1
|
Kizza D, Azuba R, Wampande E, Okwasiimire R, Owembabazi L, Mandela W, Waiswa C, Odoi A. Comparative evaluation of rapid diagnostic test and PCR-based diagnostic assay for identification of trypanosomes in cattle of Apac and Kiryandongo districts, Uganda: A cross sectional study. BMC Vet Res 2024; 20:570. [PMID: 39696308 DOI: 10.1186/s12917-024-04436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Diagnostic tests and knowledge of their diagnostic accuracies are important for animal trypanosomosis surveillance and treatment. METHODOLOGY A cross-sectional study was conducted in November 2021 to compare the performance of rapid diagnostic test (RDT) and PCR-based assay for the detection of trypanosome infections. Random sampling and probability proportional to size sampling were used to sample study households and animals from the sampled household respectively. Animals were screened for the presence of trypanosomes using both tests. A total of 100 cattle (52 from Apac and 48 from Kiryandongo districts) were included in the study. The percentage of positive tests, sensitivity, and specificity of the tests using mini PCR as a reference were computed. Cohen's kappa statistics was computed to assess how well the rapid diagnostic test agrees with the mini PCR. McNemar's statistic assessed if the proportion of positive tests identified by mini PCR significantly differed from that identified by the rapid diagnostic test. RESULTS The mini PCR test detected 31.2% Trypanosome spp positive samples in Kiryandongo while it detected only 5.7% positive samples in Apac district. The rapid diagnostic test (RDT) analysis detected 91.6% Trypanosome spp positive samples in Kiryandongo district and only 46.1% in Apac district. T. congolense was the most common Trypanosoma species identified in Apac (36.5%) and Kiryandongo (47.9%) by the RDT. The percentage of each of the Trypanosome species (T.vivax, T.congolense, and mixed infection of T.vivax and T. congolense) detected by RDT differed significantly (p < 0.001) between the two districts. The RDT had a high sensitivity of 94.4% (95% Confidence Interval (CI): 72.7-99.9) but a very low specificity of 36.6% (95% CI: 26.2-48.0). The kappa test showed evidence of only a slight agreement (kappa = 0.1547, Accuracy = 0.48 (95% Confidence Interval (CI): 0.379,0.5822) between the two tests. The observed agreement between the tests was 47% while the expected agreement was 37.84%. CONCLUSION This study found high sensitivity but low specificity of RDT using mini PCR as a reference.
Collapse
Affiliation(s)
- Daniel Kizza
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.
- Department of Agricultural and Environmental Sciences, School of Agricultural and Applied Sciences, Bugema University, Luweero, Uganda.
| | - Rose Azuba
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- Department of Veterinary Pharmacy, Clinical, and Comparative Medicine, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Eddie Wampande
- Department of Veterinary Pharmacy, Clinical, and Comparative Medicine, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- Department of Veterinary Pharmacy, Clinical, and Comparative Medicine, College of Veterinary Medicine Animal Resources and Biosecurity, Central Diagnostic Laboratory, Makerere University, Kampala, Uganda
| | - Rodney Okwasiimire
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- College of Veterinary Medicine Animal Resources and Biosecurity, Central Diagnostic Laboratory, Makerere University, Kampala, Uganda
| | - Lillian Owembabazi
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- Coordinating Office for the Control of Trypanosomiasis in Uganda (COCTU), Kampala, Uganda
| | - Wangoola Mandela
- Department of Veterinary Pharmacy, Clinical, and Comparative Medicine, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- Coordinating Office for the Control of Trypanosomiasis in Uganda (COCTU), Kampala, Uganda
| | - Charles Waiswa
- Department of Veterinary Pharmacy, Clinical, and Comparative Medicine, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Agricola Odoi
- College of Veterinary Medicine, Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, US
| |
Collapse
|
2
|
Xu N, Zhang X, Liu H, Xu Y, Lu H, Zhao L, He Y, Zhang M, Zhang J, Si G, Wang Z, Chen M, Cai Y, Zhang Y, Wang Q, Hao Y, Li Y, Zhou Z, Guo Y, Chang C, Liu M, Ma C, Wang Y, Fang L, Li S, Wang G, Liu Q, Liu W. Clinical and epidemiological investigation of human infection with zoonotic parasite Trypanosoma dionisii in China. J Infect 2024; 89:106290. [PMID: 39341404 DOI: 10.1016/j.jinf.2024.106290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Trypanosomiasis continues to pose a global threat to human health, with human infection mainly caused by Trypanosoma brucei and Trypanosoma cruzi. METHODS We present a 30-year-old pregnant woman with persistent high fever from Shandong Province, China. High-throughput sequencing revealed the presence of Trypanosoma dionisii in blood. We conducted an analysis of the patient's clinical, epidemiological, and virological data. RESULTS The patients exhibited fever, shortness of breath, chest tightness, accompanied by change in liver function and inflammatory response. She made a full recovery without any long-term effects. T. dionisii was detected in blood collected 23 days after onset of illness. The 18S rRNA gene sequence showed close similarity to T. dionisii found in bats from Japan, while the gGAPDH gene was closely related to T. dionisii from bats in Mengyin County, Shandong Province. Phylogenetic analysis demonstrated the current T. dionisii belongs to clade B within its species group. Positive anti-Trypanosoma IgG antibody was detected from the patient on Day 23, 66 and 122 after disease onset, as well as the cord blood and serum from the newborn. Retrospective screening of wild small mammals captured from Shandong Province revealed a prevalence rate of 0.54% (7/1304) for T. dionisii; specifically among 0.81% (5/620) of Apodemus agrarius, and 0.46% (2/438) of Mus musculus. CONCLUSIONS The confirmation of human infection with T. dionisii underscores its potential as a zoonotic pathogen, while the widespread presence of this parasite in rodent and bat species emphasizes the emerging threat it poses to human health.
Collapse
Affiliation(s)
- Nannan Xu
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Hui Liu
- Institute of Bacterial Disease, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yintao Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huixia Lu
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lianhui Zhao
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yishan He
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Meiqi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Jingtao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Guangqian Si
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Ziyi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Muxin Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuchun Cai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yi Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Qiang Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuwan Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuanyuan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Zhengbin Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yunhai Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Caiyun Chang
- Institute for Infectious Disease Control, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Ming Liu
- Institute for Infectious Disease Control, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Chuanmin Ma
- Institute of Bacterial Disease, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yongbin Wang
- Shandong Institute of Parasitic Disease, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, Shandong 272033, China
| | - Liqun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China.
| | - Gang Wang
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Qin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China.
| |
Collapse
|
3
|
Serra TBR, Reis ATD, Silva CFDC, Soares RFS, Fernandes SDJ, Gonçalves LR, Costa APD, Machado RZ, Nogueira RDMS. Serological and molecular diagnosis of Trypanosoma vivax on buffalos (Bubalus bubalis) and their ectoparasites in the lowlands of Maranhão, Brazil. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e003424. [PMID: 39475928 DOI: 10.1590/s1984-29612024066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024]
Abstract
The aim of this study was to detect trypomastigote forms of Trypanosoma vivax, in blood smears, DNA of T. vivax and anti-T. vivax antibodies in samples from buffalos reared in the lowlands of Maranhão, Brazil. Blood samples were collected from 116 buffalos and 25 ectoparasite specimens. Blood smears were produced to diagnose forms compatible with Trypanosoma spp.; the indirect enzyme-linked immunosorbent assay (iELISA) and lateral-flow immunochromatography (Imunotest®) serological tests were used; and the polymerase chain reaction (PCR) was used to make molecular diagnoses. No forms compatible with Trypanosoma spp. were observed in blood smears. Among the 116 serum samples analyzed, 79.31% and 76.72% were positive in the ELISA and rapid tests, respectively. One sample was positive in the molecular test. Twenty-five lice of the species Haematopinus tuberculatus were collected. When subjected to PCR for detection of DNA of T. vivax, all of them were negative. The louse specimens were negative for T. vivax. There were no statistically significant differences (p < 0.05) in the presence of T. vivax in this region, in relation to the animals' age and sex. It can be concluded that these protozoa are circulating in the buffalo herd of the lowlands of Maranhão displaying crypitc parasitemias.
Collapse
Affiliation(s)
- Thais Bastos Rocha Serra
- Programa de Pós-graduação em Ciência Animal - PPGCA, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil
| | - Andrea Teles Dos Reis
- Programa de Pós-graduação em Ciência Animal - PPGCA, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil
| | | | | | | | | | - Andrea Pereira da Costa
- Programa de Pós-graduação em Ciência Animal - PPGCA, Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil
| | - Rosangela Zacarias Machado
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | | |
Collapse
|
4
|
Mulat G, Maru M, Tarekegn ZS, Dejene H. A systematic review and meta-analysis on prevalence of bovine trypanosomosis in East Africa. Parasite Epidemiol Control 2024; 26:e00371. [PMID: 39184304 PMCID: PMC11341968 DOI: 10.1016/j.parepi.2024.e00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Bovine trypanosomosis is an incapacitating and lethal ailment brought about by protozoan parasites of the genus Trypanosoma. The disease leads to losses in livestock and agricultural productivity, resulting in significant socio-economic repercussions. In East Africa, trypanosomosis has been endemic for an extensive period due to ecological factors and vector biology that facilitate the persistent circulation of trypanosomes. This investigation outlines the occurrence of bovine trypanosomosis in East Africa through a meta-analysis. A thorough search was conducted on PubMed, Google Scholar, Scopus, Web of Science and AJOL. Suitable studies were chosen using inclusion and exclusion criteria. The prevalence was estimated through a random effect model. Publication bias and the variation in prevalence estimates due to heterogeneity were also evaluated. The analysis was performed on 115 studies that contained relevant prevalence data. The collective estimate of bovine trypanosomosis prevalence across the studies stood at 12% (95% CI: 11, 13), ranging from 1% (95% CI: 0, 2) to 51% (95% CI: 45, 58). The subgroup analysis by country revealed considerable disparities in prevalence. The highest estimated prevalence was 24% (95% CI: 18, 30) in Somalia, whereas the lowest prevalence was observed in Ethiopia at 10% (95% CI: 9, 11). A significant level of heterogeneity was noted in most pooled estimates, even after conducting subgroup analysis. The visual examination of the funnel plot and the Egger's regression asymmetry coefficient (b = -5.13, 95% CI: -7.49, -2.76, p = 0.00) and Begg's plot (p = 0.00) indicate the presence of publication bias. In conclusion, bovine trypanosomosis is a pervasive and noteworthy malady affecting livestock. The findings of this investigation imply a high prevalence of bovine trypanosomosis in the majority of the countries under scrutiny. Despite the well-known hindrance that livestock trypanosomosis poses to livestock production in Africa, little attention has been devoted to the trypanosomosis situation, particularly in East African nations.
Collapse
Affiliation(s)
- Getie Mulat
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Moges Maru
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Zewdu Seyoum Tarekegn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Haileyesus Dejene
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| |
Collapse
|
5
|
Arnuphapprasert A, Nugraheni YR, Khunmanee S, Kaewlamun W, Kaewthamasorn M. Seasonal dynamics and genetic characterization of bovine arthropod-borne parasites in Nan Province, Thailand with molecular identification of Anaplasma platys and Trypanosoma theileri. Comp Immunol Microbiol Infect Dis 2024; 107:102156. [PMID: 38457963 DOI: 10.1016/j.cimid.2024.102156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Virulent species or strains of hematophagous borne pathogens such as Anaplasma spp., Babesia spp., Theileria spp., and Trypanosoma spp., are lethal to susceptible animals or reduce their productivity on a global scale. Nonetheless, efforts to diagnose the causative agents and assess the genotypic profiles as well as quantify the parasite burden of aforementioned parasites across seasons remain limited. Therefore, the present investigation sought to elucidate the genotypic composition of Anaplasma spp., Babesia spp., Theileria spp., and Trypanosoma spp. The findings revealed heightened infection rates during the summer, manifesting a correlation between Trypanosoma spp. infection and seasonal fluctuations. Among the identified pathogens, Anaplasma marginale emerged as the most dominant species, while the occurrence of Anaplasma platys in Thai cattle was confirmed via the sequencing of the groEL gene. Moreover, the study successfully identified two lineages of Trypanosoma theileri. The findings of this investigation offer valuable insights that can inform the development of preventive strategies for vector-borne diseases, such as considering the appropriate use of insect repellent, mosquito or insect nets, or eliminating breeding places for insects in each season.
Collapse
Affiliation(s)
- Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yudhi Ratna Nugraheni
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Indonesia
| | - Sarawanee Khunmanee
- School of Agricultural Resources, Chulalongkorn University, Bangkok, Thailand
| | - Winai Kaewlamun
- School of Agricultural Resources, Chulalongkorn University, Bangkok, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Rascón-García K, Martínez-López B, Cecchi G, Scoglio C, Matovu E, Muhanguzi D. Prevalence of African animal trypanosomiasis among livestock and domestic animals in Uganda: a systematic review and meta-regression analysis from 1980 to 2022. Sci Rep 2023; 13:20337. [PMID: 37990067 PMCID: PMC10663568 DOI: 10.1038/s41598-023-47141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
African animal trypanosomiasis (AAT) is one of the major constraints to animal health and production in sub-Saharan Africa. To inform AAT control in Uganda and help advance along the progressive control pathway (PCP), we characterized AAT prevalence among eight host species in Uganda and explored factors that influence the prevalence variation between studies. We retrieved AAT prevalence publications (n = 2232) for Uganda (1980-2022) from five life sciences databases, focusing on studies specifying AAT detection methods, sample size, and the number of trypanosome-positive animals. Following PRISMA guidelines, we included 56 publications, and evaluated publication bias by the Luis Furuya-Kanamori (LFK) index. National AAT prevalence under DNA diagnostic methods for cattle, sheep and goats was 22.15%, 8.51% and 13.88%, respectively. Under DNA diagnostic methods, T. vivax was the most common Trypanosoma sp. in cattle (6.15%, 95% CI: 2.91-10.45) while T. brucei was most common among small ruminants (goats: 8.78%, 95% CI: 1.90-19.88, and sheep: 8.23%, 95% CI: 4.74-12.50, respectively). Northern and Eastern regions accounted for the highest AAT prevalence. Despite the limitations of this study (i.e., quality of reviewed studies, underrepresentation of districts/regions), we provide insights that could be used for better control of AAT in Uganda and identify knowledge gaps that need to be addressed to support the progressive control of AAT at country level and other regional endemic countries with similar AAT eco-epidemiology.
Collapse
Affiliation(s)
- Karla Rascón-García
- Department of Medicine & Epidemiology, School of Veterinary Medicine, Center for Animal Disease Modeling and Surveillance (CADMS), University of California, Davis, USA.
| | - Beatriz Martínez-López
- Department of Medicine & Epidemiology, School of Veterinary Medicine, Center for Animal Disease Modeling and Surveillance (CADMS), University of California, Davis, USA
| | - Giuliano Cecchi
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, USA
| | - Enock Matovu
- Department of Biotechnical & Diagnostic Sciences (BDS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Dennis Muhanguzi
- Department of Bio-Molecular Resources and Bio-Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| |
Collapse
|
7
|
Kizza D, Ocaido M, Mugisha A, Azuba R, Nalubwama S, Nalule S, Onyuth H, Musinguzi SP, Waiswa C. The economic cost of bovine trypanosomosis in pastoral and ago pastoral communities surrounding Murchision Falls National park, Buliisa district, Uganda. BMC Vet Res 2022; 18:372. [PMID: 36253776 PMCID: PMC9578198 DOI: 10.1186/s12917-022-03468-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/14/2022] Open
Abstract
Background: Animal diseases that are endemic like tsetse transmitted trypanosomosis cause the continuous expenditure of financial resources of livestock farmers and loss of productivity of livestock. Estimating the cost of controlling animal trypanosomosis can provide evidence for priority setting and targeting cost-effective control strategies. Methodology: A cross-sectional survey to estimate the economic cost of bovine trypanosomosis was conducted in cattle-keeping communities living around Murchision falls National Park, in Buliisa district Uganda. Data was collected on herd structure, the cost of treatment and control, prevalence of morbidity and mortality rates due to trypanosomosis, and salvage sales losses in cattle herds in the last year. Results: In this study, 55.4% (n = 87) of the households reported their cattle had been affected by trypanosomosis during the previous last year. There was a high economic cost of trypanosomosis (USD 653) per household in cattle-keeping communities in Buliisa district of which 83% and 9% were due to mortality and milk loss respectively/ High mortality loss was due to low investment in treatment. The study showed that prophylactic treatment 3 times a year of the whole herd of cattle using Samorin ® (Isometamidium chloride) at a cost of USD 110 could drastically reduce cattle mortality loss due to trypanosomosis due to trypanosomosis with a return on investment of USD 540 annually per herd. This could be coupled with strategic restricted insecticide spraying of cattle with deltamethrin products. Conclusion: The results show a high economic cost of trypanosomosis in cattle-keeping communities in Buliisa district, with cattle mortality contributing the largest proportion of the economic cost. The high mortality loss was due to low investment in treatment of sick cattle.
Collapse
Affiliation(s)
- Daniel Kizza
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.
| | - Michael Ocaido
- Department of Wildlife, Aquatic and Animal Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Anthony Mugisha
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Rose Azuba
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Sylvia Nalubwama
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Sarah Nalule
- Department of Wildlife, Aquatic and Animal Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Howard Onyuth
- Department of Wildlife, Aquatic and Animal Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Simon Peter Musinguzi
- Faculty of Agriculture Department of Agricultural Production, Kyambogo University, Kampala, Uganda
| | - Charles Waiswa
- Department of Veterinary Pharmacy, Clinical and Comparative Medicine, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| |
Collapse
|
8
|
Okello I, Mafie E, Eastwood G, Nzalawahe J, Mboera LEG. African Animal Trypanosomiasis: A Systematic Review on Prevalence, Risk Factors and Drug Resistance in Sub-Saharan Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1099-1143. [PMID: 35579072 DOI: 10.1093/jme/tjac018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 06/15/2023]
Abstract
African animal trypanosomiasis (AAT) a parasitic disease of livestock in sub-Saharan Africa causing tremendous loses. Sub-Saharan continental estimation of mean prevalence in both large and small domestic animals, risk factors, tsetse and non-tsetse prevalence and drug resistance is lacking. A review and meta-analysis was done to better comprehend changes in AAT prevalence and drug resistance. Publish/Perish software was used to search and extract peer-reviewed articles in Google scholar, PubMed and CrossRef. In addition, ResearchGate and African Journals Online (AJOL) were used. Screening and selection of articles from 2000-2021 was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles 304 were retrieved; on domestic animals 192, tsetse and non-tsetse vectors 44, risk factors 49 and trypanocidal drug resistance 30. Prevalence varied by, host animals in different countries, diagnostic methods and species of Trypanosoma. Cattle had the highest prevalence with Ethiopia and Nigeria leading, T. congolense (11.80-13.40%) and T. vivax (10.50-18.80%) being detected most. This was followed by camels and pigs. Common diagnostic method used was buffy coat microscopy. However; polymerase chain reaction (PCR), CATT and ELISA had higher detection rates. G. pallidipes caused most infections in Eastern regions while G. palpalis followed by G. mortisans in Western Africa. Eastern Africa reported more non-tsetse biting flies with Stomoxys leading. Common risk factors were, body conditions, breed type, age, sex and seasons. Ethiopia and Nigeria had the highest trypanocidal resistance 30.00-35.00% and highest AAT prevalence. Isometamidium and diminazene showed more resistance with T. congolense being most resistant species 11.00-83.00%.
Collapse
Affiliation(s)
- Ivy Okello
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Eliakunda Mafie
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Gillian Eastwood
- Virginia Polytechnic Institute & State University, College of Agriculture & Life Sciences, Blacksburg, VA, USA
| | - Jahashi Nzalawahe
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
| |
Collapse
|
9
|
Opiro R, Opoke R, Angwech H, Nakafu E, Oloya FA, Openy G, Njahira M, Macharia M, Echodu R, Malinga GM, Opiyo EA. Apparent density, trypanosome infection rates and host preference of tsetse flies in the sleeping sickness endemic focus of northwestern Uganda. BMC Vet Res 2021; 17:365. [PMID: 34839816 PMCID: PMC8628410 DOI: 10.1186/s12917-021-03071-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/13/2021] [Indexed: 11/11/2022] Open
Abstract
Background African trypanosomiasis, caused by protozoa of the genus Trypanosoma and transmitted by the tsetse fly, is a serious parasitic disease of humans and animals. Reliable data on the vector distribution, feeding preference and the trypanosome species they carry is pertinent to planning sustainable control strategies. Methodology We deployed 109 biconical traps in 10 villages in two districts of northwestern Uganda to obtain information on the apparent density, trypanosome infection status and blood meal sources of tsetse flies. A subset (272) of the collected samples was analyzed for detection of trypanosomes species and sub-species using a nested PCR protocol based on primers amplifying the Internal Transcribed Spacer (ITS) region of ribosomal DNA. 34 blood-engorged adult tsetse midguts were analyzed for blood meal sources by sequencing of the mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) genes. Results We captured a total of 622 Glossina fuscipes fuscipes tsetse flies (269 males and 353 females) in the two districts with apparent density (AD) ranging from 0.6 to 3.7 flies/trap/day (FTD). 10.7% (29/272) of the flies were infected with one or more trypanosome species. Infection rate was not significantly associated with district of origin (Generalized linear model (GLM), χ2 = 0.018, P = 0.895, df = 1, n = 272) and sex of the fly (χ2 = 1.723, P = 0.189, df = 1, n = 272). However, trypanosome infection was highly significantly associated with the fly’s age based on wing fray category (χ2 = 22.374, P < 0.001, df = 1, n = 272), being higher among the very old than the young tsetse. Nested PCR revealed several species of trypanosomes: T. vivax (6.62%), T. congolense (2.57%), T. brucei and T. simiae each at 0.73%. Blood meal analyses revealed five principal vertebrate hosts, namely, cattle (Bos taurus), humans (Homo sapiens), Nile monitor lizard (Varanus niloticus), African mud turtle (Pelusios chapini) and the African Savanna elephant (Loxodonta africana). Conclusion We found an infection rate of 10.8% in the tsetse sampled, with all infections attributed to trypanosome species that are causative agents for AAT. However, more verification of this finding using large-scale passive and active screening of human and tsetse samples should be done. Cattle and humans appear to be the most important tsetse hosts in the region and should be considered in the design of control interventions.
Collapse
Affiliation(s)
- Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda.
| | - Robert Opoke
- Department of Biology, Faculty of Science, Muni University, P.O Box 725, Arua, Uganda
| | - Harriet Angwech
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda
| | - Esther Nakafu
- Department of Molecular Biology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Francis A Oloya
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda
| | - Geoffrey Openy
- Department of Biosystems Engineering, Faculty of Agriculture and Environment, Gulu University, P. O Box 166, Gulu, Uganda
| | - Moses Njahira
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub, P. O Box 30709, Nairobi, Kenya
| | - Mercy Macharia
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub, P. O Box 30709, Nairobi, Kenya
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda
| | - Geoffrey M Malinga
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda.,Department of Forestry, Biodiversity and Tourism, Makerere University, PO Box 7062, Kampala, Uganda
| | - Elizabeth A Opiyo
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda
| |
Collapse
|
10
|
Kizza D, Ocaido M, Mugisha A, Azuba R, Nalule S, Onyuth H, Musinguzi SP, Okwasiimire R, Waiswa C. Prevalence and risk factors for trypanosome infection in cattle from communities surrounding the Murchison Falls National Park, Uganda. Parasit Vectors 2021; 14:513. [PMID: 34620230 PMCID: PMC8499574 DOI: 10.1186/s13071-021-04987-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bovine trypanosomosis transmitted by tsetse flies is a major constraint to cattle health and productivity in all sub-Saharan countries, including Uganda. The objectives of this study were to determine the prevalence of bovine trypanosomosis and identify its associated risk factors and the species of trypanosomes associated with the disease. Methodology A cross-sectional study was conducted around Murchison Falls National Park, Uganda from January 2020 to April 2020. Trypanosomes were detected in blood samples by PCR analysis targeting the internal transcribed spacer 1 (ITS-PCR assays), and trypanosomes in positive blood samples were sequenced. Results Of 460 blood samples collected and tested, 136 (29.6%) were positive for trypanosome infections and 324 (70.4%) were negative. The overall trypanosome prevalence was 29.6% (95% confidence interval 25.4–33.8%), attributed to three trypanosome species. Of these three species, Trypanosoma vivax was the most prevalent (n = 130, 28.3%) while the others were detected as mixed infections: T. vivax + Trypanosomacongolense (n = 2, 0.4%) and T. vivax + Trypanosomaevansi (n = 1, 0.2%). There were significant differences in trypanosome prevalence according to sex (χ2 = 62, df = 1, P < 0.05), age (χ2 = 6.28, df = 2, P = 0.0043) and cattle breed (χ2 = 10.61, df = 1, P = 0.001). Conclusions Trypanosomosis remains a major limitation to cattle production around Murchison Falls National Park and interventions are urgently needed. In our study, the prevalence of trypanosome infections was high, with T. vivax identified as the most prevalent species. Age, sex and breed of cattle were risk factors for trypanosome infection. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Daniel Kizza
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.
| | - Michael Ocaido
- Department of Wildlife, Aquatic and Animal Resources College of Veterinary Medicine Animal Resources, Biosecurity Makerere University, Kampala, Uganda
| | - Anthony Mugisha
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Rose Azuba
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Sarah Nalule
- Department of Wildlife, Aquatic and Animal Resources College of Veterinary Medicine Animal Resources, Biosecurity Makerere University, Kampala, Uganda
| | - Howard Onyuth
- Department of Wildlife, Aquatic and Animal Resources College of Veterinary Medicine Animal Resources, Biosecurity Makerere University, Kampala, Uganda
| | - Simon Peter Musinguzi
- Department of Agriculture, Faculty of Vocational studies, Kyambogo University, P.0 Box 1 Kyambogo, Kampala, Uganda
| | - Rodney Okwasiimire
- Central Diagnostic Laboratory, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Charles Waiswa
- Department of Veterinary Pharmacy, Clinical and Comparative Medicine, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| |
Collapse
|
11
|
Kizza D, Ocaido M, Mugisha A, Azuba R, Nalule S, Onyuth H, Musinguzi SP, Nalubwama S, Waiswa C. Knowledge, attitudes and practices on bovine trypanosomosis control in pastoral and agro pastoral communities surrounding Murchison Falls National Park, Uganda. Trop Anim Health Prod 2021; 53:309. [PMID: 33963468 DOI: 10.1007/s11250-021-02752-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
A mixed method survey was conducted among pastoral and agro pastoral communities surrounding Murchison Falls National Park, Uganda to assess knowledge, attitudes and practices about control of bovine trypanosomosis. A total of 96.8% (n = 152) of the participants had seen tsetse flies, and close to 91.7% (n = 116) of the participants had heard about bovine trypanosomosis. Bovine trypanosomosis was reported as a major disease in their area by about 73.9% (n = 116). There was a significant difference (P < 0.05) in the level of awareness and perception about tsetse and bovine trypanosomosis across the study sub counties. The majority of the farmers (60.5%) stated that grazing near national parks was the main cause of bovine trypanosomosis. A small proportion of farmers associated sharing grazing land and watering points with wildlife (19.1%) and grazing cattle in tsetse fly-infested areas (8.3%) as the causes of trypanosomosis. The communities in the study sub counties were aware of at least one or two clinical signs of bovine trypanosomosis. Spraying cattle with insecticide and avoiding grazing animals in tsetse-infested areas were the control practices. Curative trypanocides were mainly used to treat their cattle against trypanosomosis. Bush clearing, targets and traps as tsetse fly control measures were less practiced by the farmers. Treatment of cattle was based on observation of clinical signs due to absence of blood diagnostic facilities. Implementing regular tsetse fly population monitoring surveys and promotion of disease rapid diagnostic tools at farm level as long-term strategies are key for effective control of the disease.
Collapse
Affiliation(s)
- Daniel Kizza
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.
| | - Michael Ocaido
- Department of Wildlife, Aquatic and Animal Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Anthony Mugisha
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Rose Azuba
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Sarah Nalule
- Department of Wildlife, Aquatic and Animal Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Howard Onyuth
- Department of Wildlife, Aquatic and Animal Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Simon Peter Musinguzi
- Department of Animal Sciences, Faculty of Agriculture and Environmental Sciences, Kabale University, Kabale, Uganda
| | - Sylvia Nalubwama
- Department of Livestock and Industrial Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Charles Waiswa
- Department of Veterinary Pharmacy, Clinical and Comparative Medicine, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| |
Collapse
|
12
|
Campbell Z, Coleman P, Guest A, Kushwaha P, Ramuthivheli T, Osebe T, Perry B, Salt J. Prioritizing smallholder animal health needs in East Africa, West Africa, and South Asia using three approaches: Literature review, expert workshops, and practitioner surveys. Prev Vet Med 2021; 189:105279. [PMID: 33581421 PMCID: PMC8024747 DOI: 10.1016/j.prevetmed.2021.105279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
Managing the health needs of livestock contributes to reducing poverty and improving the livelihoods of smallholder and pastoralist livestock keepers globally. Animal health practitioners, producers, policymakers, and researchers all must prioritize how to mobilize limited resources. This study employed three approaches to prioritize animal health needs in East and West Africa and South Asia to identify diseases and syndromes that impact livestock keepers. The approaches were a) systematic literature review, b) a series of expert workshops, and c) a practitioner survey of veterinarians and para-veterinary professionals. The top constraints that emerged from all three approaches include endo/ ectoparasites, foot and mouth disease, brucellosis, peste des petits ruminants, Newcastle disease, and avian influenza. Expert workshops additionally identified contagious caprine pleuropneumonia, contagious bovine pleuropneumonia, mastitis, and reproductive disorders as constraints not emphasized in the literature review. Practitioner survey results additionally identified nutrition as a constraint for smallholder dairy and pastoralist small ruminant production. Experts attending the workshops agreed most constraints can be managed using existing veterinary technologies and best husbandry practices, which supports a shift away from focusing on individual diseases and new technologies towards addressing systemic challenges that limit access to veterinary services and inputs. Few research studies focused on incidence/ prevalence of disease and impact, suggesting better incorporation of socio-economic impact measures in future research would better represent the interests of livestock keepers.
Collapse
Affiliation(s)
- Zoë Campbell
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, 00100, Kenya.
| | - Paul Coleman
- H20 Venture Partners, 33-35 George Street, Oxford, OX1 2AY, United Kingdom
| | - Andrea Guest
- H20 Venture Partners, 33-35 George Street, Oxford, OX1 2AY, United Kingdom
| | - Peetambar Kushwaha
- GALVmed Asia Office, Unit 118 & 120 B, Splendor Forum, Plot No 3, Jasola District Centre, Jasola, New Delhi, 110025, India
| | - Thembinkosi Ramuthivheli
- GALVmed Africa Office, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Tom Osebe
- GALVmed Africa Office, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Brian Perry
- Nuffield College of Clinical Medicine, University of Oxford, United Kingdom; College of Medicine and Veterinary Medicine, University of Edinburgh, Arthurstone House, Meigle, Blairgowrie, PH12 8QW, Scotland, United Kingdom
| | - Jeremy Salt
- GALVmed UK Office, Doherty Building, Pentlands Science Park, Bush Loan, Penicuik Edinburgh, EH26 0PZ, Scotland, United Kingdom
| |
Collapse
|
13
|
Fetene E, Leta S, Regassa F, Büscher P. Global distribution, host range and prevalence of Trypanosoma vivax: a systematic review and meta-analysis. Parasit Vectors 2021; 14:80. [PMID: 33494807 PMCID: PMC7830052 DOI: 10.1186/s13071-021-04584-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Trypanosomosis caused by Trypanosoma vivax is one of the diseases threatening the health and productivity of livestock in Africa and Latin America. Trypanosoma vivax is mainly transmitted by tsetse flies; however, the parasite has also acquired the ability to be transmitted mechanically by hematophagous dipterans. Understanding its distribution, host range and prevalence is a key step in local and global efforts to control the disease. METHODS The study was conducted according to the methodological recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. A systematic literature search was conducted on three search engines, namely PubMed, Scopus and CAB Direct, to identify all publications reporting natural infection of T. vivax across the world. All the three search engines were screened using the search term Trypanosoma vivax without time and language restrictions. Publications on T. vivax that met our inclusion criteria were considered for systematic review and meta-analysis. RESULT The study provides a global database of T. vivax, consisting of 899 records from 245 peer-reviewed articles in 41 countries. A total of 232, 6277 tests were performed on 97 different mammalian hosts, including a wide range of wild animals. Natural infections of T. vivax were recorded in 39 different African and Latin American countries and 47 mammalian host species. All the 245 articles were included into the qualitative analysis, while information from 186 cross-sectional studies was used in the quantitative analysis mainly to estimate the pooled prevalence. Pooled prevalence estimates of T. vivax in domestic buffalo, cattle, dog, dromedary camel, equine, pig, small ruminant and wild animals were 30.6%, 6.4%, 2.6%, 8.4%, 3.7%, 5.5%, 3.8% and 12.9%, respectively. Stratified according to the diagnostic method, the highest pooled prevalences were found with serological techniques in domesticated buffalo (57.6%) followed by equine (50.0%) and wild animals (49.3%). CONCLUSION The study provides a comprehensive dataset on the geographical distribution and host range of T. vivax and demonstrates the potential of this parasite to invade other countries out of Africa and Latin America.
Collapse
Affiliation(s)
- Eyerusalem Fetene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.
| | - Fikru Regassa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.,FDRE Ministry of Agriculture, P.O.Box 62347/3735, Addia Ababa, Ethiopia
| | - Philippe Büscher
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, 2000, Antwerp, Belgium
| |
Collapse
|
14
|
Hassan-Kadle AA, Ibrahim AM, Nyingilili HS, Yusuf AA, Vieira RFC. Parasitological and molecular detection of Trypanosoma spp. in cattle, goats and sheep in Somalia. Parasitology 2020; 147:1786-1791. [PMID: 32951618 PMCID: PMC10317749 DOI: 10.1017/s003118202000178x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023]
Abstract
African animal trypanosomiasis (AAT) affects the livestock of 12.3 million Somalis and constrains their development and wellbeing. There is missing data on AAT in the country after the civil war of the 1990s. Therefore, this study has aimed to assess the prevalence of Trypanosoma spp. in 614 blood samples from cattle (n = 202), goats (n = 206) and sheep (n = 206) in Afgoye and Jowhar districts, Somalia using parasitological and molecular methods. Twenty-one out of 614 (3.4%; 95% CI: 2.1-5.2%) and 101/614 (16.4%; 95% CI: 13.6-19.6%) ruminants were positive for Trypanosoma spp. by buffy coat technique (BCT) and internal transcribed spacer 1 (ITS1)-polymerase chain reaction (PCR), respectively. Using ITS1-PCR, the highest prevalence was observed in cattle (23.8%; 95% CI: 18.4-30.1%) followed by goats (17.5%; 95% CI: 12.9-23.3%) and sheep (8.3%; 95% CI: 5.1-12.9%). A total of 74/101 (73.3%; 95% CI: 63.5-81.6%) ruminants were shown coinfection with at least two Trypanosome species. The four T. brucei-positive samples have tested negative for T. b. rhodesiense, by the human-serum-resistance-associated-PCR. Trypanosoma evansi, T. godfreyi, T. vivax, T. brucei, T. simiae and T. congolense were the Trypanosoma species found in this study. This is the first study on the molecular detection of Trypanosoma sp. in ruminants in Somalia. Further investigations and control measures are needed to manage Trypanosomiasis spreading in the country. Studies should also focus on the detection of T. b. rhodesiense in the country.
Collapse
Affiliation(s)
- Ahmed A. Hassan-Kadle
- Abrar Research and Training Centre, Abrar University, Mogadishu, Somalia
- Vector-Borne Diseases Laboratory, Department of Veterinary Medicine, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Abdalla M. Ibrahim
- Abrar Research and Training Centre, Abrar University, Mogadishu, Somalia
| | | | - Abdulkarim A. Yusuf
- Abrar Research and Training Centre, Abrar University, Mogadishu, Somalia
- Vector-Borne Diseases Laboratory, Department of Veterinary Medicine, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Rafael F. C. Vieira
- Vector-Borne Diseases Laboratory, Department of Veterinary Medicine, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Global One Health initiative (GOHi), The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Prevalence and control implications of bovine trypanosomes in endemic areas of northern Uganda. Trop Anim Health Prod 2020; 52:3259-3264. [PMID: 32699961 DOI: 10.1007/s11250-020-02353-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
African animal trypanosomiasis (AAT), a disease complex caused by tsetse fly-transmitted Trypanosoma brucei brucei, T. congolense savannah ITS, and T. vivax, continues to inflict heavy losses to the animal industry in terms of decreased livestock production and productivity. Live bait technology and chemotherapy have been used as a control strategy in northern Uganda since 2006 with minimal success. Here, we report the results of a cross-sectional study carried out in Lango subregion, Uganda, to assess the species prevalence of bovine trypanosome in cattle using the internal transcribed spacer (ITS) of trypanosome ribosomal DNA (rDNA). Blood samples were collected from 1090 cattle by ear vein puncture and screened using a single pair of primers designed to amplify ITS ribosomal DNA (rDNA). Our results indicate an overall prevalence of 40.18% (438/1090, 95% CI 30.82-54.51). T. vivax constituted 32.66% (356/1090), T. congolense 2.39% (26/1090), T. brucei 1.28% (14/1090), T. godfreyi 0.09%(1/1090), T. brucei and T. congolense 0.36% (4/1090), T. brucei and T. vivax 1.47% (16/1090), T. vivax and T. congolense 1.65% (18/1090), T. vivax and T. simiae 0.18% (2/1090), and T. vivax and T. godfreyi 0.09% (1/1090) of infections. Over 91.7% of infections involved single species, while 9.5% were mixed infections. Over 90.2% (37/41) of the mixed infections involved T. vivax as one of the species, while 53.7% (22/41) involved T. congolense. The high prevalence of AAT and the continued presence of T. brucei raise public health concerns because of the zoonotic implications. An integrated approach that involves mass treatment of cattle, vector, and animal movement control should be adopted to reduce the risk of both AAT and HAT.
Collapse
|
16
|
Ebhodaghe F, Isaac C, Ohiolei JA. A meta-analysis of the prevalence of bovine trypanosomiasis in some African countries from 2000 to 2018. Prev Vet Med 2018; 160:35-46. [PMID: 30388996 DOI: 10.1016/j.prevetmed.2018.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/13/2018] [Accepted: 09/18/2018] [Indexed: 01/24/2023]
Abstract
Bovine trypanosomiasis is a disease of cattle. In sub-Saharan Africa, the disease mean prevalence estimates are unknown in most endemic countries. We therefore performed a meta-analysis with the aim of estimating national mean prevalence of bovine trypanosomiasis in endemic countries across sub-Saharan Africa. Relevant articles reporting bovine trypanosomiasis prevalence were retrieved through systematic literature search and scanning of articles reference-lists. Eligibility criteria included that articles reported sample size, prevalence, and diagnostic technique adopted. Overall, data from 180 eligible articles from 19 countries satisfied the inclusion criteria. Meta-analysis of prevalence data based on the random-effects model resulted in an overall mean prevalence of 15.10% (95% CI: 13.22-17.08). National prevalence estimates were generally high except those of Benin and Senegal where estimates ranked below 10.00%. Significant heterogeneity (I2 = 98.75%. p = <0.0001) was noted between studies, and univariate meta-regression analysis identified choice of diagnostic method being major contributor to observed heterogeneity (R2 = 36.37%); while country of study (R2 = 9.57%) and sample size (R2 = 3.47%) had marginal effect on heterogeneity. In spite of past and ongoing control activities, bovine trypanosomiasis remains highly prevalent in most endemic sub-Saharan African countries. Nevertheless, dearth of epidemiological data in some countries and the use of less sensitive diagnostic tools limit reliable estimation of the disease prevalence. Therefore, there is the need to intensify efforts in aspects of surveillance and increased application of molecular diagnostic tool(s) across endemic locations as this would raise the chances of achieving a near-accurate estimate of the disease prevalence which is the first step to attempting eradication.
Collapse
Affiliation(s)
- F Ebhodaghe
- African Regional Postgraduate Programme in Insect Science, West African Sub-Regional Centre, University of Ghana Legon, Accra, Ghana; Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria.
| | - C Isaac
- Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria.
| | - J A Ohiolei
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
17
|
Rodrigues CM, Garcia HA, Rodrigues AC, Costa-Martins AG, Pereira CL, Pereira DL, Bengaly Z, Neves L, Camargo EP, Hamilton PB, Teixeira MM. New insights from Gorongosa National Park and Niassa National Reserve of Mozambique increasing the genetic diversity of Trypanosoma vivax and Trypanosoma vivax-like in tsetse flies, wild ungulates and livestock from East Africa. Parasit Vectors 2017; 10:337. [PMID: 28716154 PMCID: PMC5513381 DOI: 10.1186/s13071-017-2241-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Trypanosoma (Duttonella) vivax is a major pathogen of livestock in Africa and South America (SA), and genetic studies limited to small sampling suggest greater diversity in East Africa (EA) compared to both West Africa (WA) and SA. METHODS Multidimensional scaling and phylogenetic analyses of 112 sequences of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) gene and 263 sequences of the internal transcribed spacer of rDNA (ITS rDNA) were performed to compare trypanosomes from tsetse flies from Gorongosa National Park and Niassa National Reserve of Mozambique (MZ), wild ungulates and livestock from EA, and livestock isolates from WA and SA. RESULTS Multidimensional scaling (MDS) supported Tvv (T. vivax) and TvL (T. vivax-like) evolutionary lineages: 1) Tvv comprises two main groups, TvvA/B (all SA and WA isolates plus some isolates from EA) and TvvC/D (exclusively from EA). The network revealed five ITS-genotypes within Tvv: Tvv1 (WA/EA isolates), Tvv2 (SA) and Tvv3-5 (EA). EA genotypes of Tvv ranged from highly related to largely different from WA/SA genotypes. 2) TvL comprises two gGAPDH-groups formed exclusively by EA sequences, TvLA (Tanzania/Kenya) and TvLB-D (MZ). This lineage contains more than 11 ITS-genotypes, seven forming the lineage TvL-Gorongosa that diverged from T. vivax Y486 enough to be identified as another species of the subgenus Duttonella. While gGAPDH sequences were fundamental for classification at the subgenus, major evolutionary lineages and species levels, ITS rDNA sequences permitted identification of known and novel genotypes. CONCLUSIONS Our results corroborate a remarkable diversity of Duttonella trypanosomes in EA, especially in wildlife conservation areas, compared to the moderate diversity in WA. Surveys in wilderness areas in WA may reveal greater diversity. Biogeographical and phylogenetic data point to EA as the place of origin, diversification and spread of Duttonella trypanosomes across Africa, providing relevant insights towards the understanding of T. vivax evolutionary history.
Collapse
Affiliation(s)
- Carla Mf Rodrigues
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Herakles A Garcia
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Departamento de Patología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
| | - Adriana C Rodrigues
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - André G Costa-Martins
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos L Pereira
- National Administration of Conservation Areas, Ministry of Tourism, Maputo, Mozambique.,Wildlife Conservation Society, Niassa National Reserve, Maputo, Mozambique
| | | | - Zakaria Bengaly
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Luis Neves
- Centro de Biotecnologia, Eduardo Mondlane University, Maputo, Mozambique.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Erney P Camargo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Marta Mg Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil. .,Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso.
| |
Collapse
|