1
|
Kehl A, Klein R, Steiger K, Aupperle-Lellbach H. Stability of microRNAs in Canine Serum-A Prerequisite for Use as Biomarkers in Tumour Diagnostics. Vet Sci 2025; 12:390. [PMID: 40284892 PMCID: PMC12031383 DOI: 10.3390/vetsci12040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Since microRNAs are released into the bloodstream and miRNA profiles are supposed to differ between healthy and tumour patients, miRNAs seem to have potential as biomarkers. An essential prerequisite for biomarkers in a routine diagnostic setup is their stability in serum over time. In this study, serum samples from 10 healthy dogs were analysed at different time points and under various temperature conditions (after 24 and 48 h, at 4° or 20 °C) for the copy number of eight miRNAs (miR-20b, 21, 122, 126, 192, 214, 222, 494) using ddPCR. The miR-21 had the highest copy number, whereas miR-494 had the lowest copy number in canine blood samples. The values of each miRNA varied individually between the dogs, showing a 5 to 10-fold range. Stability differed between the miRNAs, with miR-192 having the best stability. The copy number of miR-20b, miR-126 and miR-214 decreased not significantly during 48 h storage time. In contrast, miR-21, miR-122 and miR-222 were stable for 24 h only but decreased significantly after 48 h. The (in)stability of individual canine miRNAs must be considered when transferring study results into veterinary routine diagnostics, as the transport and storage conditions are variable. As far as possible, standardisation of sampling, storage and quantification of miRNAs is needed.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH&Co. KG, 97688 Bad Kissingen, Germany; (R.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, 81675 München, Germany;
| | - Ruth Klein
- Laboklin GmbH&Co. KG, 97688 Bad Kissingen, Germany; (R.K.); (H.A.-L.)
| | - Katja Steiger
- School of Medicine, Institute of Pathology, Technical University of Munich, 81675 München, Germany;
| | - Heike Aupperle-Lellbach
- Laboklin GmbH&Co. KG, 97688 Bad Kissingen, Germany; (R.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, 81675 München, Germany;
| |
Collapse
|
2
|
Abobakr S, Shaker O, Hegazy MT, Hany AM. A possible role of lncRNA MEG3 and lncRNA MAFG-AS1 on miRNA 147-b in the pathogenesis of Behcet's disease. Immunogenetics 2024; 76:233-241. [PMID: 38985298 PMCID: PMC11246302 DOI: 10.1007/s00251-024-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Behcet's disease (BD) is a multisystem disease with altered Toll-like receptors (TLRs) on macrophages. Long noncoding RNA Maternally expressed gene 3 (lncRNA MEG3) and lncRNA Musculoaponeurotic fibrosarcoma oncogene family, protein G antisense 1 (MAFG-AS1) are regulators of microRNA (miRNA) 147-b, which is induced upon TLR stimulation. We included fifty BD patients, and fifty age and sex-matched controls. Real-time polymerase chain reaction (PCR) was used to measure the expression levels of serum lncRNA MEG3, lncRNA MAFG-AS1, and miRNA 147-b. LncRNA MEG3 and lncRNA MAFG-AS1 were significantly downregulated while miRNA 147-b was significantly upregulated in the BD patients' serum compared to the controls with p-value <0.001. Receiver operation characteristics (ROC) curve analysis revealed that the three biomarkers can discriminate between BD and control subjects with 76%, 100%, and 70% sensitivity respectively, and 100% specificity for all of them. There was a lower expression level of lnc RNA MEG3 among patients who had new eye involvement in the last month in comparison to those without new eye involvement (p-value=0.017). So, LncRNA MEG3, lncRNA MAFG-AS1, and miRNA147-b are promising diagnostic markers and therapeutic targets for BD patients. LncRNA MEG3 can be used as a predictor for new BD ocular involvement.
Collapse
Affiliation(s)
- Shimaa Abobakr
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Tharwat Hegazy
- Internal Medicine Department, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Mohamed Hany
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Varvil MS, dos Santos AP. A review on microRNA detection and expression studies in dogs. Front Vet Sci 2023; 10:1261085. [PMID: 37869503 PMCID: PMC10585042 DOI: 10.3389/fvets.2023.1261085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function by post-transcriptional regulation of gene expression. Their stability and abundance in tissue and body fluids makes them promising potential tools for both the diagnosis and prognosis of diseases and attractive therapeutic targets in humans and dogs. Studies of miRNA expression in normal and disease processes in dogs are scarce compared to studies published on miRNA expression in human disease. In this literature review, we identified 461 peer-reviewed papers from database searches using the terms "canine," "dog," "miRNA," and "microRNA"; we screened 244 for inclusion criteria and then included a total of 148 original research peer-reviewed publications relating to specific miRNA expression in canine samples. We found an overlap of miRNA expression changes between the four groups evaluated (normal processes, non-infectious and non-inflammatory conditions, infectious and/or inflammatory conditions, and neoplasia) in 39 miRNAs, 83 miRNAs in three of the four groups, 110 miRNAs in two of the three groups, where 158 miRNAs have only been reported in one of the groups. Additionally, the mechanism of action of these overlapping miRNAs varies depending on the disease process, elucidating a need for characterization of the mechanism of action of each miRNA in each disease process being evaluated. Herein we also draw attention to the lack of standardization of miRNA evaluation, consistency within a single evaluation method, and the need for standardized methods for a direct comparison.
Collapse
Affiliation(s)
- Mara S. Varvil
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
miRNA Profiles of Canine Intestinal Carcinomas, Lymphomas and Enteritis Analysed by Digital Droplet PCR from FFPE Material. Vet Sci 2023; 10:vetsci10020125. [PMID: 36851429 PMCID: PMC9966613 DOI: 10.3390/vetsci10020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Most canine intestinal tumours are B-cell or T-cell lymphomas or carcinomas. They have to be distinguished from cases of enteritis. Non-invasive biomarkers such as miRNAs would be a step towards faster diagnosis. The aim of this study was to investigate shifts in miRNA expression in tissue samples collected from cases of enteritis, carcinoma and lymphoma of the small and large intestine to better understand the potential of miRNA as biomarkers for tumour diagnosis and classification. We selected two oncogenic miRNAs (miR-18b and 20b), two tumour suppressive miRNAs (miR-192 and 194) and two potential biomarkers for neoplasms (miR-126 and 214). They were isolated from FFPE material, quantified by ddPCR, normalised with RNU6B and compared with normal tissue values. Our results confirmed that ddPCR is a suitable method for quantifying miRNA from FFPE material. Expression of miR-18b and miR-192 was higher in carcinomas of the small intestine than in those of the large intestine. Specific miRNA patterns were observed in cases of enteritis, B-cell and T-cell lymphoma and carcinoma. However, oncogenic miR-18b and 20b were not elevated in any group and miR-126 and 214 were down-regulated in T-cell and B-cell lymphoma, as well as in carcinomas and lymphoplasmacytic enteritis of the small intestine.
Collapse
|
5
|
Jergens AE, Heilmann RM. Canine chronic enteropathy—Current state-of-the-art and emerging concepts. Front Vet Sci 2022; 9:923013. [PMID: 36213409 PMCID: PMC9534534 DOI: 10.3389/fvets.2022.923013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, chronic inflammatory enteropathies (CIE) in dogs have received great attention in the basic and clinical research arena. The 2010 ACVIM Consensus Statement, including guidelines for the diagnostic criteria for canine and feline CIE, was an important milestone to a more standardized approach to patients suspected of a CIE diagnosis. Great strides have been made since understanding the pathogenesis and classification of CIE in dogs, and novel diagnostic and treatment options have evolved. New concepts in the microbiome-host-interaction, metabolic pathways, crosstalk within the mucosal immune system, and extension to the gut-brain axis have emerged. Novel diagnostics have been developed, the clinical utility of which remains to be critically evaluated in the next coming years. New directions are also expected to lead to a larger spectrum of treatment options tailored to the individual patient. This review offers insights into emerging concepts and future directions proposed for further CIE research in dogs for the next decade to come.
Collapse
Affiliation(s)
- Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Albert E. Jergens
| | - Romy M. Heilmann
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| |
Collapse
|
6
|
Elucidating the Role of Innate and Adaptive Immune Responses in the Pathogenesis of Canine Chronic Inflammatory Enteropathy-A Search for Potential Biomarkers. Animals (Basel) 2022; 12:ani12131645. [PMID: 35804545 PMCID: PMC9264988 DOI: 10.3390/ani12131645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Canine chronic inflammatory enteropathy (CIE) is a chronic disease affecting the small or large intestine and, in some cases, the stomach of dogs. This gastrointestinal disorder is common and is characterized by recurrent vomiting, diarrhea, and weight loss in affected dogs. The pathogenesis of IBD is not completely understood. Similar to human IBD, potential disease factors include genetics, environmental exposures, and dysregulation of the microbiota and the immune response. Some important components of the innate and adaptive immune response involved in CIE pathogenesis have been described. However, the immunopathogenesis of the disease has not been fully elucidated. In this review, we summarized the literature associated with the different cell types and molecules involved in the immunopathogenesis of CIE, with the aim of advancing the search for biomarkers with possible diagnostic, prognostic, or therapeutic utility. Abstract Canine chronic inflammatory enteropathy (CIE) is one of the most common chronic gastrointestinal diseases affecting dogs worldwide. Genetic and environmental factors, as well as intestinal microbiota and dysregulated host immune responses, participate in this multifactorial disease. Despite advances explaining the immunological and molecular mechanisms involved in CIE development, the exact pathogenesis is still unknown. This review compiles the latest reports and advances that describe the main molecular and cellular mechanisms of both the innate and adaptive immune responses involved in canine CIE pathogenesis. Future studies should focus research on the characterization of the immunopathogenesis of canine CIE in order to advance the establishment of biomarkers and molecular targets of diagnostic, prognostic, or therapeutic utility.
Collapse
|
7
|
Morus macroura Miq. Fruit extract protects against acetic acid-induced ulcerative colitis in rats: Novel mechanistic insights on its impact on miRNA-223 and on the TNFα/NFκB/NLRP3 inflammatory axis. Food Chem Toxicol 2022; 165:113146. [PMID: 35595039 DOI: 10.1016/j.fct.2022.113146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Nod-like receptor pyrin domain-1 containing 3 (NLRP3) inflammasome/tumor necrosis factor alpha (TNFα)/nuclear factor kappa B (NFκB) inflammatory pathway is known to be involved in the pathogenesis of ulcerative colitis (UC). Inversely, miRNA-223 can exert counter-regulatory effect on NLRP3 expression. The mulberry tree (Morus macroura) fruit is attaining increased importance for its antioxidant and anti-inflammatory activity in addition to its high safety profile. Accordingly, we attempted to explore the possible protective effect of mulberry fruit extract (MFE) in acetic acid (AA)-induced UC rat model. Phytochemical constituents of MFE were characterized using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). In the in vivo study, three doses of MFE were orally given for seven days before intra-rectal induction of UC by AA on day eight. Screening study revealed that MFE (300 mg/kg) significantly reduced macroscopic and microscopic UC scores. Biochemically, MFE ameliorated oxidative stress, levels of TNFR1, NLRP3, p-NFκB p65, TNFα, IL-1β, and IL-18, caspase-1 activity, but enhanced miRNA-223 expression. In conclusion, our study provided a novel protective impact for MFE against UC, in which miRNA-223 and TNFα/NFκB/NLRP3 pathway are involved. These results provide a promising step that might encourage further investigations of MFE as a protective agent in UC patients.
Collapse
|
8
|
Mohammad Rahimi H, Yadegar A, Asadzadeh Aghdaei H, Mirjalali H, Zali MR. Modulation of microRNAs and claudin-7 in Caco-2 cell line treated with Blastocystis sp., subtype 3 soluble total antigen. BMC Microbiol 2022; 22:111. [PMID: 35459091 PMCID: PMC9027909 DOI: 10.1186/s12866-022-02528-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Background Blastocystis sp., is a eukaryote of the large intestine, which is reported from almost all countries. The pathogenesis of this protist is not clear. The current study aimed to analyze the effects of Blastocystis sp., ST3 soluble total antigen (B3STA) on the microRNAs (miRNAs) involved in the gut permeability and also pro-inflammatory cytokines, occludin, and claudin-7. Methods Blastocystis sp., ST3 isolated from stool sample was purified, and its soluble total antigen was extracted using freeze and thawing. The Caco-2 cell line was treated with B3STA for 24 h and the expression levels of mir-16, mir-21, mir-29a, mir-223, and mir-874 were analyzed. In addition, the expression levels of il-8, il-15, occludin, and claudin-7 genes were assessed. Results B3STA significantly upregulated the expression of mir-223, and mir-874, and downregulated mir-29a. The expression of mir-16 and mir-21 was not significant. In addition, the expression of il-8 and il-15 was not significant. B3STA significantly decreased the expression level of claudin-7 (P-value < 0.0001), but the expression of occludin was not significant. Our results showed significant correlation between all studied miRNAs, except mir-29a, with downregulation of claudin-7. Conclusions This is the first study investigating the effects of Blastocystis sp., ST3 isolated from symptomatic subjects on the expression levels of miRNAs involved in the gut permeability. Our results demonstrated that B3STA may change miRNA expression, which are involved in the gut barrier integrity, and downregulates claudin-7, which is known as sealing factor.
Collapse
Affiliation(s)
- Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Winter E, Cisilotto J, Silva AH, Rosolen D, Fabichak AP, Rode MP, Creczynski-Pasa TB. MicroRNAs: Potential biomarkers for reproduction, diagnosis, prognosis, and therapeutic in domestic animals. Res Vet Sci 2021; 142:117-132. [PMID: 34942556 DOI: 10.1016/j.rvsc.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
MicroRNA (miRNAs) are small non-coding RNA molecules involved in a wide range of biological processes through the post-transcriptional regulation of gene expression. Most studies evaluated microRNA expression in human, and despite fewer studies in veterinary medicine, this topic is one of the most exciting areas of modern veterinary medicine. miRNAs showed to be part of the pathogenesis of diseases and reproduction physiology in animals, making them biomarkers candidates. This review provides an overview of the current knowledge regarding miRNAs' role in reproduction and animal diseases, diagnostic and therapy.
Collapse
Affiliation(s)
- Evelyn Winter
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil.
| | - Júlia Cisilotto
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Daiane Rosolen
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Ana Paula Fabichak
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil
| | - Michele Patricia Rode
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| |
Collapse
|
10
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
11
|
Allenspach K, Mochel JP. Current diagnostics for chronic enteropathies in dogs. Vet Clin Pathol 2021; 50 Suppl 1:18-28. [PMID: 34699081 DOI: 10.1111/vcp.13068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
Chronic enteropathies (CEs) in dogs describe a group of idiopathic disorders characterized by chronic persistent or recurrent gastrointestinal (GI) signs. Three major subgroups of CE can be identified by their response to treatment: Food-responsive disease (FRD), antibiotic-responsive disease (ARD), and steroid-responsive disease (SRD). The clinical diagnosis of CE is made by exclusion of all other possible causes of chronic diarrhea and includes histologic assessment of intestinal biopsies. The process of diagnosing canine CE can therefore be very time-consuming and expensive, and in most cases, does not help to identify dogs that will respond to a specific treatment. The development of novel diagnostic tests for canine CE has therefore focused on the accuracy of such tests to predict treatment responses. In this article, several novel assays that have the potential to become commercially available will be discussed, such as genetic tests, perinuclear anti-neutrophil cytoplasmic antibodies (pANCA), antibodies against transglutaminase/gliadin, antibodies against E coli OmpC/flagellin, and micro RNAs.
Collapse
Affiliation(s)
- Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.,SMART Translational Medicine, Iowa State University, Ames, IA, USA
| | - Jonathan P Mochel
- SMART Translational Medicine, Iowa State University, Ames, IA, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Lin L, Hu K. MiR-147: Functions and Implications in Inflammation and Diseases. Microrna 2021; 10:91-96. [PMID: 34238178 DOI: 10.2174/2211536610666210707113605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (19~25 nucleotides) that regulate gene expression at a post-transcriptional level through repression of mRNA translation or mRNA decay. miR-147, which was initially discovered in mouse spleen and macrophages, has been shown to correlate with coronary atherogenesis and inflammatory bowel disease and modulate macrophage functions and inflammation through TLR-4. The altered miR-147 level has been shown in various human diseases, including infectious disease, cancer, cardiovascular disease, a neurodegenerative disorder, etc. This review will focus on the current understanding regarding the role of miR-147 in inflammation and diseases.
Collapse
Affiliation(s)
- Ling Lin
- Nephrology Research Program, Department of Medicine, Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA. United States
| | - Kebin Hu
- Nephrology Research Program, Department of Medicine, Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA. United States
| |
Collapse
|
13
|
El-Sebaey AM, Abramov PN. Hepatocyte-derived canine familiaris-microRNAs as serum biomarkers of hepatic steatosis or fibrosis as implicated in the pathogenesis of canine cholecystolithiasis. Vet Clin Pathol 2021; 50 Suppl 1:37-46. [PMID: 34031917 DOI: 10.1111/vcp.12942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hepatic cholesterol accumulation in small breed dogs is a leading risk factor for hepatic fatty changes, gallbladder hypomotility, and cholelith development, which, if not discovered early, could lead to life-threatening choledocholithiasis and acute pancreatitis. OBJECTIVE This study proposed to assess the use of hepatocyte-derived canine familiaris (cfa)-microRNAs (miRNA-122, -34a, and -21) as new diagnostic serum biomarkers of liver steatosis or fibrosis, for which both processes have been implicated in canine cholecystolithiasis. METHODS Forty client-owned dogs diagnosed with cholecystolithiasis and hepatic steatosis (C+HS) or fibrosis (C+HF) based on ultrasonographic, biochemical, and histopathologic findings, and 20 healthy dogs used as controls were included in the study. Serum cfa-miRNA expression was determined using a real-time polymerase chain reaction assay. RESULTS Serum cfa-miRNA-122 and -34a expression was significantly upregulated in the C+HS (P < .001) and C+HF (P < .01) groups compared with the control group and showed a positive correlation with alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), alkaline phosphatase (ALP), γ-glutamyl transferase (GGT), total cholesterol (TC), and triglycerides (TG) levels in the C+HS group. Cfa-miRNA-122 and -34a expression discriminated the diseased groups from the control group better than traditional serum-derived liver biomarkers, as evidenced by areas under the receiver operating characteristic (AUC-ROC) curve of 0.99 and 0.97 for cfa-miRNA-122 expression in the C+HS and C+HF groups, and 1.0 and 0.96 for cfa-miRNA-34a in the C+HS and C+HF groups, respectively. Cfa-miRNA-21 expression was upregulated only in the C+HF group compared with the C+HS (P < .01) and control (P < .001) groups and showed a positive correlation with serum ALT, AST, TBIL, ALP, and GGT and negative correlation with serum TC and TG levels. Cfa-miRNA-21 expression could also differentiate the C+HF group from the control and C+HS groups with a diagnostic performance superior to that of the conventional serum biochemical variables as evidenced by AUCs of 1.0 and 0.98, respectively. CONCLUSIONS Serum cfa-miRNA-122, -34a, and -21 expression was significantly upregulated in dogs with cholecystolithiasis with hepatic steatosis or fibrosis compared with control dogs. These miRNAs could serve as novel biomarkers for hepatic steatosis or fibrosis, which have been implicated in the pathogenesis of cholecystolithiasis.
Collapse
Affiliation(s)
- Ahmed M El-Sebaey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.,Department of Disease Diagnosis, Therapy, Obstetrics, and Animal Reproduction, Moscow State Academy of Veterinary Medicine and Biotechnology - MVA by K. I. Skryabin, Moscow, Russian Federation
| | - Pavel N Abramov
- Department of Disease Diagnosis, Therapy, Obstetrics, and Animal Reproduction, Moscow State Academy of Veterinary Medicine and Biotechnology - MVA by K. I. Skryabin, Moscow, Russian Federation
| |
Collapse
|
14
|
Konstantinidis AO, Adamama-Moraitou KK, Pardali D, Dovas CI, Brellou GD, Papadopoulos T, Jergens AE, Allenspach K, Rallis TS. Colonic mucosal and cytobrush sample cytokine mRNA expression in canine inflammatory bowel disease and their correlation with disease activity, endoscopic and histopathologic score. PLoS One 2021; 16:e0245713. [PMID: 33471872 PMCID: PMC7817028 DOI: 10.1371/journal.pone.0245713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/09/2020] [Indexed: 01/02/2023] Open
Abstract
Canine inflammatory bowel disease (IBD) is a group of chronic gastrointestinal disorders, the pathogenesis of which remains elusive, but it possibly involves the interaction of the intestinal immune system with luminal microbiota and food-derived antigens. Mucosal cytokines profiles in canine IBD have been investigated mainly in small intestinal disease, while data on cytokine profiles in large intestinal IBD are limited. The objective of this study was to measure colonic mucosal and cytobrush sample messenger (m)RNA expression of interleukin (IL)-1β, IL-2, IL-12p40, IL-23p19, tumor necrosis factor-alpha (TNF-α) and chemokine C-C motif ligand (CCL28) in dogs with IBD and healthy controls using quantitative real-time polymerase chain reaction (PCR), and assess their correlation with clinical disease activity, endoscopic and histopathologic score. Dogs with IBD had a significantly increased mRNA expression of IL-1β, IL-23p19 and CCL28 in the colonic mucosa, compared to healthy controls. None of the selected cytokines had significantly different mRNA expression in the colonic cytobrush samples between the two groups or between the colonic mucosa and cytobrush samples of dogs with IBD. Finally, there was a statistically significant correlation of clinical disease activity with endoscopic activity score and fibrosis and atrophy of the colonic mucosa in dogs with large intestinal IBD. IL-1β, IL-23p19 and CCL28 could play a role in the pathogenesis of canine large intestinal IBD. Colonic cytokine expression does not correlate with clinical disease activity and/or endoscopic score. However, clinical signs reflect the severity of endoscopic lesions.
Collapse
Affiliation(s)
- Alexandros O. Konstantinidis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail:
| | - Katerina K. Adamama-Moraitou
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Pardali
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos I. Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia D. Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theologos Papadopoulos
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Albert E. Jergens
- Department of Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America
| | - Karin Allenspach
- Department of Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America
| | - Timoleon S. Rallis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Wang S, Shen L, Luo H. Identification and Validation of Key miRNAs and a microRNA-mRNA Regulatory Network Associated with Ulcerative Colitis. DNA Cell Biol 2020; 40:147-156. [PMID: 33347387 DOI: 10.1089/dna.2020.6151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, nonspecific, intestinal inflammatory disease that involves various genes and pathways in its pathogenesis. The current study revealed the key miRNAs and potential target gene regulatory network as a model for predicting the molecular mechanism of UC. This may provide novel insights for unraveling the pathogenesis of UC. Differentially expressed miRNAs (DEMIs) and mRNAs (differentially expressed genes [DEGs]) between UC patients and normal controls were screened using the Gene Expression Omnibus database. DEMI target genes were predicted using the miRDB, miRWalk, starBase, TarBase, and TargetScan databases, and an miRNA-mRNA network was established using DEGs that altered in opposition to DEMIs. We verified the expression of key DEMIs in a rodent UC model. The miRNA-mRNA network contained 31 DEMIs and 199 DEGs, which showed enrichment in inflammatory bowel disease. We selected 2 key miRNAs and 4 hub genes. In addition, we identified six DEMIs and genes from the preliminary validation analysis in model tissues. In the pathophysiological process of UC, various genes and proteins display expression differences and complex interactions with each other. These findings provide new insights into the potential key mechanisms associated with UC development.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|