0.062 and 0.089 nM, respectively) and a selectivity ratio of >5,000-fold relative to closely related serine proteases C1r, C1s, MASP-1, and MASP-3. Interaction studies using surface plasmon resonance and ELISA demonstrated approximately 100-fold greater binding affinity for intact narsoplimab compared to a monovalent antigen binding fragment, suggesting an important contribution of functional bivalency to high-affinity binding. In functional assays conducted in dilute serum under pathway-specific assay conditions, narsoplimab selectively inhibited lectin pathway-dependent activation of C5b-9 with high potency (IC50 ~ 1 nM) but had no observable effect on classical pathway or alternative pathway activity at concentrations up to 500 nM. In functional assays conducted in 90% serum, narsoplimab inhibited lectin pathway activation in human serum with high potency (IC50 ~ 3.4 nM) whereas its potency in cynomolgus monkey serum was approximately 10-fold lower (IC50 ~ 33 nM). Following single dose intravenous administration to cynomolgus monkeys, narsoplimab exposure increased in an approximately dose-proportional manner. Clear dose-dependent pharmacodynamic responses were observed at doses >1.5 mg/kg, as evidenced by a reduction in lectin pathway activity assessed ex vivo that increased in magnitude and duration with increasing dose. Analysis of pharmacokinetic and pharmacodynamic data revealed a well-defined concentration-effect relationship with an ex vivo EC50 value of approximately 6.1 μg/mL, which was comparable to the in vitro functional potency (IC50 33 nM; ~ 5 μg/mL). Discussion Based on these results, narsoplimab has been evaluated in clinical trials for the treatment of conditions associated with inappropriate lectin pathway activation, such as hematopoietic stem cell transplantation-associated thrombotic microangiopathy.
Collapse
Affiliation(s)
- Thomas Dudler
- Discovery, Omeros Corporation, Seattle, WA, United States
| | | | | |
Collapse
|
8
|
Liu X, Qin J, Nie J, Gao R, Hu S, Sun H, Wang S, Pan Y. ANGPTL2+cancer-associated fibroblasts and SPP1+macrophages are metastasis accelerators of colorectal cancer. Front Immunol 2023; 14:1185208. [PMID: 37691929 PMCID: PMC10483401 DOI: 10.3389/fimmu.2023.1185208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Background Liver metastasis (LM) is a leading cause of cancer-related deaths in CRC patients, whereas the associated mechanisms have not yet been fully elucidated. Therefore, it is urgently needed to deeply explore novel metastasis accelerators and therapeutic targets of LM-CRC. Methods The bulk RNA sequencing data and clinicopathological information of CRC patients were enrolled from the TCGA and GEO databases. The single-cell RNA sequencing (scRNA-seq) datasets of CRC were collected from and analyzed in the Tumor Immune Single-cell Hub (TISCH) database. The infiltration levels of cancer-associated fibroblasts (CAFs) and macrophages in CRC tissues were estimated by multiple immune deconvolution algorithms. The prognostic values of genes were identified by the Kaplan-Meier curve with a log-rank test. GSEA analysis was carried out to annotate the significantly enriched gene sets. The biological functions of cells were experimentally verified. Results In the present study, hundreds of differentially expressed genes (DEGs) were selected in LM-CRC compared to primary CRC, and these DEGs were significantly associated with the regulation of endopeptidase activity, blood coagulation, and metabolic processes. Then, SPP1, CAV1, ANGPTL2, and COLEC11 were identified as the characteristic DEGs of LM-CRC, and higher expression levels of SPP1 and ANGPTL2 were significantly associated with worse clinical outcomes of CRC patients. In addition, ANGPTL2 and SPP1 mainly distributed in the tumor microenvironment (TME) of CRC tissues. Subsequent scRNA-seq analysis demonstrated that ANGPTL2 and SPP1 were markedly enriched in the CAFs and macrophages of CRC tissues, respectively. Moreover, we identified the significantly enriched gene sets in LM-CRC, especially those in the SPP1+macrophages and ANGPTL2+CAFs, such as the HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION and the HALLMARK_COMPLEMENT. Finally, our in vitro experiments proved that ANGPTL2+CAFs and SPP1+macrophages promote the metastasis of CRC cells. Conclusion Our study selected four characteristic genes of LM-CRC and identified ANGPTL2+CAFs and SPP1+macrophages subtypes as metastasis accelerators of CRC which provided a potential therapeutic target for LM-CRC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Nie
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Gao
- Division of Clinical Pharmacy, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shangshang Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Zou J, Zhang G, Li H, Zhao Z, Zhang Q, Pyykkö I, Mäkitie A. Multiple genetic variants involved in both autoimmunity and autoinflammation detected in Chinese patients with sporadic Meniere's disease: a preliminary study. Front Neurol 2023; 14:1159658. [PMID: 37273692 PMCID: PMC10232973 DOI: 10.3389/fneur.2023.1159658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023] Open
Abstract
Background The mechanisms of Meniere's disease (MD) remain largely unknown. The purpose of this study was to identify possible genetic variants associated with immune regulation in MD. Methods The whole immune genome of 16 Chinese patients diagnosed with sporadic MD was sequenced using next-generation sequencing. Results Definite pathological variants of MEFV (c.1223G>A, c.1105C>T), COL7A1 (c.5287C>T), and ADA (c.445C>T) contributing to the clinical phenotype were found in three patients. Limited and likely pathological variants of TLR3 (c.2228G>A) and RAB27A (c.560G>A) were detected in one patient each. The following definite pathological variants impairing the structure and function of translated proteins were detected in 10 patients, and multigene variants occurred in five patients: PRF1 (c.710C>A), UNC13D (c.1228A>C), COLEC11 (c.169C>T), RAG2 (c.200G>C), BLM (c.1937G>T), RNF31 (c.2533G>A), FAT4 (c.11498A>G), PEPD (c.788A>G), TNFSF12 (c.470G>A), VPS13B (c.11972A>T), TNFRSF13B (c.226G>A), ERCC6L2 (c.4613A>G), TLR3 (c.2228G>A), ADA (c.445C>T), PEPD (c.151G>A), and MOGS (c.2470G>A). The following limited pathological variants impairing the structure and function of translated proteins were detected in five patients, with double gene variants identified in one patient: EXTL3 (c.1396G>A), MTHFD1 (c.2057G>A), FANCA (c.2039T>C), LPIN2 (c.1814C>T), NBAS (c.4049T>C), and FCN3 (c.734G>A). Conclusion Patients with sporadic MD carry multiple genetic variants involved in multiple steps of immune regulation, which might render patients susceptible to developing inflammation via both autoimmune and autoinflammation mechanisms upon internal stress.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Research Program in Systems Oncology, Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Guoping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongbin Li
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zikai Zhao
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qing Zhang
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ilmari Pyykkö
- Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Mäkitie
- Research Program in Systems Oncology, Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Peng H, Wang N, Wang M, Yang C, Guo W, Li G, Huang S, Wei D, Liu D. Comparison of Activity and Safety of DSPAα1 and Its N-Glycosylation Mutants. Life (Basel) 2023; 13:life13040985. [PMID: 37109514 PMCID: PMC10145227 DOI: 10.3390/life13040985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
DSPAα1 is a potent rude thrombolytic protein with high medicative value. DSPAα1 has two natural N-glycan sites (N153Q-S154-S155, N398Q-K399-T400) that may lead to immune responses when administered in vivo. We aimed to study the effect of its N-glycosylation sites on DSPAα1 in vitro and in vivo by mutating these N-glycosylation sites. In this experiment, four single mutants and one double mutant were predicted and expressed in Pichia pastoris. When the N398Q-K399-T400 site was mutated, the fibrinolytic activity of the mutant was reduced by 75%. When the N153Q-S154-S155 sites were inactivated as described above, the plasminogen activating activity of its mutant was reduced by 40%, and fibrin selectivity was significantly reduced by 21-fold. The introduction of N-glycosylation on N184-G185-A186T and K368N-S369-S370 also considerably reduced the activity and fibrin selectivity of DSPAα1. The pH tolerance and thermotolerance of all mutants did not change significantly. In vivo experiments also confirmed that N-glycosylation mutations can reduce the safety of DSPAα1, lead to prolonged bleeding time, non-physiological reduction of coagulation factor (α2-AP, PAI) concentration, and increase the risk of irregular bleeding. This study ultimately demonstrated the effect of N-glycosylation mutations on the activity and safety of DSPAα1.
Collapse
Affiliation(s)
- Huakang Peng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengqi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Caifeng Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfang Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gangqiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sumei Huang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Di Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Wang JX, Cao B, Ma N, Wu KY, Chen WB, Wu W, Dong X, Liu CF, Gao YF, Diao TY, Min XY, Yong Q, Li ZF, Zhou W, Li K. Collectin-11 promotes cancer cell proliferation and tumor growth. JCI Insight 2023; 8:e159452. [PMID: 36883567 PMCID: PMC10077485 DOI: 10.1172/jci.insight.159452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Collectin-11 (CL-11) is a recently described soluble C-type lectin that has distinct roles in embryonic development, host defence, autoimmunity, and fibrosis. Here we report that CL-11 also plays an important role in cancer cell proliferation and tumor growth. Melanoma growth was found to be suppressed in Colec11-/- mice in a s.c. B16 melanoma model. Cellular and molecular analyses revealed that CL-11 is essential for melanoma cell proliferation, angiogenesis, establishment of more immunosuppressive tumor microenvironment, and the reprogramming of macrophages to M2 phenotype within melanomas. In vitro analysis revealed that CL-11 can activate tyrosine kinase receptors (EGFR, HER3) and ERK, JNK, and AKT signaling pathways and has a direct stimulatory effect on murine melanoma cell proliferation. Furthermore, blockade of CL-11 (treatment with L-fucose) inhibited melanoma growth in mice. Analysis of open data sets revealed that COLEC11 gene expression is upregulated in human melanomas and that high COLEC11 expression has a trend toward poor survival. CL-11 also had direct stimulatory effects on human tumor cell proliferation in melanoma and several other types of cancer cells in vitro. Overall, our findings provide the first evidence to our knowledge that CL-11 is a key tumor growth-promoting protein and a promising therapeutic target in tumor growth.
Collapse
Affiliation(s)
- Jia-Xing Wang
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ning Ma
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Kun-Yi Wu
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wan-Bing Chen
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Weiju Wu
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Xia Dong
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Cheng-Fei Liu
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ya-Feng Gao
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Teng-Yue Diao
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiao-Yun Min
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qing Yong
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zong-Fang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Wuding Zhou
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Valand N, Brunt E, Gazioglu O, Yesilkaya H, Mitchell D, Horley N, Arroo R, Kishore U, Wallis R, Girija UV. Inactivation of the Complement Lectin Pathway by Candida tropicalis Secreted Aspartyl Protease-1. Immunobiology 2022; 227:152263. [DOI: 10.1016/j.imbio.2022.152263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
|
13
|
Wang N, Wu W, Qiang C, Ma N, Wu K, Liu D, Wang JX, Yang X, Xue L, Diao TY, Liu JY, Li A, Zhang B, Li ZF, Farrar CA, Banda NK, Bayarri-Olmos R, Garred P, Zhou W, Li K. Protective Role of Collectin 11 in a Mouse Model of Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:1430-1440. [PMID: 33605085 DOI: 10.1002/art.41696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Collectin 11 (CL-11) is a soluble C-type lectin, a mediator of innate immunity. Its role in autoimmune disorders is unknown. We undertook this study to determine the role of CL-11 in a mouse model of rheumatoid arthritis (RA). METHODS A murine collagen-induced arthritis (CIA) model was used and combined two approaches, including gene deletion of Colec11 and treatment with recombinant CL-11 (rCL-11). Joint inflammation and tissue destruction, circulating levels of inflammatory cytokines, and adaptive immune responses were assessed in mice with CIA. Splenic CD11c+ cells were used to examine the influence of CL-11 on antigen-presenting cell (APC) function. Serum CL-11 levels in RA patients were also examined. RESULTS Colec11-/- mice developed more severe arthritis than wild-type mice, as determined by disease incidence, clinical arthritis scores, and histopathology (P < 0.05). Disease severity was associated with significantly enhanced APC activation, Th1/Th17 responses, pathogenic IgG2a production and joint inflammation, as well as elevated circulating levels of inflammatory cytokines. In vitro analysis of CD11c+ cells revealed that CL-11 is critical for suppression of APC activation and function. Pharmacologic treatment of mice with rCL-11 reduced the severity of CIA in mice. Analysis of human blood samples revealed that serum CL-11 levels were lower in RA patients (n = 51) compared to healthy controls (n = 53). Reduction in serum CL-11 was inversely associated with the Disease Activity Score in 28 joints, erythrocyte sedimentation rate, and C-reactive protein level (P < 0.05). CONCLUSION Our findings demonstrate a novel role of CL-11 in protection against RA, suggesting that the underlying mechanism involves suppression of APC activation and subsequent T cell responses.
Collapse
Affiliation(s)
- Na Wang
- The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weiju Wu
- King's College London, London, UK
| | - Cui Qiang
- The Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Ning Ma
- The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kunyi Wu
- The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Dan Liu
- Xi'an Fifth Hospital, Xi'an, China
| | - Jia-Xing Wang
- The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiao Yang
- The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Li Xue
- The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Teng-Yue Diao
- The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | | | - Ang Li
- The Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Baojun Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Zong-Fang Li
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, and The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | - Peter Garred
- Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Wuding Zhou
- King's College London and Guy's Hospital, London, UK
| | - Ke Li
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, and The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Howard MC, Nauser CL, Vizitiu DA, Sacks SH. Fucose as a new therapeutic target in renal transplantation. Pediatr Nephrol 2021; 36:1065-1073. [PMID: 32472330 PMCID: PMC8009799 DOI: 10.1007/s00467-020-04588-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022]
Abstract
Ischaemia/reperfusion injury (IRI) is an inevitable and damaging consequence of the process of kidney transplantation, ultimately leading to delayed graft function and increased risk of graft loss. A key driver of this adverse reaction in kidneys is activation of the complement system, an important part of the innate immune system. This activation causes deposition of complement C3 on renal tubules as well as infiltration of immune cells and ultimately damage to the tubules resulting in reduced kidney function. Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway of complement. CL-11 binds to a ligand that is exposed on the renal tubules by the stress caused by IRI, and through attached proteases, CL-11 activates complement and this contributes to the consequences outlined above. Recent work in our lab has shown that this damage-associated ligand contains a fucose residue that aids CL-11 binding and promotes complement activation. In this review, we will discuss the clinical context of renal transplantation, the relevance of the complement system in IRI, and outline the evidence for the role of CL-11 binding to a fucosylated ligand in IRI as well as its downstream effects. Finally, we will detail the simple but elegant theory that increasing the level of free fucose in the kidney acts as a decoy molecule, greatly reducing the clinical consequences of IRI mediated by CL-11.
Collapse
Affiliation(s)
- Mark C Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Christopher L Nauser
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Steven H Sacks
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
15
|
ATP7A-Regulated Enzyme Metalation and Trafficking in the Menkes Disease Puzzle. Biomedicines 2021; 9:biomedicines9040391. [PMID: 33917579 PMCID: PMC8067471 DOI: 10.3390/biomedicines9040391] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.
Collapse
|
16
|
Raposo CD, Canelas AB, Barros MT. Human Lectins, Their Carbohydrate Affinities and Where to Find Them. Biomolecules 2021; 11:188. [PMID: 33572889 PMCID: PMC7911577 DOI: 10.3390/biom11020188] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Lectins are a class of proteins responsible for several biological roles such as cell-cell interactions, signaling pathways, and several innate immune responses against pathogens. Since lectins are able to bind to carbohydrates, they can be a viable target for targeted drug delivery systems. In fact, several lectins were approved by Food and Drug Administration for that purpose. Information about specific carbohydrate recognition by lectin receptors was gathered herein, plus the specific organs where those lectins can be found within the human body.
Collapse
Affiliation(s)
- Cláudia D. Raposo
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - André B. Canelas
- Glanbia-AgriChemWhey, Lisheen Mine, Killoran, Moyne, E41 R622 Tipperary, Ireland;
| | - M. Teresa Barros
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
17
|
Hevey R, Pouw RB, Harris C, Ricklin D. Sweet turning bitter: Carbohydrate sensing of complement in host defence and disease. Br J Pharmacol 2020; 178:2802-2822. [PMID: 33140840 DOI: 10.1111/bph.15307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system plays a major role in threat recognition and in orchestrating responses to microbial intruders and accumulating debris. This immune surveillance is largely driven by lectins that sense carbohydrate signatures on foreign, diseased and healthy host cells and act as complement activators, regulators or receptors to shape appropriate immune responses. While carbohydrate sensing protects our bodies, misguided or impaired recognition can contribute to disease. Moreover, pathogenic microbes have evolved to evade complement by mimicking host signatures. While complement is recognized as a disease factor, we only slowly start to appreciate the role of carbohydrate interactions in the underlying processes. A better understanding of complement's sweet side will contribute to a better description of disease mechanisms and enhanced diagnostic and therapeutic options. This review introduces the key components in complement-mediated carbohydrate sensing, discusses their role in health and disease, and touches on the potential effects of carbohydrate-related disease intervention. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Claire Harris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Mu L, Yin X, Wu H, Lei Y, Han K, Mo J, Guo Z, Li J, Ye J. Mannose-Binding Lectin Possesses Agglutination Activity and Promotes Opsonophagocytosis of Macrophages with Calreticulin Interaction in an Early Vertebrate. THE JOURNAL OF IMMUNOLOGY 2020; 205:3443-3455. [PMID: 33199536 DOI: 10.4049/jimmunol.2000256] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
The innate immune system is an ancient defense system in the process of biological evolution, which can quickly and efficiently resist pathogen infection. In mammals, mannose-binding lectin (MBL) is a key molecule in the innate immune and plays an essential role in the first line of host defense against pathogenic bacteria. However, the evolutionary origins and ancient roles of immune defense of MBL and its mechanism in clearance of microbial pathogens are still unclear, especially in early vertebrates. In this study, Oreochromis niloticus MBL (OnMBL) was successfully isolated and purified from the serum of Nile tilapia (O. niloticus). The OnMBL was able to bind and agglutinate with two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila Interestingly, the OnMBL was able to significantly inhibit the proliferation of pathogenic bacteria and reduce the inflammatory response. Upon bacterial challenge, the downregulation of OnMBL expression by RNA interference could lead to rapid proliferation of the pathogenic bacteria, ultimately resulting in tilapia death. However, the phenotype was rescued by reinjection of the OnMBL, which restored the healthy status of the knockdown tilapia. Moreover, a mechanistic analysis revealed that the OnMBL could clear pathogenic bacteria by collaborating with cell-surface calreticulin to facilitate phagocytosis in a complement activation-independent manner. To our knowledge, these results provide the first evidence on the antibacterial response mechanism of MBL performing evolutionary conserved function to promote opsonophagocytosis of macrophages in early vertebrates and reveals new insights into the understanding of the evolutionary origins and ancient roles basis of the C-type lectins in the innate immune defense.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Hairong Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Yang Lei
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Kailiang Han
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Jinfeng Mo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI 49783
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| |
Collapse
|
19
|
Świerzko AS, Cedzyński M. The Influence of the Lectin Pathway of Complement Activation on Infections of the Respiratory System. Front Immunol 2020; 11:585243. [PMID: 33193407 PMCID: PMC7609860 DOI: 10.3389/fimmu.2020.585243] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Lung diseases are among the leading causes of morbidity and mortality. Complement activation may prevent a variety of respiratory infections, but on the other hand, could exacerbate tissue damage or contribute to adverse side effects. In this review, the associations of factors specific for complement activation via the lectin pathway (LP) with infections of the respiratory system, from birth to adulthood, are discussed. The most extensive data concern mannose-binding lectin (MBL) which together with other collectins (collectin-10, collectin-11) and the ficolins (ficolin-1, ficolin-2, ficolin-3) belong to pattern-recognition molecules (PRM) specific for the LP. Those PRM form complexes with MBL-associated serine proteases (MASP-1, MASP-2, MASP-3) and related non-enzymatic factors (MAp19, MAp44). Beside diseases affecting humanity for centuries like tuberculosis or neonatal pneumonia, some recently published data concerning COVID-19 are summarized.
Collapse
Affiliation(s)
- Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
20
|
Gajek G, Świerzko AS, Cedzyński M. Association of Polymorphisms of MASP1/3, COLEC10, and COLEC11 Genes with 3MC Syndrome. Int J Mol Sci 2020; 21:ijms21155483. [PMID: 32751929 PMCID: PMC7432537 DOI: 10.3390/ijms21155483] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
The Malpuech, Michels, Mingarelli, Carnevale (3MC) syndrome is a rare, autosomal recessive genetic- disorder associated with mutations in the MASP1/3, COLEC1,1 or COLEC10 genes. The number of 3MC patients with known mutations in these three genes reported so far remains very small. To date, 16 mutations in MASP-1/3, 12 mutations in COLEC11 and three in COLEC10 associated with 3MC syndrome have been identified. Their products play an essential role as factors involved in the activation of complement via the lectin or alternative (MASP-3) pathways. Recent data indicate that mannose-binding lectin-associated serine protease-1 (MASP-1), MASP-3, collectin kidney-1 (collectin-11) (CL-K1), and collectin liver-1 (collectin-10) (CL-L1) also participate in the correct migration of neural crest cells (NCC) during embryogenesis. This is supported by relationships between MASP1/3, COLEC10, and COLEC11 gene mutations and the incidence of 3MC syndrome, associated with craniofacial abnormalities such as radioulnar synostosis high-arched eyebrows, cleft lip/palate, hearing loss, and ptosis.
Collapse
|
21
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Haematologic Malignancies. Cancers (Basel) 2020; 12:E1792. [PMID: 32635486 PMCID: PMC7408476 DOI: 10.3390/cancers12071792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Łódź, Poland;
| | | |
Collapse
|
22
|
Murugaiah V, Tsolaki AG, Kishore U. Collectins: Innate Immune Pattern Recognition Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:75-127. [PMID: 32152944 PMCID: PMC7120701 DOI: 10.1007/978-981-15-1580-4_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collectins are collagen-containing C-type (calcium-dependent) lectins which are important pathogen pattern recognising innate immune molecules. Their primary structure is characterised by an N-terminal, triple-helical collagenous region made up of Gly-X-Y repeats, an a-helical coiled-coil trimerising neck region, and a C-terminal C-type lectin or carbohydrate recognition domain (CRD). Further oligomerisation of this primary structure can give rise to more complex and multimeric structures that can be seen under electron microscope. Collectins can be found in serum as well as in a range of tissues at the mucosal surfaces. Mannanbinding lectin can activate the complement system while other members of the collectin family are extremely versatile in recognising a diverse range of pathogens via their CRDs and bring about effector functions designed at the clearance of invading pathogens. These mechanisms include opsonisation, enhancement of phagocytosis, triggering superoxidative burst and nitric oxide production. Collectins can also potentiate the adaptive immune response via antigen presenting cells such as macrophages and dendritic cells through modulation of cytokines and chemokines, thus they can act as a link between innate and adaptive immunity. This chapter describes the structure-function relationships of collectins, their diverse functions, and their interaction with viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Anthony G Tsolaki
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
23
|
Gong K, Xia M, Wang Y, Bai L, Ying W, Zhu F, Chen Y. Importance of glycosylation in the interaction of Tamm-Horsfall protein with collectin-11 and acute kidney injury. J Cell Mol Med 2020; 24:3572-3581. [PMID: 32045104 PMCID: PMC7131921 DOI: 10.1111/jcmm.15046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/01/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Both Tamm-Horsfall protein (THP) and collectin-11 (CL-11) are important molecules in acute kidney injury (AKI). In this study, we measured the change of glycosylation of THP in patients with AKI after surgery, using MALDI-TOF MS and lectin array analysis. The amount of high-mannose and core fucosylation in patients with AKI were higher than those in healthy controls. In vitro study showed that THP could bind to CL-11 with affinity at 9.41 × 10-7 mol/L and inhibited activation of complement lectin pathway. The binding affinity decreased after removal of glycans on THP. Removal of fucose completely ablated the binding between the two proteins. While removal of high-mannose or part of the N-glycan decreased the binding ability to 30% or 60%. The results indicated that increase of fucose on THP played an important role via complement lectin pathway in AKI.
Collapse
Affiliation(s)
- Kunjing Gong
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Min Xia
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Yaqin Wang
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Lufeng Bai
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Wantao Ying
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for protein science (Beijing)Beijing Institute of lifeomicsBeijingChina
| | - Fengxue Zhu
- Department of Critical Care MedicinePeking University People's HospitalBeijingChina
| | - Yuqing Chen
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| |
Collapse
|
24
|
Magdalon J, Mansur F, Teles E Silva AL, de Goes VA, Reiner O, Sertié AL. Complement System in Brain Architecture and Neurodevelopmental Disorders. Front Neurosci 2020; 14:23. [PMID: 32116493 PMCID: PMC7015047 DOI: 10.3389/fnins.2020.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023] Open
Abstract
Current evidence indicates that certain immune molecules such as components of the complement system are directly involved in neurobiological processes related to brain development, including neurogenesis, neuronal migration, synaptic remodeling, and response to prenatal or early postnatal brain insults. Consequently, complement system dysfunction has been increasingly implicated in disorders of neurodevelopmental origin, such as schizophrenia, autism spectrum disorder (ASD) and Rett syndrome. However, the mechanistic evidence for a causal relationship between impaired complement regulation and these disorders varies depending on the disease involved. Also, it is still unclear to what extent altered complement expression plays a role in these disorders through inflammation-independent or -dependent mechanisms. Furthermore, pathogenic mutations in specific complement components have been implicated in the etiology of 3MC syndrome, a rare autosomal recessive developmental disorder. The aims of this review are to discuss the current knowledge on the roles of the complement system in sculpting brain architecture and function during normal development as well as after specific inflammatory insults, such as maternal immune activation (MIA) during pregnancy, and to evaluate the existing evidence associating aberrant complement with developmental brain disorders.
Collapse
Affiliation(s)
- Juliana Magdalon
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Fernanda Mansur
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - André Luiz Teles E Silva
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Vitor Abreu de Goes
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Andréa Laurato Sertié
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
25
|
García-Laorden MI, Hernández-Brito E, Muñoz-Almagro C, Pavlovic-Nesic S, Rúa-Figueroa I, Briones ML, Rajas O, Borderías L, Payeras A, Lorente L, Freixinet J, Ferreres J, Obando I, González-Quevedo N, Rodríguez de Castro F, Solé-Violán J, Rodríguez-Gallego C. Should MASP-2 Deficiency Be Considered a Primary Immunodeficiency? Relevance of the Lectin Pathway. J Clin Immunol 2020; 40:203-210. [PMID: 31828694 PMCID: PMC7223972 DOI: 10.1007/s10875-019-00714-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/29/2019] [Indexed: 01/19/2023]
Abstract
Mannose-binding lectin (MBL)-associated serine protease-2 (MASP-2) is an indispensable enzyme for the activation of the lectin pathway of complement. Its deficiency is classified as a primary immunodeficiency associated to pyogenic bacterial infections, inflammatory lung disease, and autoimmunity. In Europeans, MASP-2 deficiency, due to homozygosity for c.359A > G (p.D120G), occurs in 7 to 14/10,000 individuals. We analyzed the presence of the p.D120G mutation in adults (increasing the sample size of our previous studies) and children. Different groups of patients (1495 adults hospitalized with community-acquired pneumonia, 186 adults with systemic lupus erythematosus, 103 pediatric patients with invasive pneumococcal disease) and control individuals (1119 healthy adult volunteers, 520 adult patients without history of relevant infectious diseases, and a pediatric control group of 311 individuals) were studied. Besides our previously reported MASP-2-deficient healthy adults, we found a new p.D120G homozygous individual from the pediatric control group. We also reviewed p.D120G homozygous individuals reported so far: a total of eleven patients with a highly heterogeneous range of disorders and nine healthy controls (including our four MASP-2-deficient individuals) have been identified by chance in association studies. Individuals with complete deficiencies of several pattern recognition molecules of the lectin pathway (MBL, collectin-10 and collectin-11, and ficolin-3) as well as of MASP-1 and MASP-3 have also been reviewed. Cumulative evidence suggests that MASP-2, and even other components of the LP, are largely redundant in human defenses and that individuals with MASP-2 deficiency do not seem to be particularly prone to infectious or autoimmune diseases.
Collapse
Affiliation(s)
- M Isabel García-Laorden
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Elisa Hernández-Brito
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Department of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carmen Muñoz-Almagro
- Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Svetlana Pavlovic-Nesic
- Department of Pediatrics, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Iñigo Rúa-Figueroa
- Rheumatology Service, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - M Luisa Briones
- Department of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Olga Rajas
- Department of Respiratory Diseases, Hospital Universitario de la Princesa, Madrid, Spain
| | - Luis Borderías
- Department of Respiratory Diseases, Hospital San Jorge, Huesca, Spain
| | - Antoni Payeras
- Department of Internal Medicine, Hospital Son Llatzer, Palma de Mallorca, Spain
| | - Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Spain
| | - Jordi Freixinet
- Department of Thoracic Surgery, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jose Ferreres
- Intensive Care Unit, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Ignacio Obando
- Department of Pediatrics, Hospital Virgen del Rocío, Sevilla, Spain
| | - Nereida González-Quevedo
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Department of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Department of Respiratory Diseases, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Intensive Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain.
- University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
26
|
Howard MC, Nauser CL, Farrar CA, Wallis R, Sacks SH. l-Fucose prevention of renal ischaemia/reperfusion injury in Mice. FASEB J 2019; 34:822-834. [PMID: 31914693 PMCID: PMC6972607 DOI: 10.1096/fj.201901582r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 01/16/2023]
Abstract
In a recent study, we identified a fucosylated damage‐associated ligand exposed by ischemia on renal tubule epithelial cells, which after recognition by collectin‐11 (CL‐11 or collectin kidney 1 (CL‐K1)), initiates complement activation and acute kidney injury. We exploited the ability to increase the local tissue concentration of free l‐fucose following systemic administration, in order to block ligand binding by local CL‐11 and prevent complement activation. We achieved a thirty‐five‐fold increase in the intrarenal concentration of l‐fucose following an IP bolus given before the ischemia induction procedure ‐ a concentration found to significantly block in vitro binding of CL‐11 on hypoxia‐stressed renal tubule cells. At this l‐fucose dose, complement activation and acute post‐ischemic kidney injury are prevented, with additional protection achieved by a second bolus after the induction procedure. CL‐11−/− mice gained no additional protection from l‐fucose administration, indicating that the mechanism of l‐fucose therapy was largely CL‐11‐dependent. The hypothesis is that a high dose of l‐fucose delivered to the kidney obstructs the carbohydrate recognition site on CL‐11 thereby reducing complement‐mediated damage following ischemic insult. Further work will examine the utility in preventing post‐ischemic injury during renal transplantation, where acute kidney injury is known to correlate with poor graft survival.
Collapse
Affiliation(s)
- Mark C Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Christopher L Nauser
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Conrad A Farrar
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Russell Wallis
- Department of Respiratory Science and Infection, University of Leicester, London, UK
| | - Steven H Sacks
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
27
|
Paterson JM, Shaw AJ, Burns I, Dodds AW, Prasad A, Reid KB, Greenhough TJ, Shrive AK. Atomic-resolution crystal structures of the immune protein conglutinin from cow reveal specific interactions of its binding site with N-acetylglucosamine. J Biol Chem 2019; 294:17155-17165. [PMID: 31562242 PMCID: PMC6851296 DOI: 10.1074/jbc.ra119.010271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/25/2019] [Indexed: 12/02/2022] Open
Abstract
Bovine conglutinin is an immune protein that is involved in host resistance to microbes and parasites and interacts with complement component iC3b, agglutinates erythrocytes, and neutralizes influenza A virus. Here, we determined the high-resolution (0.97–1.46 Å) crystal structures with and without bound ligand of a recombinant fragment of conglutinin's C-terminal carbohydrate-recognition domain (CRD). The structures disclosed that the high-affinity ligand N-acetyl-d-glucosamine (GlcNAc) binds in the collectin CRD calcium site by interacting with the O3′ and O4′ hydroxyls alongside additional specific interactions of the N-acetyl group oxygen and nitrogen with Lys-343 and Asp-320, respectively. These residues, unique to conglutinin and differing both in sequence and in location from those in other collectins, result in specific, high-affinity binding for GlcNAc. The binding pocket flanking residue Val-339, unlike the equivalent Arg-343 in the homologous human surfactant protein D, is sufficiently small to allow conglutinin Lys-343 access to the bound ligand, whereas Asp-320 lies in an extended loop proximal to the ligand-binding site and bounded at both ends by conserved residues that coordinate to both calcium and ligand. This loop becomes ordered on ligand binding. The electron density revealed both α and β anomers of GlcNAc, consistent with the added α/βGlcNAc mixture. Crystals soaked with α1–2 mannobiose, a putative component of iC3b, reported to bind to conglutinin, failed to reveal bound ligand, suggesting a requirement for presentation of mannobiose as part of an extended physiological ligand. These results reveal a highly specific GlcNAc-binding pocket in conglutinin and a novel collectin mode of carbohydrate recognition.
Collapse
Affiliation(s)
- Janet M Paterson
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Amy J Shaw
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Ian Burns
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Alpana Prasad
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ken B Reid
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Trevor J Greenhough
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Annette K Shrive
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
28
|
Alghadban S, Kenawy HI, Dudler T, Schwaeble WJ, Brunskill NJ. Absence of the Lectin Activation Pathway of Complement Ameliorates Proteinuria-Induced Renal Injury. Front Immunol 2019; 10:2238. [PMID: 31608060 PMCID: PMC6768126 DOI: 10.3389/fimmu.2019.02238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
Proteinuria is an adverse prognostic feature in renal diseases. In proteinuric nephropathies, filtered proteins exert an injurious effect on the renal tubulointerstitium, resulting in inflammation and fibrosis. In the present study, we assessed to what extent complement activation via the lectin pathway may contribute to renal injury in response to proteinuria-related stress in proximal tubular cells. We used the well-established mouse model of protein overload proteinuria (POP) to assess the effect of lectin pathway inhibition on renal injury and fibrotic changes characteristic of proteinuric nephropathy. To this end, we compared experimental outcomes in wild type mice with MASP-2-deficient mice or wild type mice treated with MASP-2 inhibitor to block lectin pathway functional activity. Multiple markers of renal injury were assessed including renal function, proteinuria, macrophage infiltration, and cytokine release profiles. Both MASP-2-deficient and MASP-2 inhibitor-treated wild type mice exhibited renoprotection from proteinuria with significantly less tubulointerstitial injury when compared to isotype control antibody treated mice. This indicates that therapeutic targeting of MASP-2 in proteinuric nephropathies may offer a useful strategy in the clinical management of proteinuria associated pathologies in a variety of different underlying renal diseases.
Collapse
Affiliation(s)
- Samy Alghadban
- Department of Infection, Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hany I Kenawy
- Department of Infection, Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Wilhelm J Schwaeble
- Department of Infection, Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel J Brunskill
- Department of Infection, Immunity and Inflammation, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Department of Nephrology, Leicester General Hospital, Leicester, United Kingdom
| |
Collapse
|
29
|
Casals C, García-Fojeda B, Minutti CM. Soluble defense collagens: Sweeping up immune threats. Mol Immunol 2019; 112:291-304. [DOI: 10.1016/j.molimm.2019.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
30
|
Sandri TL, Andrade FA, Lidani KCF, Einig E, Boldt ABW, Mordmüller B, Esen M, Messias-Reason IJ. Human collectin-11 (COLEC11) and its synergic genetic interaction with MASP2 are associated with the pathophysiology of Chagas Disease. PLoS Negl Trop Dis 2019; 13:e0007324. [PMID: 30995222 PMCID: PMC6488100 DOI: 10.1371/journal.pntd.0007324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/29/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Chagas Disease (CD) is an anthropozoonosis caused by Trypanosoma cruzi. With complex pathophysiology and variable clinical presentation, CD outcome can be influenced by parasite persistence and the host immune response. Complement activation is one of the primary defense mechanisms against pathogens, which can be initiated via pathogen recognition by pattern recognition molecules (PRMs). Collectin-11 is a multifunctional soluble PRM lectin, widely distributed throughout the body, with important participation in host defense, homeostasis, and embryogenesis. In complex with mannose-binding lectin-associated serine proteases (MASPs), collectin-11 may initiate the activation of complement, playing a role against pathogens, including T. cruzi. In this study, collectin-11 plasma levels and COLEC11 variants in exon 7 were assessed in a Brazilian cohort of 251 patients with chronic CD and 108 healthy controls. Gene-gene interactions between COLEC11 and MASP2 variants were analyzed. Collectin-11 levels were significantly decreased in CD patients compared to controls (p<0.0001). The allele rs7567833G, the genotypes rs7567833AG and rs7567833GG, and the COLEC11*GGC haplotype were related to T. cruzi infection and clinical progression towards symptomatic CD. COLEC11 and MASP2*CD risk genotypes were associated with cardiomyopathy (p = 0.014; OR 9.3, 95% CI 1.2–74) and with the cardiodigestive form of CD (p = 0.005; OR 15.2, 95% CI 1.7–137), suggesting that both loci act synergistically in immune modulation of the disease. The decreased levels of collectin-11 in CD patients may be associated with the disease process. The COLEC11 variant rs7567833G and also the COLEC11 and MASP2*CD risk genotype interaction were associated with the pathophysiology of CD. The heterogeneity of clinical progression during chronic Trypanosoma cruzi infection and the mechanisms determining why some individuals develop symptoms whereas others remain asymptomatic are still poorly understood. The pathogenesis of chronic Chagas Disease (CD) has been attributed mainly to the persistence of the causing parasite and the character of individual host immune responses. Collectin-11 is a host immune response molecule with affinity for sugars found on the T. cruzi’s surface. Together with mannose-binding lectin-associated serine proteases (MASPs), it triggers the host defense response against pathogens. Genetic variants and protein levels of MASP-2 and the mannose-binding lectin (MBL), a molecule structurally similar to collectin-11, have been found to be associated with susceptibility to T. cruzi infection and clinical progression to cardiomyopathy. This prompted us to investigate collectin-11 genetic variants and protein levels in 251 patients with chronic CD and 108 healthy individuals, and to examine the effect of gene interaction between COLEC11 and MASP2 risk mutations. We found an association to CD infection with COLEC11 gene variants and reduced collectin-11 levels. The concomitant presence of these genetic variants and MASP2 risk mutations greatly increased the odds for cardiomyopathy. This is the first study to reveal a role for collectin-11 and COLEC11-MASP2 gene interaction in the pathogenesis of CD.
Collapse
Affiliation(s)
- Thaisa Lucas Sandri
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Elias Einig
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Angelica Beate Winter Boldt
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | | | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Iara J. Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
31
|
Bayarri-Olmos R, Kirketerp-Moller N, Pérez-Alós L, Skjodt K, Skjoedt MO, Garred P. Development of a Quantitative Assay for the Characterization of Human Collectin-11 (CL-11, CL-K1). Front Immunol 2018; 9:2238. [PMID: 30323815 PMCID: PMC6172411 DOI: 10.3389/fimmu.2018.02238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway of complement with diverse functions spanning from host defense to embryonic development. CL-11 is found in the circulation in heterocomplexes with the homologous collectin-10 (CL-10). Abnormal CL-11 plasma levels are associated with the presence of disseminated intravascular coagulation, urinary schistosomiasis, and congenital disorders. Although there has been a marked development in the characterization of CL-11 there is still a scarcity of clinical tools for its analysis. Thus, we generated monoclonal antibodies and developed a quantitative ELISA to measure CL-11 in the circulation. The antibodies were screened against recombinant CL-11 and validated by ELISA and immunoprecipitation of serum and plasma. The best candidates were pairwise compared to develop a quantitative ELISA. The assay was validated regarding its sensitivity, reproducibility, and dilution linearity, demonstrating a satisfactory variability over a working range of 0.29–18.75 ng/ml. The mean plasma concentration of CL-11 in healthy controls was determined to be 289.4 ng/ml (range 143.2–459.4 ng/ml), highly correlated to the levels of CL/10/11 complexes (r = 0.729). Plasma CL-11 and CL-10/11 co-migrated in size exclusion chromatography as two major complexes of ~400 and >600 kDa. Furthermore, we observed a significant decrease at admission in CL-11 plasma levels in patients admitted to intensive care with systemic inflammatory response syndrome. By using the in-house antibodies and recombinant CL-11, we found that CL-11 can bind to zymosan independently of calcium by a separate site from the carbohydrate-binding region. Finally, we showed that CL-11/MASP-2 complexes trigger C4b deposition on zymosan. In conclusion, we have developed a specific and sensitive ELISA to investigate the ever-expanding roles of CL-11 in health and disease and shown a novel interaction between CL-11 and zymosan.
Collapse
Affiliation(s)
- Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Kirketerp-Moller
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Skjodt
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Hansen SWK, Aagaard JB, Bjerrum KB, Hejbøl EK, Nielsen O, Schrøder HD, Skjoedt K, Sørensen AL, Graversen JH, Henriksen ML. CL-L1 and CL-K1 Exhibit Widespread Tissue Distribution With High and Co-Localized Expression in Secretory Epithelia and Mucosa. Front Immunol 2018; 9:1757. [PMID: 30108587 PMCID: PMC6079254 DOI: 10.3389/fimmu.2018.01757] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/16/2018] [Indexed: 02/03/2023] Open
Abstract
Collectin liver 1 (CL-L1, alias collectin 10) and collectin kidney 1 (CL-K1, alias collectin 11) are oligomeric pattern recognition molecules associated with the complement system, and mutations in either of their genes may lead to deficiency and developmental defects. The two collectins are reportedly localized and synthesized in the liver, kidneys, and adrenals, and can be found in the circulation as heteromeric complexes (CL-LK), which upon binding to microbial high mannose-like glycoconjugates activates the complement system via the lectin activation pathway. The tissue distribution of homo- vs. heteromeric CL-L1 and -K1 complexes, the mechanism of heteromeric complex formation and in which tissues this occurs, is hitherto incompletely described. We have by immunohistochemistry using monoclonal antibodies addressed the precise cellular localization of the two collectins in the main human tissues. We find that the two collectins have widespread and almost identical tissue distribution with a high expression in epithelial cells in endo-/exocrine secretory tissues and mucosa. There is also accordance between localization of mRNA transcripts and detection of proteins, showing that local synthesis likely is responsible for peripheral localization and eventual formation of the CL-LK complexes. The functional implications of the high expression in endo-/exocrine secretory tissue and mucosa is unknown but might be associated with the activity of MASP-3, which has a similar pattern of expression and is known to potentiate the activity of the alternative complement activation pathway.
Collapse
Affiliation(s)
- Soren W K Hansen
- Institute of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Josephine B Aagaard
- Institute of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Karen B Bjerrum
- Institute of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Eva K Hejbøl
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Ole Nielsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Henrik D Schrøder
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Karsten Skjoedt
- Institute of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Anna L Sørensen
- Institute of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Jonas H Graversen
- Institute of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Maiken L Henriksen
- Institute of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
33
|
Goicoechea de Jorge E, López Lera A, Bayarri-Olmos R, Yebenes H, Lopez-Trascasa M, Rodríguez de Córdoba S. Common and rare genetic variants of complement components in human disease. Mol Immunol 2018; 102:42-57. [PMID: 29914697 DOI: 10.1016/j.molimm.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Genetic variability in the complement system and its association with disease has been known for more than 50 years, but only during the last decade have we begun to understand how this complement genetic variability contributes to the development of diseases. A number of reports have described important genotype-phenotype correlations that associate particular diseases with genetic variants altering specific aspects of the activation and regulation of the complement system. The detailed functional characterization of some of these genetic variants provided key insights into the pathogenic mechanisms underlying these pathologies, which is facilitating the design of specific anti-complement therapies. Importantly, these analyses have sometimes revealed unknown features of the complement proteins. As a whole, these advances have delineated the functional implications of genetic variability in the complement system, which supports the implementation of a precision medicine approach based on the complement genetic makeup of the patients. Here we provide an overview of rare complement variants and common polymorphisms associated with disease and discuss what we have learned from them.
Collapse
Affiliation(s)
- Elena Goicoechea de Jorge
- Department of Immunology, Complutense University, Madrid, Spain; Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alberto López Lera
- Research Institute Hospital Universitario La Paz (IdiPaz), Madrid, Spain; Ciber de Enfermedades Raras, Madrid, Spain
| | - Rafael Bayarri-Olmos
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hugo Yebenes
- Ciber de Enfermedades Raras, Madrid, Spain; Molecular Pathology and Complement Genetics Unit. Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Santiago Rodríguez de Córdoba
- Ciber de Enfermedades Raras, Madrid, Spain; Molecular Pathology and Complement Genetics Unit. Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
34
|
Howard M, Farrar CA, Sacks SH. Structural and functional diversity of collectins and ficolins and their relationship to disease. Semin Immunopathol 2018; 40:75-85. [PMID: 28894916 PMCID: PMC5794833 DOI: 10.1007/s00281-017-0642-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
Pattern recognition molecules are sensors for the innate immune system and trigger a number of pathophysiological functions after interaction with the corresponding ligands on microorganisms or altered mammalian cells. Of those pattern recognition molecules used by the complement system, collagen-like lectins (collectins) are an important subcomponent. Whereas the best known of these collectins, mannose-binding lectin, largely occurs as a circulating protein following production by hepatocytes, the most recently described collectins exhibit strong local biosynthesis. This local production and release of soluble collectin molecules appear to serve local tissue functions at extravascular sites, including a developmental function. In this article, we focus on the characteristics of collectin-11 (CL-11 or CL-K1), whose ubiquitous expression and multiple activities likely reflect a wide biological relevance. Collectin-11 appears to behave as an acute phase protein whose production associated with metabolic and physical stress results in locally targeted inflammation and tissue cell death. Early results indicate the importance of fucosylated ligand marking the injured cells targeted by collectin-11, and we suggest that further characterisation of this and related ligands will lead to better understanding of pathophysiological significance and exploitation for clinical benefit.
Collapse
Affiliation(s)
- Mark Howard
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Conrad A Farrar
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Steven H Sacks
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
35
|
Wu W, Liu C, Farrar CA, Ma L, Dong X, Sacks SH, Li K, Zhou W. Collectin-11 Promotes the Development of Renal Tubulointerstitial Fibrosis. J Am Soc Nephrol 2017; 29:168-181. [PMID: 29142050 DOI: 10.1681/asn.2017050544] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023] Open
Abstract
Collectin-11 is a recently described soluble C-type lectin, a pattern recognition molecule of the innate immune system that has distinct roles in host defense, embryonic development, and acute inflammation. However, little is known regarding the role of collectin-11 in tissue fibrosis. Here, we investigated collectin-11 in the context of renal ischemia-reperfusion injury. Compared with wild-type littermate controls, Collec11 deficient (CL-11-/- ) mice had significantly reduced renal functional impairment, tubular injury, renal leukocyte infiltration, renal tissue inflammation/fibrogenesis, and collagen deposition in the kidneys after renal ischemia-reperfusion injury. In vitro, recombinant collectin-11 potently promoted leukocyte migration and renal fibroblast proliferation in a carbohydrate-dependent manner. Additionally, compared with wild-type kidney grafts, CL-11-/-mice kidney grafts displayed significantly reduced tubular injury and collagen deposition after syngeneic kidney transplant. Our findings demonstrate a pathogenic role for collectin-11 in the development of tubulointerstitial fibrosis and suggest that local collectin-11 promotes this fibrosis through effects on leukocyte chemotaxis and renal fibroblast proliferation. This insight into the pathogenesis of tubulointerstitial fibrosis may have implications for CKD mediated by other causes as well.
Collapse
Affiliation(s)
- Weiju Wu
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosa Biology, King's College London, Guy's Hospital, London, United Kingdom; and
| | - Chengfei Liu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Conrad A Farrar
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosa Biology, King's College London, Guy's Hospital, London, United Kingdom; and
| | - Liang Ma
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosa Biology, King's College London, Guy's Hospital, London, United Kingdom; and
| | - Xia Dong
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosa Biology, King's College London, Guy's Hospital, London, United Kingdom; and
| | - Steven H Sacks
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosa Biology, King's College London, Guy's Hospital, London, United Kingdom; and
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wuding Zhou
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosa Biology, King's College London, Guy's Hospital, London, United Kingdom; and
| |
Collapse
|
36
|
Dong X, Wu W, Ma L, Liu C, Bhuckory MB, Wang L, Nandrot EF, Xu H, Li K, Liu Y, Zhou W. Collectin-11 Is an Important Modulator of Retinal Pigment Epithelial Cell Phagocytosis and Cytokine Production. J Innate Immun 2017; 9:529-545. [PMID: 28772263 DOI: 10.1159/000478042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023] Open
Abstract
In this paper, we report previously unknown roles for collectin-11 (CL-11, a soluble C-type lectin) in modulating the retinal pigment epithelial (RPE) cell functions of phagocytosis and cytokine production. We found that CL-11 and its carbohydrate ligand are expressed in both the murine and human neural retina; these resemble each other in terms of RPE and photoreceptor cells. Functional analysis of murine RPE cells showed that CL-11 facilitates the opsonophagocytosis of photoreceptor outer segments and apoptotic cells, and also upregulates IL-10 production. Mechanistic analysis revealed that calreticulin on the RPE cells is required for CL-11-mediated opsonophagocytosis whereas signal-regulatory protein α and mannosyl residues on the cells are involved in the CL-11-mediated upregulation of IL-10 production. This study is the first to demonstrate the role of CL-11 and the molecular mechanisms involved in modulating RPE cell phagocytosis and cytokine production. It provides a new insight into retinal health and disease and has implications for other phagocytic cells.
Collapse
Affiliation(s)
- Xia Dong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chakraborti S, Dhalla NS, Catarino SJ, Messias-Reason IJ. Serine Proteases in the Lectin Pathway of the Complement System. PROTEASES IN PHYSIOLOGY AND PATHOLOGY 2017. [PMCID: PMC7120406 DOI: 10.1007/978-981-10-2513-6_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system plays a crucial role in host defense against pathogen infections and in the recognition and removal of damaged or altered self-components. Complement system activation can be initiated by three different pathways—classical, alternative, and lectin pathways—resulting in a proteolytic cascade, which culminates in multiple biological processes including opsonization and phagocytosis of intruders, inflammation, cell lysis, and removal of immune complexes and apoptotic cells. Furthermore, it also functions as a link between the innate and adaptive immune responses. The lectin pathway (LP) activation is mediated by serine proteases, termed mannan-binding lectin (MBL)-associated serine proteases (MASPs), which are associated with the pattern recognition molecules (PRMs) that recognize carbohydrates or acetylated compounds on surfaces of pathogens or apoptotic cells. These result in the proteolysis of complement C2 and C4 generating C3 convertase (C4b2a), which carries forward the activation cascade of complements, culminating in the elimination of foreign molecules. This chapter presents an overview of the complement system focusing on the characterization of MASPs and its genes, as well as its functions in the immune response.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal India
| | - Naranjan S. Dhalla
- St. Boniface Hospital Research Centre, University of Manitoba, Faculty of Health Sciences, College of Medicine, Institute of Cardiovascular Sciences, Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
38
|
Recognition of microbial glycans by soluble human lectins. Curr Opin Struct Biol 2017; 44:168-178. [PMID: 28482337 DOI: 10.1016/j.sbi.2017.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023]
Abstract
Human innate immune lectins that recognize microbial glycans can conduct microbial surveillance and thereby help prevent infection. Structural analysis of soluble lectins has provided invaluable insight into how these proteins recognize their cognate carbohydrate ligands and how this recognition gives rise to biological function. In this opinion, we cover the structural features of lectins that allow them to mediate microbial recognition, highlighting examples from the collectin, Reg protein, galectin, pentraxin, ficolin and intelectin families. These analyses reveal how some lectins (e.g., human intelectin-1) can recognize glycan epitopes that are remarkably diverse, yet still differentiate between mammalian and microbial glycans. We additionally discuss strategies to identify lectins that recognize microbial glycans and highlight tools that facilitate these discovery efforts.
Collapse
|
39
|
Tanaka J, Gleinich AS, Zhang Q, Whitfield R, Kempe K, Haddleton DM, Davis TP, Perrier S, Mitchell DA, Wilson P. Specific and Differential Binding of N-Acetylgalactosamine Glycopolymers to the Human Macrophage Galactose Lectin and Asialoglycoprotein Receptor. Biomacromolecules 2017; 18:1624-1633. [PMID: 28418238 DOI: 10.1021/acs.biomac.7b00228] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A range of glycopolymers composed of N-acetylgalactosamine were prepared via sequential Cu(I)-mediated polymerization and alkyne-azide click (CuAAC). The resulting polymers were shown, via multichannel surface plasmon resonance, to interact specifically with human macrophage galactose lectin (MGL; CD301) with high affinity (KD = 1.11 μM), but they did not bind to the mannose/fucose-selective human lectin dendritic-cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN; CD209). The effect of sugar ligand valency on the binding (so-called "glycoside cluster effect") of poly(N-acetylgalactosamine) to MGL was investigated by varying first the polymer chain length (DP: 100, 64, 40, 23, 12) and then the architecture (4- and 8-arm star glycopolymers). The chain length did not have a significant effect on the binding to MGL (KD = 0.17-0.52 μM); however, when compared to a hepatic C-type lectin of a similar monosaccharide specificity, the asialoglycoprotein receptor (ASGPR), the binding affinity was more noticeably affected (KD = 0.37- 6.65 μM). These data suggest that known differences in the specific configuration/orientation of the carbohydrate recognition domains of MGL and ASGPR are responsible for the differences in binding observed between the different polymers of varied chain length and architecture. In the future, this model has the potential to be employed for the development of tissue-selective delivery systems.
Collapse
Affiliation(s)
- Joji Tanaka
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Anne S Gleinich
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick , CV2 2DX Coventry, United Kingdom
| | - Qiang Zhang
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Richard Whitfield
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Kristian Kempe
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M Haddleton
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P Davis
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Sébastien Perrier
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Daniel A Mitchell
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick , CV2 2DX Coventry, United Kingdom
| | - Paul Wilson
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
40
|
Munye MM, Diaz-Font A, Ocaka L, Henriksen ML, Lees M, Brady A, Jenkins D, Morton J, Hansen SW, Bacchelli C, Beales PL, Hernandez-Hernandez V. COLEC10 is mutated in 3MC patients and regulates early craniofacial development. PLoS Genet 2017; 13:e1006679. [PMID: 28301481 PMCID: PMC5373641 DOI: 10.1371/journal.pgen.1006679] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/30/2017] [Accepted: 03/09/2017] [Indexed: 12/24/2022] Open
Abstract
3MC syndrome is an autosomal recessive heterogeneous disorder with features linked to developmental abnormalities. The main features include facial dysmorphism, craniosynostosis and cleft lip/palate; skeletal structures derived from cranial neural crest cells (cNCC). We previously reported that lectin complement pathway genes COLEC11 and MASP1/3 are mutated in 3MC syndrome patients. Here we define a new gene, COLEC10, also mutated in 3MC families and present novel mutations in COLEC11 and MASP1/3 genes in a further five families. The protein products of COLEC11 and COLEC10, CL-K1 and CL-L1 respectively, form heteromeric complexes. We show COLEC10 is expressed in the base membrane of the palate during murine embryo development. We demonstrate how mutations in COLEC10 (c.25C>T; p.Arg9Ter, c.226delA; p.Gly77Glufs*66 and c.528C>G p.Cys176Trp) impair the expression and/or secretion of CL-L1 highlighting their pathogenicity. Together, these findings provide further evidence linking the lectin complement pathway and complement factors COLEC11 and COLEC10 to morphogenesis of craniofacial structures and 3MC etiology. The 3MC syndrome is a unifying term amalgamating four rare recessive genetic disorders with overlapping features namely; Mingarelli, Malpuech, Michels and Carnevale syndromes. It is characterised by facial malformations including, high-arched eyebrows, cleft lip/palate, hypertelorism, developmental delay and hearing loss. We previously reported that lectin complement pathway genes COLEC11 and MASP1/3 were mutated in 3MC syndrome patients. Here we describe a new gene from the same pathway, COLEC10, mutated in 3MC patients. Our results show that COLEC10 is expressed in craniofacial tissues during development. We demonstrate how CL-L1, the protein expressed by COLEC10, can act as a cellular chemoattractant in vitro, controlling cell movement and migration. We overexpressed constructs carrying COLEC10 non-sense mutations found in our patients, CL-L1 failed to be expressed and secreted. Moreover, when we expressed a missense COLEC10 construct, CL-L1 was expressed but failed to be secreted. In sum, we discovered a new gene, COLEC10, mutated in 3MC syndrome and we propose a pathogenic mechanism for 3MC relating to the failure of CL-L1 function and its craniofacial developmental consequences.
Collapse
Affiliation(s)
- Mustafa M. Munye
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anna Diaz-Font
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Louise Ocaka
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Maiken L. Henriksen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Lees
- Department of Clinical Genetics, Great Ormond Street Hospital, London, United Kingdom
| | - Angela Brady
- North West Thames Regional Genetics Service, Kennedy-Galton Centre, Northwick Park Hospital, London, United Kingdom
| | - Dagan Jenkins
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jenny Morton
- Department of Clinical Genetics, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Soren W. Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Chiara Bacchelli
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Philip L. Beales
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- * E-mail: (PLB); (VHH)
| | - Victor Hernandez-Hernandez
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- * E-mail: (PLB); (VHH)
| |
Collapse
|
41
|
Hwang I, Mori K, Ohtani K, Matsuda Y, Roy N, Kim Y, Suzuki Y, Wakamiya N. Collectin Kidney 1 Plays an Important Role in Innate Immunity against Streptococcus pneumoniae Infection. J Innate Immun 2017; 9:217-228. [PMID: 28068663 DOI: 10.1159/000453316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023] Open
Abstract
Collectins are C-type lectins that are involved in innate immunity as pattern recognition molecules. Recently, collectin kidney 1 (CL-K1) has been discovered, and in vitro studies have shown that CL-K1 binds to microbes and activates the lectin complement pathway. However, in vivo functions of CL-K1 against microbes have not been elucidated. To investigate the biological functions of CL-K1, we generated CL-K1 knockout (CL-K1-/-) mice and then performed a Streptococcus pneumoniae infection analysis. First, we found that recombinant human CL-K1 bound to S. pneumoniae in a calcium-dependent manner, and induced complement activation. CL-K1-/- mice sera formed less C3 deposition on S. pneumoniae. Furthermore, immunofluorescence analysis in the wild-type (WT) mice demonstrated that CL-K1 and C3 were localized on S. pneumoniae in infected lungs. CL-K1-/- mice revealed decreased phagocytosis of S. pneumoniae. Consequently, less S. pneumoniae clearance was observed in their lungs. CL-K1-/- mice showed severe pulmonary inflammation and weight loss in comparison with WT mice. Finally, the decreased clearance and severe pulmonary inflammation caused by S. pneumoniae infection might cause higher CL-K1-/- mice lethality. Our results suggest that CL-K1 might play an important role in host protection against S. pneumoniae infection through the activation of the lectin complement pathway.
Collapse
Affiliation(s)
- Insu Hwang
- Department of Microbiology and Immunochemistry, Asahikawa Medical University, Asahikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 2016; 274:74-97. [PMID: 27782323 DOI: 10.1111/imr.12468] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mannose-binding lectin (MBL), collectin-10, collectin-11, and the ficolins (ficolin-1, ficolin-2, and ficolin-3) are soluble pattern recognition molecules in the lectin complement pathway. These proteins act as mediators of host defense and participate in maintenance of tissue homeostasis. They bind to conserved pathogen-specific structures and altered self-antigens and form complexes with the pentraxins to modulate innate immune functions. All molecules exhibit distinct expression in different tissue compartments, but all are found to a varying degree in the circulation. A common feature of these molecules is their ability to interact with a set of serine proteases named MASPs (MASP-1, MASP-2, and MASP-3). MASP-1 and -2 trigger the activation of the lectin pathway and MASP-3 may be involved in the activation of the alternative pathway of complement. Furthermore, MASPs mediate processes related to coagulation, bradykinin release, and endothelial and platelet activation. Variant alleles affecting expression and structure of the proteins have been associated with a variety of infectious and non-infectious diseases, most commonly as disease modifiers. Notably, the severe 3MC (Malpuech, Michels, Mingarelli, and Carnevale) embryonic development syndrome originates from rare mutations affecting either collectin-11 or MASP-3, indicating a broader functionality of the complement system than previously anticipated. This review summarizes the characteristics of the molecules in the lectin pathway.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Jie Ma
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
The collectins CL-L1, CL-K1 and CL-P1, and their roles in complement and innate immunity. Immunobiology 2016; 221:1058-67. [DOI: 10.1016/j.imbio.2016.05.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
|
44
|
Troldborg A, Thiel S, Jensen L, Hansen S, Laska MJ, Deleuran B, Jensenius JC, Stengaard-Pedersen K. Collectin liver 1 and collectin kidney 1 and other complement-associated pattern recognition molecules in systemic lupus erythematosus. Clin Exp Immunol 2015; 182:132-8. [PMID: 26154564 PMCID: PMC4608502 DOI: 10.1111/cei.12678] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to explore the involvement of collectin liver 1 (CL-L1) and collectin kidney 1 (CL-K1) and other pattern recognition molecules (PRMs) of the lectin pathway of the complement system in a cross-sectional cohort of systemic lupus erythematosus (SLE) patients. Concentrations in plasma of CL-L1, CL-K1, mannan-binding lectin (MBL), M-ficolin, H-ficolin and L-ficolin were determined in 58 patients with SLE and 65 healthy controls using time-resolved immunoflourometric assays. The SLE patients' demographic, diagnostic, clinical and biochemical data and collection of plasma samples were performed prospectively during 4 months. CL-L1, CL-K1 and M-ficolin plasma concentrations were lower in SLE patients than healthy controls (P-values < 0.001, 0.033 and < 0.001, respectively). H-ficolin concentration was higher in SLE patients (P < 0.0001). CL-L1 and CL-K1 plasma concentrations in the individuals correlated in both patients and controls. Patients with low complement component 3 (C3) demonstrated a negative correlation between C3 and CL-L1 and CL-K1 (P = 0.022 and 0.031, respectively). Patients positive for anti-dsDNA antibodies had lower levels of MBL in plasma than patients negative for anti-dsDNA antibodies (P = 0.02). In a cross-sectional cohort of SLE patients, we found differences in the plasma concentrations of CL-L1, CL-K1, M-ficolin and H-ficolin compared to a group of healthy controls. Alterations in plasma concentrations of the PRMs of the lectin pathway in SLE patients and associations to key elements of the disease support the hypothesis that the lectin pathway plays a role in the pathogenesis of SLE.
Collapse
Affiliation(s)
- A Troldborg
- Center of Cancer and InflammationDepartment of Rheumatology, Aarhus University Hospital, Aarhus University
- Institute of Clinical Medicine, Aarhus University
| | - S Thiel
- Department of Biomedicine, Aarhus University
| | - L Jensen
- Department of Biomedicine, Aarhus University
| | - S Hansen
- Department of Cancer and Inflammation Research, University of Southern Denmark
| | - M J Laska
- Department of Biomedicine, Aarhus University
| | - B Deleuran
- Center of Cancer and InflammationDepartment of Rheumatology, Aarhus University Hospital, Aarhus University
- Department of Biomedicine, Aarhus University
| | | | - K Stengaard-Pedersen
- Center of Cancer and InflammationDepartment of Rheumatology, Aarhus University Hospital, Aarhus University
- Institute of Clinical Medicine, Aarhus University
| |
Collapse
|