1
|
Sun H, Hanson MA, Walsh SK, Imrie RM, Raymond B, Longdon B. Varying phylogenetic signal in susceptibility to four bacterial pathogens across species of Drosophilidae. Proc Biol Sci 2025; 292:20242239. [PMID: 40237085 PMCID: PMC12001086 DOI: 10.1098/rspb.2024.2239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/11/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Bacterial infections are a major threat to public health. Pathogen host shifts-where a pathogen jumps from one host species to another-are important sources of emerging infectious diseases. However, compared with viruses, we know relatively little about the factors that determine whether bacteria can infect a novel host, such as how host phylogenetics constrains variation in pathogen host range and the link between host phylogeny and the infectivity and virulence of a pathogen. Here, we experimentally examined susceptibility to bacterial infections using a panel of 36 Drosophilidae species and four pathogens (Providencia rettgeri, Pseudomonas entomophila, Enterococcus faecalis, Staphylococcus aureus). The outcomes of infection differed greatly among pathogens and across host species. The host phylogeny explains a considerable amount of variation in susceptibility, with the greatest phylogenetic signal for P. rettgeri infection, explaining 94% of the variation in mortality. Positive correlations were observed between mortality and bacterial load for three out of the four pathogens. Correlations in susceptibility between the four pathogens were positive but largely non-significant, suggesting susceptibility is mostly pathogen-specific. These results suggest that susceptibility to bacterial pathogens may be predicted by the host phylogeny, but the effect may vary in magnitude between different bacteria.
Collapse
Affiliation(s)
- Hongbo Sun
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Mark A. Hanson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Sarah K. Walsh
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
- Environment and Sustainability Institute, University of Exeter, Cornwall, UK
| | - Ryan M. Imrie
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall, UK
| |
Collapse
|
2
|
Adhikari K, Lazzaro BP. Reciprocal costs of infection and reproduction in Drosophila melanogaster. Biol Lett 2025; 21:20240475. [PMID: 39965650 PMCID: PMC11835491 DOI: 10.1098/rsbl.2024.0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Trade-offs occur when an organism has to allocate limited resources to multiple biological processes. How organisms allocate their resources and whether one trait gets priority over another is poorly understood. Prior work has shown that reproductive investment reduces the capacity of Drosophila melanogaster to mount an effective immune response against subsequent bacterial infection. However, it has not been tested whether the observed trade-off was unidirectional with reproductive fitness given primacy over immunity, or whether it might also occur in the reciprocal direction with an active prior immune response reducing reproductive output. In this work, we delivered bacterial infection to female D. melanogaster prior to mating and tested whether reproductive capacity became reduced. We found that infected females produced the same number of eggs as uninfected females, but the eggs from infected females exhibited lower survivorship to adulthood. Additionally, we found that mating destabilizes chronic bacterial infections, stimulating additional host death and increasing variance in pathogen burden. Together, our results suggest the cost of reproduction and infection in Drosophila females is reciprocal, regardless of the order in which they occur.
Collapse
Affiliation(s)
- Kiran Adhikari
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
3
|
Xu J, Tang Y, Jin Y, Ma T, Zhang C, Lou J, Tang B, Wang S. Knockdown of FAS2 Impairs Fecundity by Inhibiting Lipid Accumulation and Increasing Glycogen Storage in Locusta migratoria. INSECTS 2025; 16:120. [PMID: 40003750 PMCID: PMC11855270 DOI: 10.3390/insects16020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Fatty acid synthase (FAS) is a pivotal gene in the lipid synthesis pathway and plays a crucial role in insect energy metabolism. Locusta migratoria, as one of the major agricultural pests, requires identification of new targets to control or reduce its reproductive capacity for effective locust pest management strategies. In this study, we focused on L. migratoria and identified FAS2 as a potential target gene with functional significance in lipid metabolism and reproduction based on sequence characteristics analysis and tissue-expression patterns of five FAS genes. Subsequently, through RNA interference (RNAi) targeting FAS2 expression, we assessed alterations in lipid and carbohydrate metabolism-related gene expression levels, lipid and carbohydrate contents, ovarian development, and reproductive capacity using experimental techniques such as RT-qPCR, ELISA, and morphological observations. Our findings revealed that interference with FAS2 upregulated genes involved in lipid degradation, including Lsd-1, Lsd-2, Lipase3, and Brummer, while significantly decreasing the TAG content and fat accumulation. At the level of carbohydrate metabolism, FAS2 silencing led to significant upregulation of key genes TPS and GS in the synthesis pathway, resulting in increased glycogen and trehalose content. In addition, FAS2 interference resulted in a significant reduction of Vg mRNA expression level sand protein content in L. migratoria, followed by delayed ovarian development and reduced egg production. This further confirms that impaired FAS2 function prompts L. migratoria to enhance lipid degradation and sugar storage to maintain the energy balance, while reducing the energy investment into reproduction. Collectively, the results of this study suggest that FAS2 can serve as a novel molecular target for controlling L. migratoria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shigui Wang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Y.T.); (Y.J.); (T.M.); (C.Z.); (J.L.); (B.T.)
| |
Collapse
|
4
|
Ma T, Tang Y, Jin Y, Xu J, Zhao H, Zhou M, Tang B, Wang S. Fatty acid synthase 2 knockdown alters the energy allocation strategy between immunity and reproduction during infection by Micrococcus luteus in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106127. [PMID: 39477581 DOI: 10.1016/j.pestbp.2024.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 11/07/2024]
Abstract
Immunity and reproduction are vital functions for the survival and population maintenance of female insects. However, owing to limited resources, these two functions cannot be fulfilled simultaneously, resulting in an energy tradeoff between them. Notably, the mechanisms underlying this immune-reproductive trade-off, in which energy competition likely plays a central role, remain poorly understood. Fatty acid synthase (FAS), a key gene involved in lipid synthesis and insect energy metabolism, was investigated in this study using Locusta migratoria as the research subject. Bacterial infection and RNA interference (RNAi) technology were used to examine changes in the immunity, fecundity, and energy metabolism patterns of locusts under different treatments. The findings of this study demonstrate that infection with Micrococcus luteus triggers an immune response in locusts, significantly upregulates the expression of defensin 3 (DEF3) and Attacin, and enhances pHenoloxidase (PO) activity. Upon FAS2 silencing, bacterial attack upregulated DEF3 and Attacin expression to a lesser extent, leading to increased lysozyme activity instead of PO. Furthermore, bacterial infection results in a decrease in glycogen and glucose content in the fat body, accompanied by a significant increase in triacylglycerol (TAG) content. However, after FAS2 knockdown, both the lipid and carbohydrate contents were significantly reduced in the fat body. Compared with bacterial infection alone, low FAS2 expression further exacerbated fecundity impairment in locusts. The expression levels of vitellogenin A (VgA) and vitellogenin B (VgB) were significantly low, with severe ovarian atrophy observed. Notably, the ovarian weight was only 21 % compared to that of the control group. Moreover, females exhibited minimal egg-laying behavior. In summary, our findings suggest that following FAS2 gene silencing, there is a greater inclination toward immune stimulation energy activation in locusts, whereas reproductive investment is reduced. The outcomes of this study will contribute to the further exploration of the molecular mechanisms underlying the trade-off between immune and reproductive energy in locusts.
Collapse
Affiliation(s)
- Tingting Ma
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Ya Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yi Jin
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jiaying Xu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Huazhang Zhao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Min Zhou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
5
|
Parker J. Organ Evolution: Emergence of Multicellular Function. Annu Rev Cell Dev Biol 2024; 40:51-74. [PMID: 38960448 DOI: 10.1146/annurev-cellbio-111822-121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Instances of multicellularity across the tree of life have fostered the evolution of complex organs composed of distinct cell types that cooperate, producing emergent biological functions. How organs originate is a fundamental evolutionary problem that has eluded deep mechanistic and conceptual understanding. Here I propose a cell- to organ-level transitions framework, whereby cooperative division of labor originates and becomes entrenched between cell types through a process of functional niche creation, cell-type subfunctionalization, and irreversible ratcheting of cell interdependencies. Comprehending this transition hinges on explaining how these processes unfold molecularly in evolving populations. Recent single-cell transcriptomic studies and analyses of terminal fate specification indicate that cellular functions are conferred by modular gene expression programs. These discrete components of functional variation may be deployed or combined within cells to introduce new properties into multicellular niches, or partitioned across cells to establish division of labor. Tracing gene expression program evolution at the level of single cells in populations may reveal transitions toward organ complexity.
Collapse
Affiliation(s)
- Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| |
Collapse
|
6
|
Basu A, Singh A, Ruchitha BG, Prasad NG. Experimental adaptation to pathogenic infection ameliorates negative effects of mating on host post-infection survival in Drosophila melanogaster. ZOOLOGY 2024; 166:126198. [PMID: 39173303 DOI: 10.1016/j.zool.2024.126198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Sexual activity (mating) negatively affects immune function in various insect species across both sexes. In Drosophila melanogaster females, mating increases susceptibility to pathogenic challenges and encourages within-host pathogen proliferation. This effect is pathogen and host genotype dependent. We tested if mating-induced increased susceptibility to infections is more, or less, severe in hosts experimentally adapted to pathogenic infection. We selected replicate D. melanogaster populations for increased post-infection survival following infection with a bacterial pathogen, Enterococcus faecalis. We found that females from the selected populations were better at surviving a pathogenic infection compared to the females from the control populations. This was true in the case of both the pathogen used for selection and other novel pathogens (i.e., pathogens the hosts have not encountered in recent history). Additionally, the negative effect of mating on post-infection survival was limited to only the females from control populations. Therefore, we have demonstrated that experimental selection for increased post-infection survival ameliorates negative effects of mating on host susceptibility to infections.
Collapse
Affiliation(s)
- Aabeer Basu
- Indian Institute of Science Education and Research (IISER), Mohali, India.
| | - Aparajita Singh
- Indian Institute of Science Education and Research (IISER), Mohali, India.
| | - B G Ruchitha
- Indian Institute of Science Education and Research (IISER), Mohali, India.
| | | |
Collapse
|
7
|
Kutzer MAM, Cornish B, Jamieson M, Zawistowska O, Monteith KM, Vale PF. Mitochondrial background can explain variable costs of immune deployment. J Evol Biol 2024; 37:1125-1133. [PMID: 39145390 DOI: 10.1093/jeb/voae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Organismal health and survival depend on the ability to mount an effective immune response against infection. Yet immune defence may be energy-demanding, resulting in fitness costs if investment in immune function deprives other physiological processes of resources. While evidence of costly immunity resulting in reduced longevity and reproduction is common, the role of energy-producing mitochondria on the magnitude of these costs is unknown. Here, we employed Drosophila melanogaster cybrid lines, where several mitochondrial genotypes (mitotypes) were introgressed onto a single nuclear genetic background, to explicitly test the role of mitochondrial variation on the costs of immune stimulation. We exposed female flies carrying one of nine distinct mitotypes to either a benign, heat-killed bacterial pathogen (stimulating immune deployment while avoiding pathology) or to a sterile control and measured lifespan, fecundity, and locomotor activity. We observed mitotype-specific costs of immune stimulation and identified a positive genetic correlation in immune-stimulated flies between lifespan and the proportion of time cybrids spent moving while alive. Our results suggests that costs of immunity are highly variable depending on the mitochondrial genome, adding to a growing body of work highlighting the important role of mitochondrial variation in host-pathogen interactions.
Collapse
Affiliation(s)
- Megan A M Kutzer
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Beth Cornish
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Jamieson
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Olga Zawistowska
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katy M Monteith
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Darby AM, Okoro DO, Aredas S, Frank AM, Pearson WH, Dionne MS, Lazzaro BP. High sugar diets can increase susceptibility to bacterial infection in Drosophila melanogaster. PLoS Pathog 2024; 20:e1012447. [PMID: 39133760 PMCID: PMC11341100 DOI: 10.1371/journal.ppat.1012447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/22/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Overnutrition with dietary sugar can worsen infection outcomes in diverse organisms including insects and humans, through generally unknown mechanisms. In the present study, we show that adult Drosophila melanogaster fed high-sugar diets became more susceptible to infection by the Gram-negative bacteria Providencia rettgeri and Serratia marcescens. We found that P. rettgeri and S. marcescens proliferate more rapidly in D. melanogaster fed a high-sugar diet, resulting in increased probability of host death. D. melanogaster become hyperglycemic on the high-sugar diet, and we find evidence that the extra carbon availability may promote S. marcescens growth within the host. However, we found no evidence that increased carbon availability directly supports greater P. rettgeri growth. D. melanogaster on both diets fully induce transcription of antimicrobial peptide (AMP) genes in response to infection, but D. melanogaster provided with high-sugar diets show reduced production of AMP protein. Thus, overnutrition with dietary sugar may impair host immunity at the level of AMP translation. Our results demonstrate that dietary sugar can shape infection dynamics by impacting both host and pathogen, depending on the nutritional requirements of the pathogen and by altering the physiological capacity of the host to sustain an immune response.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Destiny O. Okoro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Sophia Aredas
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- University of California, Irvine, Irvine, California, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Ashley M. Frank
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Battelle, Columbus, Ohio, United States of America
| | - William H. Pearson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marc S. Dionne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Hanson MA. When the microbiome shapes the host: immune evolution implications for infectious disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230061. [PMID: 38497259 PMCID: PMC10945400 DOI: 10.1098/rstb.2023.0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 03/19/2024] Open
Abstract
The microbiome includes both 'mutualist' and 'pathogen' microbes, regulated by the same innate immune architecture. A major question has therefore been: how do hosts prevent pathogenic infections while maintaining beneficial microbes? One idea suggests hosts can selectively activate innate immunity upon pathogenic infection, but not mutualist colonization. Another idea posits that hosts can selectively attack pathogens, but not mutualists. Here I review evolutionary principles of microbe recognition and immune activation, and reflect on newly observed immune effector-microbe specificity perhaps supporting the latter idea. Recent work in Drosophila has found a surprising importance for single antimicrobial peptides in combatting specific ecologically relevant microbes. The developing picture suggests these effectors have evolved for this purpose. Other defence responses like reactive oxygen species bursts can also be uniquely effective against specific microbes. Signals in other model systems including nematodes, Hydra, oysters, and mammals, suggest that effector-microbe specificity may be a fundamental principle of host-pathogen interactions. I propose this effector-microbe specificity stems from weaknesses of the microbes themselves: if microbes have intrinsic weaknesses, hosts can evolve effectors that exploit those weaknesses. I define this host-microbe relationship as 'the Achilles principle of immune evolution'. Incorporating this view helps interpret why some host-microbe interactions develop in a coevolutionary framework (e.g. Red Queen dynamics), or as a one-sided evolutionary response. This clarification should be valuable to better understand the principles behind host susceptibilities to infectious diseases. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Mark A Hanson
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9FE, UK
| |
Collapse
|
10
|
Liao A, Cavigliasso F, Savary L, Kawecki TJ. Effects of an entomopathogenic fungus on the reproductive potential of Drosophila males. Ecol Evol 2024; 14:e11242. [PMID: 38590549 PMCID: PMC10999951 DOI: 10.1002/ece3.11242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
While mortality is often the primary focus of pathogen virulence, non-lethal consequences, particularly for male reproductive fitness, are less understood; however, they are essential for understanding how sexual selection contributes to promoting resistance. We investigated how the fungal pathogen Metarhizium brunneum affects mating ability, fertility, and seminal fluid protein (SFP) expression of male Drosophila melanogaster paired with highly receptive virgin females in non-competitive settings. Depending on sex and dose, there was a 3-6-day incubation period after infection, followed by an abrupt onset of mortality. Meanwhile, the immune response was strongly induced already 38 h after infection and continued to increase as infection progressed. Latency to mate somewhat increased during the incubation period compared to sham-treated males, but even on Day 5 post infection >90% of infected males mated within 2 h. During the incubation period, M. brunneum infection reduced male reproductive potential (the number of offspring sired without mate limitation) by 11%, with no clear increase over time. Approaching the end of the incubation period, infected males had lower ability to convert number of mating opportunities into number of offspring. After repeated mating, infected males had lower SFP expression than sham controls, more so in males that mated with few mates 24 h earlier. Overall, despite strong activation of the immune response, males' mating ability and fertility remained surprisingly little affected by the fungal infection, even shortly before the onset of mortality. This suggests that the selection for resistance acts mainly through mortality, and the scope for fertility selection to enhance resistance in non-competing settings is rather limited.
Collapse
Affiliation(s)
- Aijuan Liao
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Fanny Cavigliasso
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
11
|
Critchlow JT, Prakash A, Zhong KY, Tate AT. Mapping the functional form of the trade-off between infection resistance and reproductive fitness under dysregulated immune signaling. PLoS Pathog 2024; 20:e1012049. [PMID: 38408106 PMCID: PMC10919860 DOI: 10.1371/journal.ppat.1012049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/07/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Immune responses benefit organismal fitness by clearing parasites but also exact costs associated with immunopathology and energetic investment. Hosts manage these costs by tightly regulating the induction of immune signaling to curtail excessive responses and restore homeostasis. Despite the theoretical importance of turning off the immune response to mitigate these costs, experimentally connecting variation in the negative regulation of immune responses to organismal fitness remains a frontier in evolutionary immunology. In this study, we used a dose-response approach to manipulate the RNAi-mediated knockdown efficiency of cactus (IκBα), a central regulator of Toll pathway signal transduction in flour beetles (Tribolium castaneum). By titrating cactus activity across four distinct levels, we derived the shape of the relationship between immune response investment and traits associated with host fitness, including infection susceptibility, lifespan, fecundity, body mass, and gut homeostasis. Cactus knock-down increased the overall magnitude of inducible immune responses and delayed their resolution in a dsRNA dose-dependent manner, promoting survival and resistance following bacterial infection. However, these benefits were counterbalanced by dsRNA dose-dependent costs to lifespan, fecundity, body mass, and gut integrity. Our results allowed us to move beyond the qualitative identification of a trade-off between immune investment and fitness to actually derive its functional form. This approach paves the way to quantitatively compare the evolution and impact of distinct regulatory elements on life-history trade-offs and fitness, filling a crucial gap in our conceptual and theoretical models of immune signaling network evolution and the maintenance of natural variation in immune systems.
Collapse
Affiliation(s)
- Justin T Critchlow
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Katherine Y Zhong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
12
|
Erkosar B, Dupuis C, Cavigliasso F, Savary L, Kremmer L, Gallart-Ayala H, Ivanisevic J, Kawecki TJ. Evolutionary adaptation to juvenile malnutrition impacts adult metabolism and impairs adult fitness in Drosophila. eLife 2023; 12:e92465. [PMID: 37847744 PMCID: PMC10637773 DOI: 10.7554/elife.92465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Juvenile undernutrition has lasting effects on adult metabolism of the affected individuals, but it is unclear how adult physiology is shaped over evolutionary time by natural selection driven by juvenile undernutrition. We combined RNAseq, targeted metabolomics, and genomics to study the consequences of evolution under juvenile undernutrition for metabolism of reproductively active adult females of Drosophila melanogaster. Compared to Control populations maintained on standard diet, Selected populations maintained for over 230 generations on a nutrient-poor larval diet evolved major changes in adult gene expression and metabolite abundance, in particular affecting amino acid and purine metabolism. The evolved differences in adult gene expression and metabolite abundance between Selected and Control populations were positively correlated with the corresponding differences previously reported for Selected versus Control larvae. This implies that genetic variants affect both stages similarly. Even when well fed, the metabolic profile of Selected flies resembled that of flies subject to starvation. Finally, Selected flies had lower reproductive output than Controls even when both were raised under the conditions under which the Selected populations evolved. These results imply that evolutionary adaptation to juvenile undernutrition has large pleiotropic consequences for adult metabolism, and that they are costly rather than adaptive for adult fitness. Thus, juvenile and adult metabolism do not appear to evolve independently from each other even in a holometabolous species where the two life stages are separated by a complete metamorphosis.
Collapse
Affiliation(s)
- Berra Erkosar
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Fanny Cavigliasso
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Loriane Savary
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Laurent Kremmer
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| |
Collapse
|
13
|
Darby AM, Lazzaro BP. Interactions between innate immunity and insulin signaling affect resistance to infection in insects. Front Immunol 2023; 14:1276357. [PMID: 37915572 PMCID: PMC10616485 DOI: 10.3389/fimmu.2023.1276357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
An active immune response is energetically demanding and requires reallocation of nutrients to support resistance to and tolerance of infection. Insulin signaling is a critical global regulator of metabolism and whole-body homeostasis in response to nutrient availability and energetic needs, including those required for mobilization of energy in support of the immune system. In this review, we share findings that demonstrate interactions between innate immune activity and insulin signaling primarily in the insect model Drosophila melanogaster as well as other insects like Bombyx mori and Anopheles mosquitos. These studies indicate that insulin signaling and innate immune activation have reciprocal effects on each other, but that those effects vary depending on the type of pathogen, route of infection, and nutritional status of the host. Future research will be required to further understand the detailed mechanisms by which innate immunity and insulin signaling activity impact each other.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Critchlow JT, Prakash A, Zhong KY, Tate AT. Mapping the functional form of the trade-off between infection resistance and reproductive fitness under dysregulated immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552815. [PMID: 37645726 PMCID: PMC10461925 DOI: 10.1101/2023.08.10.552815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune responses benefit organismal fitness by clearing parasites but also exact costs associated with immunopathology and energetic investment. Hosts manage these costs by tightly regulating the induction of immune signaling to curtail excessive responses and restore homeostasis. Despite the theoretical importance of turning off the immune response to mitigate these costs, experimentally connecting variation in the negative regulation of immune responses to organismal fitness remains a frontier in evolutionary immunology. In this study, we used a dose-response approach to manipulate the RNAi-mediated knockdown efficiency of cactus (IκBα), a central regulator of Toll pathway signal transduction in flour beetles (Tribolium castaneum). By titrating cactus activity along a continuous gradient, we derived the shape of the relationship between immune response investment and traits associated with host fitness, including infection susceptibility, lifespan, fecundity, body mass, and gut homeostasis. Cactus knock-down increased the overall magintude of inducible immune responses and delayed their resolution in a dsRNA dose-dependent manner, promoting survival and resistance following bacterial infection. However, these benefits were counterbalanced by dsRNA dose-dependent costs to lifespan, fecundity, body mass, and gut integrity. Our results allowed us to move beyond the qualitative identification of a trade-off between immune investment and fitness to actually derive its functional form. This approach paves the way to quantitatively compare the evolution and impact of distinct regulatory elements on life-history trade-offs and fitness, filling a crucial gap in our conceptual and theoretical models of immune signaling network evolution and the maintenance of natural variation in immune systems.
Collapse
Affiliation(s)
- Justin T. Critchlow
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Katherine Y. Zhong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ann T. Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
15
|
Abstract
Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.
Collapse
Affiliation(s)
- Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
16
|
Gordon KE, Wolfner MF, Lazzaro BP. A single mating is sufficient to induce persistent reduction of immune defense in mated female Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104414. [PMID: 35728669 PMCID: PMC10162487 DOI: 10.1016/j.jinsphys.2022.104414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 05/07/2023]
Abstract
In many species, female reproductive investment comes at a cost to immunity and resistance to infection. Mated Drosophila melanogaster females are more susceptible to bacterial infection than unmated females. Transfer of the male seminal fluid protein Sex Peptide reduces female post-mating immune defense. Sex Peptide is known to cause both short- and long-term changes to female physiology and behavior. While previous studies showed that females were less resistant to bacterial infection as soon as 2.5 h and as long as 26.5 h after mating, it is unknown whether this is a binary switch from mated to unmated state or whether females can recover to unmated levels of immunity. It is additionally unknown whether repeated mating causes progressive reduction in defense capacity. We compared the immune defense of mated females when infected at 2, 4, 7, or 10 days after mating to that of unmated females and saw no recovery of immune capacity regardless of the length of time between mating and infection. Because D. melanogaster females can mate multiply, we additionally tested whether a second mating, and therefore a second transfer of seminal fluids, caused deeper reduction in immune performance. We found that females mated either once or twice before infection survived at equal proportions, both with significantly lower probability than unmated females. We conclude that a single mating event is sufficient to persistently suppress the female immune system. Interestingly, we observed that induced levels of expression of genes encoding antimicrobial peptides (AMPs) decreased with age in both experiments, partially obscuring the effects of mating. Collectively, the data indicate that being reproductively active versus reproductively inactive are alternative binary states with respect to female D. melanogaster immunity. The establishment of a suppressed immune status in reproductively active females can inform our understanding of the regulation of immune defense and the mechanisms of physiological trade-offs.
Collapse
Affiliation(s)
- Kathleen E Gordon
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Mariana F Wolfner
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Brian P Lazzaro
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Hanson MA, Kondo S, Lemaitre B. Drosophila immunity: the Drosocin gene encodes two host defence peptides with pathogen-specific roles. Proc Biol Sci 2022; 289:20220773. [PMID: 35730150 PMCID: PMC9233930 DOI: 10.1098/rspb.2022.0773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) are key to defence against infection in plants and animals. Use of AMP mutations in Drosophila has now revealed that AMPs can additively or synergistically contribute to defence in vivo. However, these studies also revealed high specificity, wherein just one AMP contributes an outsized role in combatting a specific pathogen. Here, we show the Drosocin locus (CG10816) is more complex than previously described. In addition to its namesake peptide 'Drosocin', it encodes a second mature peptide from a precursor via furin cleavage. This peptide corresponds to the previously uncharacterized 'Immune-induced Molecule 7'. A polymorphism (Thr52Ala) in the Drosocin precursor protein previously masked the identification of this peptide, which we name 'Buletin'. Using mutations differently affecting Drosocin and Buletin, we show that only Drosocin contributes to Drosocin gene-mediated defence against Enterobacter cloacae. Strikingly, we observed that Buletin, but not Drosocin, contributes to the Drosocin gene-mediated defence against Providencia burhodogranariea, including an importance of the Thr52Ala polymorphism for survival. Our study reveals that the Drosocin gene encodes two prominent host defence peptides with different specificity against distinct pathogens. This finding emphasizes the complexity of the Drosophila humoral response and demonstrates how natural polymorphisms can affect host susceptibility.
Collapse
Affiliation(s)
- M. A. Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S. Kondo
- Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
| | - B. Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|