1
|
Kim H, Kim AR, Byun S, Um SJ. Asxl1 loss in mice leads to microcephaly by regulating neural stem cell survival. Anim Cells Syst (Seoul) 2025; 29:241-250. [PMID: 40276524 PMCID: PMC12020147 DOI: 10.1080/19768354.2025.2481979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 04/26/2025] Open
Abstract
Additional sex comb-like 1 (ASXL1) is a chromatin-associated factor essential for transcriptional regulation. De novo truncating mutations in the ASXL1 gene are linked to Bohring-Opitz syndrome, a developmental disorder characterized by microcephaly; however, the role of Asxl1 in brain development remains unclear. In this study, we demonstrate that Asxl1 deletion in mice induces microcephaly, primarily caused by a reduction in the size and number of cortical neurons. Asxl1 ablation disrupts neural stem cell (NSC) maintenance, as evidenced by decreased proliferation and increased apoptosis. Transcriptomic analysis of Asxl1-deficient NSCs revealed 4,635 differentially expressed genes, including 2,262 upregulated and 2,373 downregulated genes. Gene ontology analysis indicated that Asxl1 regulates NSC survival through the histone methyltransferase Ezh2, a core component of the Polycomb Repressive Complex 2 (PRC2). Inhibition of H3K27me3 using GSK343 significantly reduced the viability of wild-type NSCs, but had a markedly diminished effect on Asxl1-deficient NSCs. Furthermore, Ezh2 target genes associated with apoptosis, such as Epha7 and Osr1, were upregulated in wild-type NSCs following GSK343 treatment but not significantly affected in Asxl1-deficient NSCs. These findings establish Asxl1 as a critical regulator of NSC survival and neurogenesis via Ezh2-mediated chromatin modification and provide insights into the mechanisms underlying microcephaly in developmental disorders.
Collapse
Affiliation(s)
- Hyeju Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - A.-Reum Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Sukyoung Byun
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| |
Collapse
|
2
|
Hölzenspies JJ, Sengupta D, Bickmore WA, Brickman JM, Illingworth RS. PRC2 promotes canalisation during endodermal differentiation. PLoS Genet 2025; 21:e1011584. [PMID: 39883738 PMCID: PMC11813121 DOI: 10.1371/journal.pgen.1011584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/11/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models. Embryonic stem cells have provided key insights into the molecular function of polycomb proteins, but it is impossible to fully appreciate the role of these epigenetic factors in development, or how development is perturbed due to their deficiency, in the steady-state. To address this, we have employed a tractable embryonic stem cell differentiation system to model primitive streak formation and early gastrulation. Using this approach, we find that loss of the repressive polycomb mark H3K27me3 is delayed relative to transcriptional activation, indicating a subordinate rather than instructive role in gene repression. Despite this, chemical inhibition of polycomb enhanced endodermal differentiation efficiency, but did so at the cost of lineage fidelity. These findings highlight the importance of the polycomb system in stabilising the developmental transcriptional response and, in so doing, in shoring up cellular specification.
Collapse
Affiliation(s)
- Jurriaan Jochem Hölzenspies
- Novo Nordisk Foundation Center for Stem Cell Medicine—reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy Anne Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine—reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Scott Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Rhodes CT, Asokumar D, Sohn M, Naskar S, Elisha L, Stevenson P, Lee DR, Zhang Y, Rocha PP, Dale RK, Lee S, Petros TJ. Loss of Ezh2 in the medial ganglionic eminence alters interneuron fate, cell morphology and gene expression profiles. Front Cell Neurosci 2024; 18:1334244. [PMID: 38419656 PMCID: PMC10899338 DOI: 10.3389/fncel.2024.1334244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.
Collapse
Affiliation(s)
- Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Dhanya Asokumar
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Shovan Naskar
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Lielle Elisha
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Parker Stevenson
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- National Cancer Institute (NCI), NIH, Bethesda, MD, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| |
Collapse
|
4
|
Paules EM, Silva-Gomez JA, Friday WB, Zeisel SH, Trujillo-Gonzalez I. Choline Regulates SOX4 through miR-129-5p and Modifies H3K27me3 in the Developing Cortex. Nutrients 2023; 15:2774. [PMID: 37375678 PMCID: PMC10304412 DOI: 10.3390/nu15122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Choline availability regulates neural progenitor cell proliferation and differentiation in the developing cerebral cortex. Here, we investigated the molecular mechanism underlying this process and demonstrated that choline regulates the transcription factor SOX4 in neural progenitor cells. Specifically, we found that low choline intake during neurogenesis reduces SOX4 protein levels, causing the downregulation of EZH2, a histone methyltransferase. Importantly, we demonstrate that low choline is not involved in SOX4 protein degradation rate and established that protein reduction is caused by aberrant expression of a microRNA (miR-129-5p). To confirm the role of miR-129-5p, we conducted gain-of-function and loss-of-function assays in neural progenitor cells and demonstrated that directly altering miR-129-5p levels could affect SOX4 protein levels. We also observed that the reduction in SOX4 and EZH2 led to decreased global levels of H3K27me3 in the developing cortex, contributing to reduced proliferation and precocious differentiation. For the first time, to our knowledge, we demonstrate that a nutrient, choline, regulates a master transcription factor and its downstream targets, providing a novel insight into the role of choline in brain development.
Collapse
Affiliation(s)
- Evan M. Paules
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (E.M.P.); (J.A.S.-G.); (W.B.F.); (S.H.Z.)
| | - Jorge A. Silva-Gomez
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (E.M.P.); (J.A.S.-G.); (W.B.F.); (S.H.Z.)
| | - Walter B. Friday
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (E.M.P.); (J.A.S.-G.); (W.B.F.); (S.H.Z.)
| | - Steve H. Zeisel
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (E.M.P.); (J.A.S.-G.); (W.B.F.); (S.H.Z.)
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Isis Trujillo-Gonzalez
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (E.M.P.); (J.A.S.-G.); (W.B.F.); (S.H.Z.)
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
5
|
Molecular Mechanisms Involved in the Regulation of Neurodevelopment by miR-124. Mol Neurobiol 2023; 60:3569-3583. [PMID: 36840845 DOI: 10.1007/s12035-023-03271-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
miR-124 is a miRNA predominantly expressed in the nervous system and accounts for more than a quarter of the total miRNAs in the brain. It regulates neurogenesis, neuronal differentiation, neuronal maturation, and synapse formation and is the most important miRNA in the brain. Furthermore, emerging evidence has suggested miR-124 may be associated with the pathogenesis of various neurodevelopmental and neuropsychiatric disorders. Here, we provide an overview of the role of miR-124 in neurodevelopment and the underling mechanisms, and finally, we prospect the significance of miR-124 research to the field of neuroscience.
Collapse
|
6
|
RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. EPIGENOMES 2022; 6:epigenomes6040042. [PMID: 36547251 PMCID: PMC9778336 DOI: 10.3390/epigenomes6040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
During mammalian neurodevelopment, signaling pathways converge upon transcription factors (TFs) to establish appropriate gene expression programmes leading to the production of distinct neural and glial cell types. This process is partially regulated by the dynamic modulation of chromatin states by epigenetic systems, including the polycomb group (PcG) family of co-repressors. PcG proteins form multi-subunit assemblies that sub-divide into distinct, yet functionally related families. Polycomb repressive complexes 1 and 2 (PRC1 and 2) modify the chemical properties of chromatin by covalently modifying histone tails via H2A ubiquitination (H2AK119ub1) and H3 methylation, respectively. In contrast to the PRCs, the Polycomb repressive deubiquitinase (PR-DUB) complex removes H2AK119ub1 from chromatin through the action of the C-terminal hydrolase BAP1. Genetic screening has identified several PcG mutations that are causally associated with a range of congenital neuropathologies associated with both localised and/or systemic growth abnormalities. As PRC1 and PR-DUB hold opposing functions to control H2AK119ub1 levels across the genome, it is plausible that such neurodevelopmental disorders arise through a common mechanism. In this review, we will focus on advancements regarding the composition and opposing molecular functions of mammalian PRC1 and PR-DUB, and explore how their dysfunction contributes to the emergence of neurodevelopmental disorders.
Collapse
|
7
|
Wang H. Role of EZH2 in adipogenesis and obesity: Current state of the art and implications - A review. Medicine (Baltimore) 2022; 101:e30344. [PMID: 36086687 PMCID: PMC10980444 DOI: 10.1097/md.0000000000030344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Obesity is characterized by excessive accumulation of adiposity and has been implicated in a strong predisposition to metabolic disorders and cancer, constituting one of the major public health issues worldwide. The formation of new mature adipocytes through differentiation of progenitor or precursor cells during adipogenesis can lead to the expansion of adipose tissue. Recent studies have revealed that the intrinsic risk of obesity arises not only through genetic variants but also through epigenetic predisposition. Enhancer of zeste homolog 2 (EZH2) is an enzymatic catalytic component of polycomb repressive complex 2 that acts as an epigenetic modulator in the regulation of gene expression. EZH2 can modulate the expression of its target genes by the trimethylation of Lys-27 in histone 3 or methylation of non-histone proteins. Emerging evidence has shown the important role played by EZH2 in adipogenesis and obesity. This review provides the latest knowledge about the involvement of EZH2 in the process of adipogenesis and obesity involving adipocyte differentiation, extract key concepts, and highlight open questions toward a better understanding of EZH2 function and the molecular mechanisms underlying obesity.
Collapse
Affiliation(s)
- Haixia Wang
- Zhejiang Changzheng Vocational and Technical College, Hangzhou, P. R. China
| |
Collapse
|
8
|
Motaghed M, Sanooghi D, Bagher Z, Faghihi F, Lotfi A, Shahbazi A, Jogataei MT. In Vitro Assessment of the Gene Expression of EZH-2 and P300 During Motor Neuron Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells. Basic Clin Neurosci 2022; 13:709-718. [PMID: 37313026 PMCID: PMC10258600 DOI: 10.32598/bcn.2021.2997.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2021] [Accepted: 04/01/2021] [Indexed: 11/02/2023] Open
Abstract
Introduction Maintenance of neurogenesis depends on the function of some histone-modifying enzymes; including Enhancer of zeste homolog 2 (EZH2) and histone acetyltransferases (P300). The mechanism of epigenetic regulation and gene expression underlying the transition of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) into MNs has not been fully clarified. Methods Two morphogens; sonic hedgehog (Shh: 100 ng/mL) and retinoic acid (RA: 0.01 mM) were involved in the specification of hUCB-MSCs into MNs after MSC characterization using Flow cytometry. Real time-quantitative PCR and immunocytochemistry were performed to find the expression of the genes at the level of mRNA and protein. Results The expression of MN-related markers was confirmed at the level of mRNA and protein by induction of differentiation. The results were confirmed by immunocytochemistry and showed those mean cell percentages of 55.33%±15.885% and 49.67%±13.796% could express Islet-1 and ChAT, respectively. The gene expression level of Islet-1 and ChAT was significantly increased in the first and second week of exposure, respectively. After two weeks, the expression level of P300 and EZH-2 genes increased remarkably. No significant expression of Mnx-1 was detected when compared to the control sample. Conclusion MN-related markers, Islet-1 and ChAT, were detected in differentiated cells of hUCB-MSCs, supporting the potency of cord blood cells in the regeneration of MN-related disorders. Assessing these epigenetic regulatory genes at the protein level can be suggested to confirm their functional epigenetic modifying effects during motor neuron differentiation.
Collapse
Affiliation(s)
- Marjaneh Motaghed
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Sanooghi
- Department of Genetics, School of Biological Sciences, Shahid Beheshti University, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Lotfi
- Damavand Agricultural College, Technical and Vocational University, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Mora A, Rakar J, Cobeta IM, Salmani BY, Starkenberg A, Thor S, Bodén M. Variational autoencoding of gene landscapes during mouse CNS development uncovers layered roles of Polycomb Repressor Complex 2. Nucleic Acids Res 2022; 50:1280-1296. [PMID: 35048973 PMCID: PMC8860581 DOI: 10.1093/nar/gkac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
A prominent aspect of most, if not all, central nervous systems (CNSs) is that anterior regions (brain) are larger than posterior ones (spinal cord). Studies in Drosophila and mouse have revealed that Polycomb Repressor Complex 2 (PRC2), a protein complex responsible for applying key repressive histone modifications, acts by several mechanisms to promote anterior CNS expansion. However, it is unclear what the full spectrum of PRC2 action is during embryonic CNS development and how PRC2 intersects with the epigenetic landscape. We removed PRC2 function from the developing mouse CNS, by mutating the key gene Eed, and generated spatio-temporal transcriptomic data. To decode the role of PRC2, we developed a method that incorporates standard statistical analyses with probabilistic deep learning to integrate the transcriptomic response to PRC2 inactivation with epigenetic data. This multi-variate analysis corroborates the central involvement of PRC2 in anterior CNS expansion, and also identifies several unanticipated cohorts of genes, such as proliferation and immune response genes. Furthermore, the analysis reveals specific profiles of regulation via PRC2 upon these gene cohorts. These findings uncover a differential logic for the role of PRC2 upon functionally distinct gene cohorts that drive CNS anterior expansion. To support the analysis of emerging multi-modal datasets, we provide a novel bioinformatics package that integrates transcriptomic and epigenetic datasets to identify regulatory underpinnings of heterogeneous biological processes.
Collapse
Affiliation(s)
- Ariane Mora
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jonathan Rakar
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Ignacio Monedero Cobeta
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
- Department of Physiology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Behzad Yaghmaeian Salmani
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 65 Stockholm, Sweden
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Sanooghi D, Vahdani P, Bagher Z, Faghihi F, Lotfi A. In vitro characterization of human bone marrow mesenchymal stem cell-derived motor neurons induced by epigenetic modifiers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Motor neurons (MNs) are distinct types of cells in the dorso-ventral axis of the spinal cord. These cells are developed in the presence of two main morphogens, including Sonic hedgehog (Shh) and retinoic acid (RA). On the other hand, human bone marrow mesenchymal stem cells (hBM-MSCs) are known as a multipotent type of cells with neural differentiation capacity. In this regard, the aim of this study was to quantitatively evaluate the expression of MN-related genes and the potent epigenetic regulatory genes involved in neurogenesis, including Enhancer of zeste homolog 2 (EZH-2) and P300, during hBM-MSC differentiation into MN-like cells, using RA and Shh. After isolating and inducing the cells with Shh and RA, the results were evaluated using immunocytochemistry and qRT-PCR.
Results
Our findings showed that the treated cells could express choline acetyltransferase (ChAT) and insulin gene enhancer binding protein-1 (Islet-1) antigens at the protein level, 2 weeks after induction. Moreover, at the second week after induction, the induced cells expressed MN-related genes (ChAT and ISLET-1) and epigenetic regulatory genes (EZH-2 and P300) at significant levels compared to the control (non-treated BM-MSCs) and to the induced cells at the first week (day 7). In addition, the expression of EZH-2, as a histone-modifying gene, was also significantly upregulated at the first week compared to the control. No significant upregulation was detected in the expression of motor neuron and pancreas homeobox 1 (MNX-1) in the treated groups compared to the control group.
Conclusion
We concluded that epigenetic modifiers, P300 and EZH-2, are important mediators for regulating the process of motor neuron differentiation induced by RA and Shh.
Collapse
|
11
|
Appel LM, Franke V, Bruno M, Grishkovskaya I, Kasiliauskaite A, Kaufmann T, Schoeberl UE, Puchinger MG, Kostrhon S, Ebenwaldner C, Sebesta M, Beltzung E, Mechtler K, Lin G, Vlasova A, Leeb M, Pavri R, Stark A, Akalin A, Stefl R, Bernecky C, Djinovic-Carugo K, Slade D. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC. Nat Commun 2021; 12:6078. [PMID: 34667177 PMCID: PMC8526623 DOI: 10.1038/s41467-021-26360-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Vedran Franke
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Melania Bruno
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Aiste Kasiliauskaite
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tanja Kaufmann
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ursula E Schoeberl
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Sebastian Kostrhon
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Carmen Ebenwaldner
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Marek Sebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Etienne Beltzung
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Gen Lin
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Martin Leeb
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Altuna Akalin
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Carrie Bernecky
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dea Slade
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Eto H, Kishi Y. Brain regionalization by Polycomb-group proteins and chromatin accessibility. Bioessays 2021; 43:e2100155. [PMID: 34536032 DOI: 10.1002/bies.202100155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022]
Abstract
During brain development, neural precursor cells (NPCs) in different brain regions produce different types of neurons, and each of these regions plays a different role in the adult brain. Therefore, precise regionalization is essential in the early stages of brain development, and irregular regionalization has been proposed as the cause of neurodevelopmental disorders. The mechanisms underlying brain regionalization have been well studied in terms of morphogen-induced expression of critical transcription factors for regionalization. NPC potential in different brain regions is defined by chromatin structures that regulate the plasticity of gene expression. Herein, we present recent findings on the importance of chromatin structure in brain regionalization, particularly with respect to its regulation by Polycomb-group proteins and chromatin accessibility.
Collapse
Affiliation(s)
- Hikaru Eto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Esmail S, Danter WR. Artificially Induced Pluripotent Stem Cell-Derived Whole-Brain Organoid for Modelling the Pathophysiology of Metachromatic Leukodystrophy and Drug Repurposing. Biomedicines 2021; 9:biomedicines9040440. [PMID: 33923989 PMCID: PMC8073899 DOI: 10.3390/biomedicines9040440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is a rare neurodegenerative disease that results from a deficiency of the lysosomal enzyme arylsulfatase A (ARSA). Worldwide, there are between one in 40,000 and one in 160,000 people living with the disease. While there are currently no effective treatments for MLD, induced pluripotent stem cell-derived brain organoids have the potential to provide a better understanding of MLD pathogenesis. However, developing brain organoid models is expensive, time consuming and may not accurately reflect disease progression. Using accurate and inexpensive computer simulations of human brain organoids could overcome the current limitations. Artificially induced whole-brain organoids (aiWBO) have the potential to greatly expand our ability to model MLD and guide future wet lab research. In this study, we have upgraded and validated our artificially induced whole-brain organoid platform (NEUBOrg) using our previously validated machine learning platform, DeepNEU (v6.2). Using this upgraded NEUBorg, we have generated aiWBO simulations of MLD and provided a novel approach to evaluate factors associated with MLD pathogenesis, disease progression and new potential therapeutic options.
Collapse
|
14
|
Esmail S, Danter WR. NEUBOrg: Artificially Induced Pluripotent Stem Cell-Derived Brain Organoid to Model and Study Genetics of Alzheimer's Disease Progression. Front Aging Neurosci 2021; 13:643889. [PMID: 33708104 PMCID: PMC7940675 DOI: 10.3389/fnagi.2021.643889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative diseases. There are over 44 million people living with the disease worldwide. While there are currently no effective treatments for AD, induced pluripotent stem cell-derived brain organoids have the potential to provide a better understanding of Alzheimer's pathogenesis. Nevertheless, developing brain organoid models is expensive, time consuming and often does not reflect disease progression. Using accurate and inexpensive computer simulations of human brain organoids can overcome the current limitations. Induced whole brain organoids (aiWBO) will greatly expand our ability to model AD and can guide wet lab research. In this study, we have successfully developed and validated artificially induced a whole brain organoid platform (NEUBOrg) using our previously validated machine learning platform, DeepNEU (v6.1). Using NEUBorg platform, we have generated aiWBO simulations of AD and provided a novel approach to test genetic risk factors associated with AD progression and pathogenesis.
Collapse
|
15
|
Li X, Ji G, Zhou J, Du J, Li X, Shi W, Hu Y, Zhou W, Hao A. Pcgf1 Regulates Early Neural Tube Development Through Histone Methylation in Zebrafish. Front Cell Dev Biol 2021; 8:581636. [PMID: 33575252 PMCID: PMC7870693 DOI: 10.3389/fcell.2020.581636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
The neural induction constitutes the initial step in the generation of the neural tube. Pcgf1, as one of six Pcgf paralogs, is a maternally expressed gene, but its role and mechanism in early neural induction during neural tube development have not yet been explored. In this study, we found that zebrafish embryos exhibited a small head and reduced or even absence of telencephalon after inhibiting the expression of Pcgf1. Moreover, the neural induction process of zebrafish embryos was abnormally activated, and the subsequent NSC self-renewal was inhibited after injecting the Pcgf1 MO. The results of in vitro also showed that knockdown of Pcgf1 increased the expression levels of the neural markers Pax6, Pou3f1, and Zfp521, but decreased the expression levels of the pluripotent markers Oct4, Hes1, and Nanog, which further confirmed that Pcgf1 was indispensable for maintaining the pluripotency of P19 cells. To gain a better understanding of the role of Pcgf1 in early development, we analyzed mRNA profiles from Pcgf1-deficient P19 cells using RNA-seq. We found that the differentially expressed genes were enriched in many functional categories, which related to the development phenotype, and knockdown of Pcgf1 increased the expression of histone demethylases. Finally, our results showed that Pcgf1 loss-of-function decreased the levels of transcriptional repression mark H3K27me3 at the promoters of Ngn1 and Otx2, and the levels of transcriptional activation mark H3K4me3 at the promoters of Pou5f3 and Nanog. Together, our findings reveal that Pcgf1 might function as both a facilitator for pluripotent maintenance and a repressor for neural induction.
Collapse
Affiliation(s)
- Xinyue Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangyu Ji
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xian Li
- Department of Foot and Ankle Surgery, Cheeloo College of Medicine, The Second Hospital, Shandong University, Jinan, China
| | - Wei Shi
- Department of Blood Transfusion, Qilu Hospital of Shandong University, Jinan, China
| | - Yong Hu
- Department of Foot and Ankle Surgery, Cheeloo College of Medicine, The Second Hospital, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Sanders LM, Cheney A, Seninge L, van den Bout A, Chen M, Beale HC, Kephart ET, Pfeil J, Learned K, Lyle AG, Bjork I, Haussler D, Salama SR, Vaske OM. Identification of a differentiation stall in epithelial mesenchymal transition in histone H3-mutant diffuse midline glioma. Gigascience 2020; 9:giaa136. [PMID: 33319914 PMCID: PMC7736793 DOI: 10.1093/gigascience/giaa136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 11/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diffuse midline gliomas with histone H3 K27M (H3K27M) mutations occur in early childhood and are marked by an invasive phenotype and global decrease in H3K27me3, an epigenetic mark that regulates differentiation and development. H3K27M mutation timing and effect on early embryonic brain development are not fully characterized. RESULTS We analyzed multiple publicly available RNA sequencing datasets to identify differentially expressed genes between H3K27M and non-K27M pediatric gliomas. We found that genes involved in the epithelial-mesenchymal transition (EMT) were significantly overrepresented among differentially expressed genes. Overall, the expression of pre-EMT genes was increased in the H3K27M tumors as compared to non-K27M tumors, while the expression of post-EMT genes was decreased. We hypothesized that H3K27M may contribute to gliomagenesis by stalling an EMT required for early brain development, and evaluated this hypothesis by using another publicly available dataset of single-cell and bulk RNA sequencing data from developing cerebral organoids. This analysis revealed similarities between H3K27M tumors and pre-EMT normal brain cells. Finally, a previously published single-cell RNA sequencing dataset of H3K27M and non-K27M gliomas revealed subgroups of cells at different stages of EMT. In particular, H3.1K27M tumors resemble a later EMT stage compared to H3.3K27M tumors. CONCLUSIONS Our data analyses indicate that this mutation may be associated with a differentiation stall evident from the failure to proceed through the EMT-like developmental processes, and that H3K27M cells preferentially exist in a pre-EMT cell phenotype. This study demonstrates how novel biological insights could be derived from combined analysis of several previously published datasets, highlighting the importance of making genomic data available to the community in a timely manner.
Collapse
Affiliation(s)
- Lauren M Sanders
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Allison Cheney
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Lucas Seninge
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anouk van den Bout
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Marissa Chen
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Holly C Beale
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Ellen Towle Kephart
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Jacob Pfeil
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Katrina Learned
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - A Geoffrey Lyle
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Isabel Bjork
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Olena M Vaske
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
17
|
Eto H, Kishi Y, Yakushiji-Kaminatsui N, Sugishita H, Utsunomiya S, Koseki H, Gotoh Y. The Polycomb group protein Ring1 regulates dorsoventral patterning of the mouse telencephalon. Nat Commun 2020; 11:5709. [PMID: 33177537 PMCID: PMC7658352 DOI: 10.1038/s41467-020-19556-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
Dorsal-ventral patterning of the mammalian telencephalon is fundamental to the formation of distinct functional regions including the neocortex and ganglionic eminence. While Bone morphogenetic protein (BMP), Wnt, and Sonic hedgehog (Shh) signaling are known to determine regional identity along the dorsoventral axis, how the region-specific expression of these morphogens is established remains unclear. Here we show that the Polycomb group (PcG) protein Ring1 contributes to the ventralization of the mouse telencephalon. Deletion of Ring1b or both Ring1a and Ring1b in neuroepithelial cells induces ectopic expression of dorsal genes, including those for BMP and Wnt ligands, as well as attenuated expression of the gene for Shh, a key morphogen for ventralization, in the ventral telencephalon. We observe PcG protein–mediated trimethylation of histone 3 at lysine-27 and binding of Ring1B at BMP and Wnt ligand genes specifically in the ventral region. Furthermore, forced activation of BMP or Wnt signaling represses Shh expression. Our results thus indicate that PcG proteins suppress BMP and Wnt signaling in a region-specific manner and thereby allow proper Shh expression and development of the ventral telencephalon. NCOMMS-19-38235B Dorsal-ventral patterning of the mammalian telencephalon is fundamental to the formation of distinct functional regions. Here, the authors find that PcG proteins suppress BMP and Wnt signaling in a region-specific manner, allowing for proper Shh expression and development of the ventral telencephalon.
Collapse
Affiliation(s)
- Hikaru Eto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Nayuta Yakushiji-Kaminatsui
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hiroki Sugishita
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shun Utsunomiya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-0033, Japan.,Neuroscience 2, Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd.; Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
18
|
Ybx1 fine-tunes PRC2 activities to control embryonic brain development. Nat Commun 2020; 11:4060. [PMID: 32792512 PMCID: PMC7426271 DOI: 10.1038/s41467-020-17878-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 07/22/2020] [Indexed: 01/28/2023] Open
Abstract
Chromatin modifiers affect spatiotemporal gene expression programs that underlie organismal development. The Polycomb repressive complex 2 (PRC2) is a crucial chromatin modifier in executing neurodevelopmental programs. Here, we find that PRC2 interacts with the nucleic acid-binding protein Ybx1. In the mouse embryo in vivo, Ybx1 is required for forebrain specification and restricting mid-hindbrain growth. In neural progenitor cells (NPCs), Ybx1 controls self-renewal and neuronal differentiation. Mechanistically, Ybx1 highly overlaps PRC2 binding genome-wide, controls PRC2 distribution, and inhibits H3K27me3 levels. These functions are consistent with Ybx1-mediated promotion of genes involved in forebrain specification, cell proliferation, or neuronal differentiation. In Ybx1-knockout NPCs, H3K27me3 reduction by PRC2 enzymatic inhibitor or genetic depletion partially rescues gene expression and NPC functions. Our findings suggest that Ybx1 fine-tunes PRC2 activities to regulate spatiotemporal gene expression in embryonic neural development and uncover a crucial epigenetic mechanism balancing forebrain-hindbrain lineages and self-renewal-differentiation choices in NPCs.
Collapse
|
19
|
Nehila T, Ferguson JW, Atit RP. Polycomb Repressive Complex 2: a Dimmer Switch of Gene Regulation in Calvarial Bone Development. Curr Osteoporos Rep 2020; 18:378-387. [PMID: 32748325 PMCID: PMC7467536 DOI: 10.1007/s11914-020-00603-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Epigenetic regulation is a distinct mechanism of gene regulation that functions by modulating chromatin structure and accessibility. Polycomb Repressive Complex 2 (PRC2) is a conserved chromatin regulator that is required in the developing embryo to control the expression of key developmental genes. An emerging feature of PRC2 is that it not only allows for binary ON/OFF states of gene expression but can also modulate gene expression in feed-forward loops to change the outcome of gene regulatory networks. This striking feature of epigenetic modulation has improved our understanding of musculoskeletal development. RECENT FINDINGS Recent advances in mouse embryos unravel a range of phenotypes that demonstrate the tissue-specific, temporal, and spatial role of PRC2 during organogenesis and cell fate decisions in vivo. Here, we take a detailed view of how PRC2 functions during the development of calvarial bone and skin. Based on the emerging evidence, we propose that PRC2 serves as a "dimmer switch" to modulate gene expression of target genes by altering the expression of activators and inhibitors. This review highlights the findings from contemporary research that allow us to investigate the unique developmental potential of intramembranous calvarial bones.
Collapse
Affiliation(s)
- Timothy Nehila
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - James W Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
20
|
Mortimer T, Wainwright EN, Patel H, Siow BM, Jaunmuktane Z, Brandner S, Scaffidi P. Redistribution of EZH2 promotes malignant phenotypes by rewiring developmental programmes. EMBO Rep 2019; 20:e48155. [PMID: 31468686 PMCID: PMC6776892 DOI: 10.15252/embr.201948155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
Epigenetic regulators are often hijacked by cancer cells to sustain malignant phenotypes. How cells repurpose key regulators of cell identity as tumour-promoting factors is unclear. The antithetic role of the Polycomb component EZH2 in normal brain and glioma provides a paradigm to dissect how wild-type chromatin modifiers gain a pathological function in cancer. Here, we show that oncogenic signalling induces redistribution of EZH2 across the genome, and through misregulation of homeotic genes corrupts the identity of neural cells. Characterisation of EZH2 targets in de novo transformed cells, combined with analysis of glioma patient datasets and cell lines, reveals that acquisition of tumorigenic potential is accompanied by a transcriptional switch involving de-repression of spinal cord-specifying HOX genes and concomitant silencing of the empty spiracles homologue EMX2, a critical regulator of neurogenesis in the forebrain. Maintenance of tumorigenic potential by glioblastoma cells requires EMX2 repression, since forced EMX2 expression prevents tumour formation. Thus, by redistributing EZH2 across the genome, cancer cells subvert developmental transcriptional programmes that specify normal cell identity and remove physiological breaks that restrain cell proliferation.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromatin/metabolism
- DNA Methylation/genetics
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Gene Expression Regulation, Neoplastic
- Genes, Homeobox
- Glioma/genetics
- Glioma/pathology
- Humans
- Male
- Mice, Inbred NOD
- Models, Biological
- Phenotype
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Thomas Mortimer
- Cancer Epigenetics LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Harshil Patel
- Bioinformatics and BiostatisticsThe Francis Crick InstituteLondonUK
| | | | - Zane Jaunmuktane
- Department of Clinical and Movement NeurosciencesQueen Square Brain BankUCL Queen Square Institute of NeurologyLondonUK
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Sebastian Brandner
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Paola Scaffidi
- Cancer Epigenetics LaboratoryThe Francis Crick InstituteLondonUK
- UCL Cancer InstituteUniversity College LondonLondonUK
| |
Collapse
|
21
|
Gu X, Xu Y, Xue WZ, Wu Y, Ye Z, Xiao G, Wang HL. Interplay of miR-137 and EZH2 contributes to the genome-wide redistribution of H3K27me3 underlying the Pb-induced memory impairment. Cell Death Dis 2019; 10:671. [PMID: 31511494 PMCID: PMC6739382 DOI: 10.1038/s41419-019-1912-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 01/20/2023]
Abstract
Compromised learning and memory is a common feature of multiple neurodegenerative disorders. A paradigm spatial memory impairment could be caused by developmental lead (Pb) exposure. Growing evidence implicates epigenetic modifications in the Pb-mediated memory deficits; however, how histone modifications exemplified by H3K27me3 (H3 Lys27 trimethylation) contribute to this pathogenesis remains poorly understood. Here we found that Pb exposure diminished H3K27me3 levels in vivo by suppressing EZH2 (enhancer of zeste homolog 2) expression at an early stage. EZH2 overexpression in Pb-treated rats rescued the H3K27me3 abundance and partially restored the normal spatial memory, as manifested by the rat performance in a Morris water maze test, and structural analysis of hippocampal spine densities. Furthermore, miR-137 and EZH2 constitute mutually inhibitory loop to regulate the H3K27me3 level, and this feedback regulation could be specifically activated by Pb treatment. Considering genes targeted by H3K27me3, ChIP-chip (chromatin immunoprecipitation on chip) studies revealed that Pb could remodel the genome-wide distribution of H3K27me3, represented by pathways like transcriptional regulation, developmental regulation, cell motion, and apoptosis, as well as a novel Wnt9b locus. As a Wnt isoform associated with canonical and noncanonical signaling, Wnt9b was regulated by the opposite modifications of H3K4me3 (H3 Lys4 trimethylation) and H3K27me3 in Pb-exposed neurons. Rescue trials further validated the contribution of Wnt9b to Pb-induced neuronal impairments, wherein canonical or noncanonical Wnt signaling potentially exhibited destructive or protective roles, respectively. In summary, the study reveals an epigenetic-based molecular change underlying Pb-triggered spatial memory deficits, and provides new potential avenues for our understanding of neurodegenerative diseases with environmental etiology.
Collapse
Affiliation(s)
- Xiaozhen Gu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yi Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wei-Zhen Xue
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yulan Wu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Zi Ye
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100022, People's Republic of China
| | - Guiran Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| | - Hui-Li Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| |
Collapse
|
22
|
Linscott ML, Chung WCJ. TET1 regulates fibroblast growth factor 8 transcription in gonadotropin releasing hormone neurons. PLoS One 2019; 14:e0220530. [PMID: 31361780 PMCID: PMC6667164 DOI: 10.1371/journal.pone.0220530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the ontogenesis of gonadotropin-releasing hormone (GnRH) neurons, which control the hypothalamus-pituitary-gonadal (HPG) axis, and therefore reproductive success. Indeed, FGF8 and FGFR1 deficiency severely compromises vertebrate reproduction in mice and humans and is associated with Kallmann Syndrome (KS), a congenital disease characterized by hypogonadotropic hypogonadism associated with anosmia. Our laboratory demonstrated that FGF8 signaling through FGFR1, both of which are KS-related genes, is necessary for proper GnRH neuron development in mice and humans. Here, we investigated the possibility that non-genetic factors, such as the epigenome, may contribute to KS onset. For this purpose, we developed an embryonic explant model, utilizing the mouse olfactory placode (OP), the birthplace of GnRH neurons. We show that TET1, which converts 5-methylcytosine residues (5mC) to 5-hydroxymethylated cytosines (5hmC), controls transcription of Fgf8 during GnRH neuron ontogenesis. Through MeDIP and ChIP RT-qPCR we found that TET1 bound to specific CpG islands on the Fgf8 promoter. We found that the temporal expression of Fgf8 correlates with not only TET1 binding, but also with 5hmC enrichment. siRNA knockdown of Tet1 reduced Fgf8 and Fgfr1 mRNA expression. During this time period, Fgf8 also switched histone status, most likely via recruitment of EZH2, a major component of the polycomb repressor complex-2 (PRC2) at E13.5. Together, these studies underscore the significance of epigenetics and chromatin modifications to temporally regulated genes involved in KS.
Collapse
Affiliation(s)
- Megan L. Linscott
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Wilson C. J. Chung
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
23
|
Xue H, Xu Y, Wang S, Wu ZY, Li XY, Zhang YH, Niu JY, Gao QS, Zhao P. Sevoflurane post-conditioning alleviates neonatal rat hypoxic-ischemic cerebral injury via Ezh2-regulated autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1691-1706. [PMID: 31190748 PMCID: PMC6528650 DOI: 10.2147/dddt.s197325] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Background: When neonatal rats suffer hypoxic-ischemic brain injury (HIBI), autophagy is over-activated in the hippocampus, and inhibition of autophagy provides neuroprotection. The aim of this study was to investigate the possible roles of autophagy and Ezh2-regulated Pten/Akt/mTOR pathway in sevoflurane post-conditioning (SPC)-mediated neuroprotection against HIBI in neonatal rats. Methods: Seven-day-old Sprague–Dawley rats underwent left common artery ligation followed by 2 h hypoxia as described in the Rice–Vannucci model. The roles of autophagy and the Ezh2-regulated Pten/Akt/mTOR signaling pathway in the neuroprotection conferred by SPC were examined by left-side intracerebroventricular injection with the autophagy activator rapamycin and the Ezh2 inhibitor GSK126. Results: SPC was neuroprotective against HIBI through the inhibition of over-activated autophagy in the hippocampus as characterized by the rapamycin-induced reversal of neuronal density, neuronal morphology, cerebral morphology, and the expression of the autophagy markers, LC3B-II and Beclin1. SPC significantly increased the expression of Ezh2, H3K27me3, pAkt, and mTOR and decreased the expression of Pten induced by HI. The Ezh2 inhibitor, GSK126, significantly reversed the SPC-induced changes in expression of H3K27me3, Pten, pAkt, mTOR, LC3B-II, and Beclin1. Ezh2 inhibition also reversed SPC-mediated attenuation of neuronal loss and behavioral improvement in the Morris water maze. Conclusion: These results indicate that SPC inhibits excessive autophagy via the regulation of Pten/Akt/mTOR signaling by Ezh2 to confer neuroprotection against HIBI in neonatal rats.
Collapse
Affiliation(s)
- Hang Xue
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Shuo Wang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Zi-Yi Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Xing-Yue Li
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Ya-Han Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Jia-Yuan Niu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Qiu-Shi Gao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
24
|
Hong F, Zhao M, Zhang L, Feng L. Inhibition of Ezh2 In Vitro and the Decline of Ezh2 in Developing Midbrain Promote Dopaminergic Neurons Differentiation Through Modifying H3K27me3. Stem Cells Dev 2019; 28:649-658. [PMID: 30887911 DOI: 10.1089/scd.2018.0258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epigenetic modifications play an important role in neural development. Trimethylated histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic marker that mediates tissue development. In this study, we demonstrate that H3K27me3 and histone methyl transferase Ezh2 regulated the development of dopaminergic (DA) neurons in vitro and in vivo. We found that H3K27me3 increased during differentiation of ventral midbrain-derived neural stem cells (VM-NSCs). However, histone demethylase selective inhibitor GSK-J1 increased H3K27me3 level and decreased the expression of tyrosine hydroxylase. Treated with Ezh2-selective inhibitor EPZ005687 repressed the trimethylation of H3K27 and enhanced differentiation of DA neurons in VM-NSCs cultures. Furthermore, Ezh2 inhibition promoted the expression of DA neurons developmental-related factors by modifying H3K27 trimethylation on the relevant promoter regions. Moreover, the effect of Ezh2 inhibition-mediated DA neurons differentiation was blocked by the expression of shRNA specific for Nurr1. In vivo, Ezh2 decreased and resulted in a reduction of H3K27me3 in developing midbrain. Deletion of Ezh2 by RNA interference approach promoted differentiation of DA neurons during midbrain development. Overexpression of Ezh2 enhanced cell self-renewal and did not affect differentiation of DA neurons.
Collapse
Affiliation(s)
- Feng Hong
- 1 CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China.,2 Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing, China
| | - Mengxue Zhao
- 1 CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China.,2 Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- 1 CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Linyin Feng
- 1 CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China.,2 Department of Neuropharmacology, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Wever I, Wagemans CMRJ, Smidt MP. EZH2 Is Essential for Fate Determination in the Mammalian Isthmic Area. Front Mol Neurosci 2019; 12:76. [PMID: 31024250 PMCID: PMC6465967 DOI: 10.3389/fnmol.2019.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/11/2019] [Indexed: 11/25/2022] Open
Abstract
The polycomb group proteins (PcGs) are a group of epigenetic factors associated with gene silencing. They are found in several families of multiprotein complexes, including polycomb repressive complex 2 (PRC2). EZH2, EED and SUZ12 form the core components of the PRC2 complex, which is responsible for the mono, di- and trimethylation of lysine 27 of histone 3 (H3K27Me3), the chromatin mark associated with gene silencing. Loss-of-function studies of Ezh2, the catalytic subunit of PRC2, have shown that PRC2 plays a role in regulating developmental transitions of neuronal progenitor cells (NPCs); from self-renewal to differentiation and the neurogenic-to-gliogenic fate switch. To further address the function of EZH2 and H3K27me3 during neuronal development, we generated a conditional mutant in which Ezh2 was removed in the mammalian isthmic (mid-hindbrain) region from E10.5 onward. Loss of Ezh2 changed the molecular coding of the anterior ventral hindbrain leading to a fate switch and the appearance of ectopic dopaminergic (DA) neurons. The correct specification of the isthmic region is dependent on the signaling factors produced by the Isthmic organizer (IsO), located at the border of the mid- and hindbrain. We propose that the change of cellular fate is a result of the presence of Otx2 in the hindbrain of Ezh2 conditional knock-outs (cKOs) and a dysfunctional IsO, as represented by the loss of Fgf8 and Wnt1. Our work implies that next to controlling developmental transitions, EZH2 mediated gene silencing is important for specification of the isthmic region by influencing IsO functioning and repressing Otx2 in the hindbrain.
Collapse
Affiliation(s)
- Iris Wever
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Cindy M R J Wagemans
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Wever I, von Oerthel L, Wagemans CMRJ, Smidt MP. EZH2 Influences mdDA Neuronal Differentiation, Maintenance and Survival. Front Mol Neurosci 2019; 11:491. [PMID: 30705619 PMCID: PMC6344421 DOI: 10.3389/fnmol.2018.00491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Over the last decade several components have been identified to be differentially expressed in subsets of mesodiencephalic dopaminergic (mdDA) neurons. These differences in molecular profile have been implied to be involved in the selective degeneration of the SNc neurons in Parkinson’s disease. The emergence and maintenance of individual subsets is dependent on different transcriptional programs already present during development. In addition to the influence of transcription factors, recent studies have led to the hypothesis that modifications of histones might also influence the developmental program of neurons. In this study we focus on the histone methyltransferase EZH2 and its role in the development and maintenance of mdDA neurons. We generated two different conditional knock out (cKO) mice; an En1Cre driven cKO, for deletion of Ezh2 in mdDA progenitors and a Pitx3Cre driven cKO, to study the effect of post-mitotic deletion of Ezh2 on mdDA neurons maturation and neuronal survival. During development Ezh2 was found to be important for the generation of the proper amount of TH+ neurons. The loss of neurons primarily affected a rostrolateral population, which is also reflected in the analysis of the subset marks, Ahd2 and Cck. In contrast to early genetic ablation, post-mitotic deletion of Ezh2 did not lead to major developmental defects at E14.5. However, in 6 months old animals Cck was found ectopically in the rostral domain of mdDA neurons and Ahd2 expression was reduced in more mediocaudal positioned cells. In addition, Pitx3Cre driven deletion of Ezh2 led to a progressive loss of TH+ cells in the VTA and these animals display reduced climbing behavior. Together, our data demonstrates that Ezh2 is important for the generation of mdDA neurons during development and that during adult stages Ezh2 is important for the preservation of proper neuronal subset identity and survival.
Collapse
Affiliation(s)
- Iris Wever
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Lars von Oerthel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Cindy M R J Wagemans
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Abstract
Epigenetic mechanisms, including DNA and histone modifications, are pivotal for normal brain development and functions by modulating spatial and temporal gene expression. Dysregulation of the epigenetic machinery can serve as a causal role in numerous brain disorders. Proper mammalian brain development and functions depend on the precise expression of neuronal-specific genes, transcription factors and epigenetic modifications. Antagonistic polycomb and trithorax proteins form multimeric complexes and play important roles in these processes by epigenetically controlling gene repression or activation through various molecular mechanisms. Aberrant expression or disruption of either protein group can contribute to neurodegenerative diseases. This review focus on the current progress of Polycomb and Trithorax complexes in brain development and disease, and provides a future outlook of the field.
Collapse
|
28
|
Kim H, Langohr IM, Faisal M, McNulty M, Thorn C, Kim J. Ablation of Ezh2 in neural crest cells leads to aberrant enteric nervous system development in mice. PLoS One 2018; 13:e0203391. [PMID: 30169530 PMCID: PMC6118393 DOI: 10.1371/journal.pone.0203391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022] Open
Abstract
In the current study, we examined the role of Ezh2 as an epigenetic modifier for the enteric neural crest cell development through H3K27me3. Ezh2 conditional null mice were viable up to birth, but died within the first hour of life. In addition to craniofacial defects, Ezh2 conditional null mice displayed reduced number of ganglion cells in the enteric nervous system. RT-PCR and ChIP assays indicated aberrant up-regulation of Zic1, Pax3, and Sox10 and loss of H3K27me3 marks in the promoter regions of these genes in the myenteric plexus. Overall, these results suggest that Ezh2 is an important epigenetic modifier for the enteric neural crest cell development through repression of Zic1, Pax3, and Sox10.
Collapse
Affiliation(s)
- Hana Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ingeborg M. Langohr
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mohammad Faisal
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Margaret McNulty
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Caitlin Thorn
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
29
|
PRC2 Is Dispensable in Vivo for β-Catenin-Mediated Repression of Chondrogenesis in the Mouse Embryonic Cranial Mesenchyme. G3-GENES GENOMES GENETICS 2018; 8:491-503. [PMID: 29223978 PMCID: PMC5919733 DOI: 10.1534/g3.117.300311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A hallmark of craniofacial development is the differentiation of multiple cell lineages in close proximity to one another. The mouse skull bones and overlying dermis are derived from the cranial mesenchyme (CM). Cell fate selection of the embryonic cranial bone and dermis in the CM requires Wnt/β-catenin signaling, and loss of β-catenin leads to an ectopic chondrogenic cell fate switch. The mechanism by which Wnt/β-catenin activity suppresses the cartilage fate is unclear. Upon conditional deletion of β-catenin in the CM, several key determinants of the cartilage differentiation program, including Sox9, become differentially expressed. Many of these differentially expressed genes are known targets of the Polycomb Repressive Complex 2 (PRC2). Thus, we hypothesized that PRC2 is required for Wnt/β-catenin-mediated repression of chondrogenesis in the embryonic CM. We find that β-catenin can physically interact with PRC2 components in the CM in vivo. However, upon genetic deletion of Enhancer of Zeste homolog 2 (EZH2), the catalytic component of PRC2, chondrogenesis remains repressed and the bone and dermis cell fate is preserved in the CM. Furthermore, loss of β-catenin does not alter either the H3K27me3 enrichment levels genome-wide or on cartilage differentiation determinants, including Sox9. Our results indicate that EZH2 is not required to repress chondrogenesis in the CM downstream of Wnt/β-catenin signaling.
Collapse
|
30
|
Yaghmaeian Salmani B, Monedero Cobeta I, Rakar J, Bauer S, Curt JR, Starkenberg A, Thor S. Evolutionarily conserved anterior expansion of the central nervous system promoted by a common PcG-Hox program. Development 2018. [DOI: 10.1242/dev.160747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A conserved feature of the central nervous system (CNS) is the prominent expansion of anterior regions (brain) when compared to posterior (nerve cord). The cellular and regulatory processes driving anterior CNS expansion are not well understood in any bilaterian species. Here, we address this expansion in Drosophila and mouse. We find that when compared to the nerve cord the brain, in both Drosophila and mouse, displays extended progenitor proliferation, more elaborate daughter cell proliferation and more rapid cell cycle speed. These features contribute to anterior CNS expansion in both species. With respect to genetic control, enhanced brain proliferation is severely reduced by ectopic Hox gene expression, by either Hox misexpression or by loss of Polycomb Group (PcG) function. Strikingly, in PcG mutants, early CNS proliferation appears unaffected, whereas subsequently, brain proliferation is severely reduced. Hence, a conserved PcG-Hox program promotes the anterior expansion of the CNS. The profound differences in proliferation and in the underlying genetic mechanisms between brain and nerve cord lend support to the emerging concept of separate evolutionary origins of these two CNS regions.
Collapse
Affiliation(s)
| | - Ignacio Monedero Cobeta
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| | - Jonathan Rakar
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| | - Susanne Bauer
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| | - Jesús Rodriguez Curt
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| | - Annika Starkenberg
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| | - Stefan Thor
- Dept. of Clinical and Experimental Medicine, Linkoping University, SE-58185, Linkoping, Sweden
| |
Collapse
|
31
|
Liu PP, Xu YJ, Teng ZQ, Liu CM. Polycomb Repressive Complex 2: Emerging Roles in the Central Nervous System. Neuroscientist 2017; 24:208-220. [DOI: 10.1177/1073858417747839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The polycomb repressive complex 2 (PRC2) is responsible for catalyzing both di- and trimethylation of histone H3 at lysine 27 (H3K27me2/3). The subunits of PRC2 are widely expressed in the central nervous system (CNS). PRC2 as well as H3K27me2/3, play distinct roles in neuronal identity, proliferation and differentiation of neural stem/progenitor cells, neuronal morphology, and gliogenesis. Mutations or dysregulations of PRC2 subunits often cause neurological diseases. Therefore, PRC2 might represent a common target of different pathological processes that drive neurodegenerative diseases. A better understanding of the intricate and complex regulatory networks mediated by PRC2 in CNS will help to develop new therapeutic approaches and to generate specific brain cell types for treating neurological diseases.
Collapse
Affiliation(s)
- Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System. J Neurosci 2017; 36:11427-11434. [PMID: 27911745 DOI: 10.1523/jneurosci.2492-16.2016] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 11/21/2022] Open
Abstract
Neuroepigenetics is a newly emerging field in neurobiology that addresses the epigenetic mechanism of gene expression regulation in various postmitotic neurons, both over time and in response to environmental stimuli. In addition to its fundamental contribution to our understanding of basic neuronal physiology, alterations in these neuroepigenetic mechanisms have been recently linked to numerous neurodevelopmental, psychiatric, and neurodegenerative disorders. This article provides a selective review of the role of DNA and histone modifications in neuronal signal-induced gene expression regulation, plasticity, and survival and how targeting these mechanisms could advance the development of future therapies. In addition, we discuss a recent discovery on how double-strand breaks of genomic DNA mediate the rapid induction of activity-dependent gene expression in neurons.
Collapse
|