1
|
Feng J, Zhu R, Yin Y, Wang S, Zhou L, Lv F, Zhao D. Re-Recognizing the Cellular Origin of the Primary Epithelial Tumors of the Liver. J Hepatocell Carcinoma 2021; 8:1537-1563. [PMID: 34917552 PMCID: PMC8668194 DOI: 10.2147/jhc.s334935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
The primary epithelial tumors of the liver (PETL) are composed of a series of heterogeneous tumors. Although the classification of PETLs has been updated several times by the World Health Organization, the cellular origins of some tumors in this family remain to be precisely depicted. In addition, certain tumors in different categories have similar histology, molecular phenotypes and biological characteristics, suggesting that they may have the same cellular origin. In this work, a narrative review method was adopted to review the relevant papers. By comparing the expression profiles of biomarkers of liver epithelium at different lineages and stages of differentiation, the cells-of-origin of some major members of the PETL family were reassessed. We propose that 1) hepatic adenomas, hepatocellular carcinomas (HCCs) and pure fetal hepatoblastomas (HBs) share the same spectrum in their cellular origin including the hepatocytic-committed progenitors (HCP) and their differentiated descendants. 2) Bile duct adenomas, peribiliary cysts and intrahepatic cholangiocellular carcinomas (ICCs) can share the same spectrum in their cellular origin including the cholangiocytic-committed progenitors (CCP) and their differentiated descendants. 3) The cells-of-origin of embryonal HBs include liver stem cells (LSCs), hepatoblasts, and transitional cells between them. Embryonal HB with small cell element, small cell undifferentiated HB and small cell neuroendocrine carcinoma of the liver can have the same or similar cells-of-origin from LSC. Embryonal HB lacking the small cell component of the LSC phenotype and presenting both hepatocytic and bile duct/ductule components may originate from actual hepatoblasts/hepatic progenitor cells (HPCs) as the combined HCC-ICC does. 4) Teratoid hepatoblastoma and mixed epithelial/mesenchymal HBs can be derived from the LSCs or even less committed extrahepatic pluripotent stem cell. 5) Many members of the PETLs family, including those derived from LSCs, hepatoblasts/HPCs, early HCPs and CCPs, have neuroendocrine potentiality. Except for those primary hepatic neuroendocrine tumor (PHNET) exhibit hepatocytic and/or cholangiocytic phenotypes, other PHNETs subtype may be derived from the descendants of LSC that differentiate towards the upper digestive tract, pancreas or other lineages.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
- Correspondence: Jiliang Feng Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, No. 8, Xitoutiao, Youanmenwai Street, FengTai District, Beijing, 100069, People’s Republic of ChinaTel +86-10-83997342Fax +86-10-83997343 Email
| | - Ruidong Zhu
- General Surgical Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yu Yin
- Department of Pathology, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Shanshan Wang
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Lei Zhou
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College/Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Fudong Lv
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Dawei Zhao
- Department of Medical Imaging, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
2
|
Ultrastructural Profile Combined with Immunohistochemistry of a Hepatic Progenitor Cell Line in Pediatric Autoimmune Hepatitis: New Insights into the Morphological Pattern of the Disease. Cells 2021; 10:cells10081899. [PMID: 34440668 PMCID: PMC8392671 DOI: 10.3390/cells10081899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Considering that the heterogenic population of a hepatic progenitor cell line (HPCL) can play a vital role in autoimmune hepatitis (AIH), we decided to conduct pioneering retrospective evaluation of these cells in pediatric AIH by means of transmission electron microscopy (TEM). The aim of the study was to assess the ultrastructure of the HPCL in children with untreated AIH. Ultrastructural analysis of the HPCL population, preceded by immunohistochemical staining for cytokeratin 7 (CK7), was performed using pretreatment liver biopsies from 23 children with clinicopathologically diagnosed AIH. Immunohistochemical assessment for CK7 allowed detection of proliferating immature epithelial cells differentiating towards periportal and intralobular intermediate hepatocytes without marked formation of ductular reactions in AIH children. Using TEM, we distinguished three morphological types of HPCs: I—the most undifferentiated progenitor cells; III—intermediate hepatocyte-like cells; II—intermediate bile duct cells. Most frequent were the cells differentiating towards hepatocytes, most rare—those differentiating towards cholangiocytes. The results indicate that an HPCL may be an important source of hepatocyte regeneration. Ultrastructural analyses of the HPCL population, combined with immunohistochemistry for CK7, might be a useful tool to evaluate liver cell regeneration, including fibrogenesis, and may help better understand the morphological pattern of the disease, in pediatric AIH. Frequent appearance of an HPCL in the vicinity of fibrotic foci, often accompanied by hyperactive Kupffer cells and transitional hepatic stellate cells, may indicate their significant involvement in liver fibrogenesis.
Collapse
|
3
|
Ishida K, Seki A, Kawaguchi K, Nasti A, Yamato M, Inui H, Komura T, Yamashita T, Arai K, Yamashita T, Mizukoshi E, Honda M, Wada T, Harada K, Kaneko S, Sakai Y. Restorative effect of adipose tissue-derived stem cells on impaired hepatocytes through Notch signaling in non-alcoholic steatohepatitis mice. Stem Cell Res 2021; 54:102425. [PMID: 34119957 DOI: 10.1016/j.scr.2021.102425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/11/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) have been suggested as a novel treatment for non-alcoholic steatohepatitis (NASH); however, the mechanisms underlying their therapeutic effect remain poorly understood. In this study, we aimed to investigate the association of Notch signaling, which is crucial for cellular proliferation and differentiation in ADSC-mediated treatment of NASH. Flow cytometry analysis of ADSCs showed that they expressed the Notch ligands JAG1, DLL1, and DLL4. The expression of genes associated with the Notch signaling pathway was attenuated in hepatocytes of NASH model mice. We further observed ADSC-mediated activation of Notch signaling in these hepatocytes in addition to an increase in proliferating cell nuclear antigen+ cells and a decrease in TdT-mediated dUTP-biotin nick end labeling+ apoptotic cells. Co-culture of palmitic acid-induced steatotic hepatocytes and ADSCs resulted in the activation of Notch signaling and reduction of apoptosis of steatotic hepatocytes. Moreover, inhibition of Notch signaling by a γ-secretase inhibitor and knockdown of Notch ligands using siRNA attenuated the anti-apoptotic effect of co-cultured ADSCs in vitro. Our findings show that the Notch signaling pathway is involved in the inhibition of apoptosis and restoration of cellular proliferation of hepatocytes from NASH mice following ADSC treatment.
Collapse
Affiliation(s)
- Kosuke Ishida
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akihiro Seki
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Alessandro Nasti
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masatoshi Yamato
- Department of Disease Control and Homeostasis, College of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiiro Inui
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takuya Komura
- Department of Gastroenterology, National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Taro Yamashita
- Department of General Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan; Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan; Department of Disease Control and Homeostasis, College of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan.
| |
Collapse
|
4
|
Shi Y, He R, Zhuang Z, Ren J, Wang Z, Liu Y, Wu J, Jiang S, Wang K. A risk signature-based on metastasis-associated genes to predict survival of patients with osteosarcoma. J Cell Biochem 2020; 121:3479-3490. [PMID: 31898371 DOI: 10.1002/jcb.29622] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
Abstract
Osteosarcoma (OS) is the most common primary solid malignant bone tumor, and its metastasis is a prominent cause of high mortality in patients. In this study, a prognosis risk signature was constructed based on metastasis-associated genes. Four microarrays datasets with clinical information were downloaded from Gene Expression Omnibus, and 256 metastasis-associated genes were identified by limma package. Further, a protein-protein interaction network was constructed, and survival analysis was performed using data from the Therapeutically Applicable Research to Generate Effective Treatments data matrix, identifying 19 genes correlated with prognosis. Six genes were selected by the least absolute shrinkage and selection operator regression for multivariate cox analysis. Finally, a three-gene (MYC, CPE, and LY86) risk signature was constructed, and datasets GSE21257 and GSE16091 were used to validate the prediction efficiency of the signature. The survival times of low- and high-risk groups were significantly different in the training set and validation set. Additionally, gene set enrichment analysis revealed that the genes in the signature may affect the cell cycle, gap junctions, and interleukin-6 production. Therefore, the three-gene survival risk signature could potentially predict the prognosis of patients with OS. Further, proteins encoded by CPE and LY86 may provide novel insights into the prediction of OS prognosis and therapeutic targets.
Collapse
Affiliation(s)
- Yi Shi
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ze Zhuang
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianhua Ren
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhe Wang
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuangao Liu
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiajun Wu
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shihai Jiang
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kun Wang
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Li S, Hu T, Yuan T, Cheng D, Yang Q. Nucleoside diphosphate kinase B promotes osteosarcoma proliferation through c-Myc. Cancer Biol Ther 2018; 19:565-572. [PMID: 29630434 DOI: 10.1080/15384047.2017.1416273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common primary bone tumors and has a high disablity rate and case-fatality rate. The protracted stagnancy of the chemotherapy program and surgical technology for OS treatment prompted us to focus on the mechanisms of cancer carcinogenesis progression in OS. Nucleoside diphosphate kinase B (NME2) is a type of nucleoside diphosphate kinase that plays an important role in cellular processes. In this study, we report overexpression of NME2 in OS cell lines and correlate this overexpression with the clinicopathologic features of osteosarcoma. We used si-NME2 to downregulate expression of NME2 in OS cell lines. The results of the CCK8 and clone forming assays show that NME2 promotes OS cell line proliferation. Western blot assays show that deregulation of NME2 results in enhanced the expression of c-Myc, which promotes OS proliferation.
Collapse
Affiliation(s)
- Shijie Li
- a Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No.600, Yishan Road, Shanghai , China
| | - Tu Hu
- a Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No.600, Yishan Road, Shanghai , China
| | - Ting Yuan
- a Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No.600, Yishan Road, Shanghai , China
| | - Dongdong Cheng
- a Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No.600, Yishan Road, Shanghai , China
| | - Qingcheng Yang
- a Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , No.600, Yishan Road, Shanghai , China
| |
Collapse
|
6
|
Eulenberg VM, Lidbury JA. Hepatic Fibrosis in Dogs. J Vet Intern Med 2017; 32:26-41. [PMID: 29194760 PMCID: PMC5787209 DOI: 10.1111/jvim.14891] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatic fibrosis is commonly diagnosed in dogs, often as a sequela to chronic hepatitis (CH). The development of fibrosis is a crucial event in the progression of hepatic disease that is of prognostic value. The pathophysiology of hepatic fibrosis in human patients and rodent models has been studied extensively. Although less is known about this process in dogs, evidence suggests that fibrogenic mechanisms are similar between species and that activation of hepatic stellate cells is a key step. Diagnosis and staging of hepatic fibrosis in dogs requires histopathological examination of a liver biopsy specimen. However, performing a liver biopsy is invasive and assessment of fibrotic stage is complicated by the absence of a universally accepted staging scheme in veterinary medicine. Serum biomarkers that can discriminate among different fibrosis stages are used in human patients, but such markers must be more completely evaluated in dogs before clinical use. When successful treatment of its underlying cause is feasible, reversal of hepatic fibrosis has been shown to be possible in rodent models and human patients. Reversal of fibrosis has not been well documented in dogs, but successful treatment of CH is possible. In human medicine, better understanding of the pathomechanisms of hepatic fibrosis is leading to the development of novel treatment strategies. In time, these may be applied to dogs. This article comparatively reviews the pathogenesis of hepatic fibrosis, its diagnosis, and its treatment in dogs.
Collapse
Affiliation(s)
- V M Eulenberg
- Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - J A Lidbury
- Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
7
|
Huang Y, Liang SH, Xiang LB, Han XT, Zhang W, Tang J, Wu XH, Zhang MQ. miR-218 promoted the apoptosis of human ovarian carcinoma cells via suppression of the WNT/β-catenin signaling pathway. Mol Biol 2017. [DOI: 10.1134/s0026893317030062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Otte CM, Valtolina C, Vreman S, Hubers S, van Wolferen ME, Favier RP, Rothuizen J, Penning LC. Immunohistochemical evaluation of the activation of hepatic progenitor cells and their niche in feline lymphocytic cholangitis. J Feline Med Surg 2017; 20:30-37. [PMID: 28349721 PMCID: PMC5753836 DOI: 10.1177/1098612x17699723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objectives The aim of the study was to compare the hepatic progenitor cell niche in healthy feline livers and the liver tissue of cats with lymphocytic cholangitis. Methods Immunohistochemical stainings for vimentin, laminin, beta (β)-catenin and Notch1 intracellular domain (NICD) were used on formalin-fixed liver biopsies from affected (n = 12) and unaffected cats (n = 2). Results All immunohistochemical markers used were expressed in more cells, or more intensely, in the liver tissue of cats with lymphocytic cholangitis than in the liver tissue of unaffected cats. Conclusions and relevance Enhanced expression of vimentin, laminin, cytoplasmic/nuclear β-catenin and NICD in liver biopsies from cats with lymphocytic cholangitis indicates that the hepatic progenitor cell (HPC) niche is remodelled and activated. HPCs might provide insights into new regenerative treatment options for lymphocytic cholangitis in cats in the future.
Collapse
Affiliation(s)
- Corma Ma Otte
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chiara Valtolina
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sandra Vreman
- 2 Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Siobhan Hubers
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Monique E van Wolferen
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Robert P Favier
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan Rothuizen
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
ZE XINGYU, JIA JIDONG, LI XINMIN, YOU HONG, ZHAO XINYAN, ZHANG DONG, WANG BAOEN. Tanshinone IIA promotes the proliferation of WB-F344 hepatic oval cells via Wnt/β-catenin signaling. Mol Med Rep 2016; 13:1501-8. [PMID: 26709094 PMCID: PMC4732833 DOI: 10.3892/mmr.2015.4696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Tanshinone IIA (TSA) is a widely used traditional Chinese medicine, which has been demonstrated to protect damaged liver cells and is currently administered in the treatment of liver fibrosis. Liver precursor cells, also termed oval cells, are key in the repair of liver tissues following injury. However, whether TSA improves the function of liver cells and protects the liver from injury by enhancing the growth and proliferation of hepatic oval cells remains to be elucidated. In the present study, low to moderate concentrations of TSA were observed to stimulate proliferation, did not induce apoptosis in WB-F344 rat hepatic oval cells and the increased expression levels of β-catenin. WB-F344 cells were treated with various concentrations of TSA (0-80 µg/ml) for 24, 48, 72 and 96 h. Cell proliferation was measured using a Cell Counting kit-8 (CCK-8) assay, a 5-ethynyl-2'-deoxyuridine assay and a carboxyfluorescein diacetate succinimidyl ester (CFSE) assay. The CCK-8 assay demonstrated that treatment of WB-F344 cells with 20-40 µg/ml TSA for up to 72 h significantly increased proliferation. Similar results were observed in the subsequent EdU and CFSE assays. Furthermore, a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated that 20-40 µg/ml TSA treatment for up to 96 h did not induce apoptosis of the WB-F344 cells. Notably, the results of western blot, immunofluorescence and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that treatment of the WB-F344 cells with 20-40 µg/ml TSA for up to 72 h significantly increased the expression levels of β-catenin. These data indicated that TSA at concentrations between 20 and 40 µg/ml may induce WB-F344 cell proliferation by activating the canonical Wnt signaling pathway. The results of the present study suggest that TSA may be a useful natural agent to enhance repair and regeneration of the injured liver, and improve liver regeneration following orthotopic liver transplantation.
Collapse
Affiliation(s)
- XINGYU ZE
- Liver Disease Research Center, Capital Medical University, Beijing 100050, P.R. China
| | - JIDONG JIA
- Liver Disease Research Center, Capital Medical University, Beijing 100050, P.R. China
| | - XINMIN LI
- Liver Disease Research Center, Capital Medical University, Beijing 100050, P.R. China
| | - HONG YOU
- Liver Disease Research Center, Capital Medical University, Beijing 100050, P.R. China
| | - XINYAN ZHAO
- Liver Disease Research Center, Capital Medical University, Beijing 100050, P.R. China
| | - DONG ZHANG
- Liver Disease Research Center, Capital Medical University, Beijing 100050, P.R. China
| | - BAOEN WANG
- Beijing Institute of Integrated Traditional and Western Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
- Correspondence to: Dr Baoen Wang, Beijing Institute of Integrated Traditional and Western Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Xi-Cheng, Beijing 100050, P.R. China, E-mail:
| |
Collapse
|
10
|
Nantasanti S, Spee B, Kruitwagen HS, Chen C, Geijsen N, Oosterhoff LA, van Wolferen ME, Pelaez N, Fieten H, Wubbolts RW, Grinwis GC, Chan J, Huch M, Vries RRG, Clevers H, de Bruin A, Rothuizen J, Penning LC, Schotanus BA. Disease Modeling and Gene Therapy of Copper Storage Disease in Canine Hepatic Organoids. Stem Cell Reports 2015; 5:895-907. [PMID: 26455412 PMCID: PMC4649105 DOI: 10.1016/j.stemcr.2015.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022] Open
Abstract
The recent development of 3D-liver stem cell cultures (hepatic organoids) opens up new avenues for gene and/or stem cell therapy to treat liver disease. To test safety and efficacy, a relevant large animal model is essential but not yet established. Because of its shared pathologies and disease pathways, the dog is considered the best model for human liver disease. Here we report the establishment of a long-term canine hepatic organoid culture allowing undifferentiated expansion of progenitor cells that can be differentiated toward functional hepatocytes. We show that cultures can be initiated from fresh and frozen liver tissues using Tru-Cut or fine-needle biopsies. The use of Wnt agonists proved important for canine organoid proliferation and inhibition of differentiation. Finally, we demonstrate that successful gene supplementation in hepatic organoids of COMMD1-deficient dogs restores function and can be an effective means to cure copper storage disease.
Collapse
Affiliation(s)
- Sathidpak Nantasanti
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands; Hubrecht Institute and University Medical Centre, Utrecht, 3584 CT, the Netherlands
| | - Niels Geijsen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands; Hubrecht Institute and University Medical Centre, Utrecht, 3584 CT, the Netherlands
| | - Loes A Oosterhoff
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Nicolas Pelaez
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Richard W Wubbolts
- Centre for Cellular Imaging (CCI), Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, the Netherlands
| | - Guy C Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, the Netherlands
| | - Jefferson Chan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Meritxell Huch
- Hubrecht Institute and University Medical Centre, Utrecht, 3584 CT, the Netherlands
| | - Robert R G Vries
- Hubrecht Institute and University Medical Centre, Utrecht, 3584 CT, the Netherlands
| | - Hans Clevers
- Hubrecht Institute and University Medical Centre, Utrecht, 3584 CT, the Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, the Netherlands; Department of Pediatrics, Division of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Baukje A Schotanus
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands.
| |
Collapse
|