1
|
Thabit ZA, AlShaheeb ZA, Jaafar MR, Al-Qaysi SAS, Al-Shimmary SMH. Multidrug resistance and virulence profile of the commensal Proteus mirabilis isolated from a native Iraqi frozen chicken carcass. J Genet Eng Biotechnol 2025; 23:100490. [PMID: 40390501 PMCID: PMC12059684 DOI: 10.1016/j.jgeb.2025.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 05/21/2025]
Abstract
This study aimed to determine the prevalence of Proteus mirabilis in frozen chicken carcass from local slaughterhouse. It assesses the activities of nine antimicrobial agents and the presence of antimicrobial resistance genes and virulence genes. Thirty samples were collected from five local Iraqi companies. and then the antibiotic-resistance genes and virulence factor-related genes were detected via polymerase chain reaction (PCR). The results revealed that Nine P. mirabilis isolates were recovered, and the majority of the isolates were resistant to both nalidixic acid and azithromycin at a ratio of (100 %), followed by trimethoprim-sulfamethoxazole (sul1) (88.8 %), whereas the isolates were susceptible to imipenem and meropenem, and both ceftazidime and cefotaxime were efficient at a ratio of (88.8 %). All the isolates (100 %) were resistant to at least three classes of antibiotics and were classified as multidrug resistant. The PCR results indicated that the most common resistance genes were DNA Gyrase Subunit A Gene (gyrA) (100 %), Dihydropteroate Synthase Gene (sul1) (88.8 %), and Florenicol Resistance Gene (floR) (88.8 %), followed by Aminoglycoside N-Acetyltransferase Gene (acc (6')-lb) (44.4 %) and Macrolide Phosphotransferase Gene (mphA) (33.3 %). In addition, the virulence genes Zinc Metalloprotease A Gene (zapA), Uridine Monophosphate Synthase Gene (uraC), Histone-Modifying Protein A Gene (hpmA), Flagellin A Gene (flaA), Anti-Sigma Factor RsbA Gene (rsbA), and Multidrug Resistance Protein A Gene (mrpA) were found in the same proportion (100 %) of all P. mirabilis isolates. Our study emphasized that Proteus mirabilis has a high frequency of antibiotic resistance as a multidrug resistance pattern and furthermore demonstrated a high level of virulence factor gene detection, which might be a threat to food safety and human health. The phylogenetic tree analysis of the P. mirabilis isolates from chicken meat revealed high similarity to the database strain.
Collapse
Affiliation(s)
- Zaid A Thabit
- Al-Nahrain University, Biotechnology Research Center, Baghdad, Iraq
| | | | - May Ridha Jaafar
- Department of Forensic Biology, Higher Institute of Forensic Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Safaa A S Al-Qaysi
- Biology Department, College of Science for Women/University of Baghdad, Baghdad, Iraq.
| | - Sana M H Al-Shimmary
- Biology Department, College of Science for Women/University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
2
|
de Almeida LKS, Silva LC, Guidone GHM, de Oliva BHD, do Nascimento AB, Faustino G, da Silva Pimenta J, Vespero EC, Rocha SPD. Impact of COVID-19 pandemic on antimicrobial resistance of Proteus mirabilis in a Brazilian hospital. Braz J Microbiol 2025; 56:499-510. [PMID: 39630218 PMCID: PMC11885744 DOI: 10.1007/s42770-024-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/07/2024] [Indexed: 03/09/2025] Open
Abstract
This study analyzes the resistance and virulence profiles of Proteus mirabilis isolates obtained from patients admitted to the University Hospital of Londrina, Paraná, between 2019 and 2022. We evaluated the antimicrobial resistance phenotypes, genes associated with resistance, biofilm formation through a phenotypic assay, and the presence of specific virulence genes. When comparing the "pre-pandemic" (2019) and "pandemic" (2020-2022) periods, we observed an increase in resistance rates to all tested antimicrobials. Multidrug-resistant (MDR) pathogens producing extended-spectrum β-lactamase (ESBL) phenotypes were isolated in both periods, but their occurrence was significantly higher during the pandemic. We also observed an increase in the frequency of nearly all studied resistance genes. The virulence profiles remained largely unchanged. Analysis of patients' clinical and demographic data revealed that those hospitalized during the pandemic were older, required longer hospital stays, and had a higher usage of invasive devices. These findings suggest that the recent COVID-19 pandemic has impacted the antimicrobial resistance of P. mirabilis, a bacterium of significant clinical interest associated with urinary tract infections (UTIs) and healthcare-associated infections (HAIs).
Collapse
Affiliation(s)
- Luana Karolyne Salomão de Almeida
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Arthur Bossi do Nascimento
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Gabriela Faustino
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Julia da Silva Pimenta
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Londrina, Paraná, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Londrina, Paraná, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil.
| |
Collapse
|
3
|
Salama LA, Saleh HH, Abdel-Rhman SH, Barwa R, Hassan R. Assessment of typing methods, virulence genes profile and antimicrobial susceptibility for clinical isolates of Proteus mirabilis. Ann Clin Microbiol Antimicrob 2025; 24:4. [PMID: 39815271 PMCID: PMC11734338 DOI: 10.1186/s12941-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated. Sixty P. mirabilis isolated undergo antibiotic susceptibility test by standard Kirby Bauer method. They showed high resistance to nitrofurantoin and trimethoprim/sulfamethoxazole that appear mainly in 3rd age group. The 2nd age group comprised most of the resistant isolates to the tested antibiotics. A total of 73.33% of isolates were classified as multi drug resistance (MDR) and 78.3% of isolates were distributed in several antibiotypes with MAR index over 0.2. Twenty-one isolates were strong biofilm-producers and they were significantly related to MDR. Different virulence factors as protease, urease and hemolysin production are detected. Detection of several virulence genes by PCR; zapA and ureC were harbored by all isolates, followed by rsbA (95%), ureA and flaA (93%), hpmA (91.7%) and mrpA (73.3%). Determination of genetic diversity between isolates was performed by different methods (RAPD, ISSR, ERIC, BOX-AIR and REP-PCR) by using several parameters as typeability and discriminatory power indicating that ERIC-PCR was the best method followed by REP-PCR 1R. Rand's & Wallace coefficients were used for calculating the congruence among typing methods. Conclusions: The results obtained from both conventional and molecular typing methods indicated that molecular methods are superior to conventional methods in the discrimination of isolates. ERIC-PCR and Rep-PCR provide high discrimination ability among P. mirabilis clinical isolates contributing to epidemiological studies.
Collapse
Affiliation(s)
- Lamiaa A Salama
- Microbiology and Immunology Department, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| | | | - Shaymaa H Abdel-Rhman
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ramadan Hassan
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Liu H, Xia N, Suksawat F, Tengjaroenkul B, Hu Y, Zhou X, Li X, Huang C, Bao Y, Wu Q, Zhang C, Angkititrakul S, Xiang B, Wu X. Prevalence and characterization of IncQ1α-mediated multi-drug resistance in Proteus mirabilis Isolated from pigs in Kunming, Yunnan, China. Front Microbiol 2025; 15:1483633. [PMID: 39850143 PMCID: PMC11754265 DOI: 10.3389/fmicb.2024.1483633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 01/25/2025] Open
Abstract
Background Proteus mirabilis is a conditionally pathogenic bacterium that is inherently resistant to polymyxin and tigecycline, largely due to antibiotic resistance genes (ARGs). These ARGs can be horizontally transferred to other bacteria, raising concerns about the Inc plasmid-mediated ARG transmission from Proteus mirabilis, which poses a serious public health threat. This study aims to investigate the presence of Inc plasmid types in pig-derived Proteus mirabilis in Kunming, Yunnan, China. Methods Fecal samples were collected from pig farms across six districts of Kunming (Luquan, Jinning, Yiliang, Anning, Songming, and Xundian) from 2022 to 2023. Proteus mirabilis isolates were identified using IDS and 16S rRNA gene sequencing. Then, positive strains underwent antimicrobial susceptibility testing and incompatibility plasmid typing. Multi-drug-resistant isolates with positive incompatibility plasmid genes were selected for whole-genome sequencing. Resistance and Inc group data were then isolated and compared with 126 complete genome sequences from public databases. Whole-genome multi-locus sequence typing, resistance group analysis, genomic island prediction, and plasmid structural gene analysis were performed. Results A total of 30 isolates were obtained from 230 samples, yielding a prevalence of 13.04%. All isolates exhibited multi-drug resistance, with 100% resistance to cotrimoxazole, erythromycin, penicillin G, chloramphenicol, ampicillin, and streptomycin. Among these, 15 isolates tested positive for the IncQ1α plasmid repC gene. The two most multi-drug-resistant and repC-positive strains, NO. 15 and 21, were sequenced to compare genomic features on Inc groups and ARGs with public data. Genome analysis revealed that the repC gene was primarily associated with IncQ1α, with structural genes from other F-type plasmids (TraV, TraU, TraN, TraL, TraK, TraI, TraH, TraG, TraF, TraE/GumN, and TraA) also present. Strain NO. 15 carried 33 ARGs, and strain NO. 21 carried 38 ARGs, conferring resistance to tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, peptides, chloramphenicol, cephalosporins, lincomycins, macrolides, and 2-aminopyrimidines. Conclusion The repC gene is primarily associated with IncQ1α, with structural genes from other F-type plasmids. A comparison with 126 public genome datasets confirmed this association.
Collapse
Affiliation(s)
- Hongmei Liu
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Fujian, China
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Na Xia
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Fanan Suksawat
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Yue Hu
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaofeng Zhou
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaojiang Li
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Fujian, China
| | - Yinli Bao
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Fujian, China
| | - Qiong Wu
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Fujian, China
| | - Chunrong Zhang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Fujian, China
| | | | - Bin Xiang
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xin Wu
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
El-Saeed BA, Elshebrawy HA, Zakaria AI, Abdelkhalek A, Imre K, Morar A, Herman V, Sallam KI. Multidrug-Resistant Proteus mirabilis and Other Gram-Negative Species Isolated from Native Egyptian Chicken Carcasses. Trop Med Infect Dis 2024; 9:217. [PMID: 39330906 PMCID: PMC11436119 DOI: 10.3390/tropicalmed9090217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Poultry carcasses may be reservoirs for the zoonotic transmission of antimicrobial-resistant bacteria to humans and pose a major public health hazard. During the isolation of Salmonella from poultry and other foods, many of the presumptive typical Salmonella colonies on xylose lysine deoxycholate (XLD) agar were found to lack the invA gene, which is the specific target gene for Salmonella spp. Therefore, the current study aimed to estimate the prevalence and antimicrobial resistance profiles of extensively drug-resistant invA-negative non-Salmonella isolates recovered from native Egyptian chicken carcasses as presumptive Salmonella colonies on XLD agar. The non-Salmonella isolates were detected in 84% (126/150) of the examined native Egyptian chicken carcasses and classified into five genera, with prevalence rates of 64% (96/150), 14% (21/150), 6.7% (10/150), 3.3% (5/150), and 1.3% (2/150) for Proteus, Citrobacter, Shigella, Pseudomonas, and Edwardsiella, respectively. One hundred and ninety-five invA-negative, non-verified presumptive Salmonella isolates were recovered and classified at the species level into Proteus mirabilis (132/195; 67.7%), Proteus vulgaris (11/195; 5.6%), Citrobacter freundii (26/195; 13.3%), Shigella flexneri (8/195; 4.1%), Shigella sonnei (6/195; 3.1%), Shigella dysenteriae (3/195; 1.5%), Pseudomonas fluorescens (6/195; 3.1%), and Edwardsiella tarda (3/195; 1.5%). All (195/195; 100%) of these isolates showed resistance against cefaclor and fosfomycin. Additionally, these isolates showed high resistance rates of 98%, 92.8%, 89.7%, 89.2%, 89.2%, 86.7%, 80%, 78.5%, 74.4%, and 73.9% against cephalothin, azithromycin, vancomycin, nalidixic acid, tetracycline, sulfamethoxazole/trimethoprim, cefepime, gentamicin, cefotaxime, and ciprofloxacin, respectively. Interestingly, all (195/195; 100%) of the identified isolates were resistant to at least five antibiotics and exhibited an average MAR (multiple antibiotic resistance) index of 0.783. Furthermore, 73.9% of the examined isolates were classified as extensively drug-resistant, with an MAR index equal to 0.830. The high prevalence of extensively drug-resistant foodborne Proteus, Citrobacter, Shigella, Pseudomonas, and Edwardsiella isolated from native chicken carcasses poses a great hazard to public health and necessitates more monitoring and concern about the overuse and misuse of antibiotics in humans and animals. This study also recommends the strict implementation of GHP (good hygienic practices) and GMP (good manufacturing practices) in the chicken meat supply chain to protect consumer health.
Collapse
Affiliation(s)
| | - Hend Ali Elshebrawy
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amira Ibrahim Zakaria
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Khalid Ibrahim Sallam
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Wu R, Dong Z, Liu Y, Xin J, Duan Y, Zheng H, Yang Y, Fu H, Zhong Z, Liu H, Zhou Z, Huang Y, Peng G. Bacteriophage P2-71: a promising therapeutic against multidrug-resistant Proteus mirabilis in urinary tract infections. Front Vet Sci 2024; 11:1445264. [PMID: 39376913 PMCID: PMC11457703 DOI: 10.3389/fvets.2024.1445264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Background Proteus mirabilis is a Gram-negative, rod-shaped bacterium widely found in natural environments. It is known for causing a range of severe illnesses in mammals, particularly urinary tract infections (UTIs). This study evaluates the therapeutic efficacy of phage P2-71 against Proteus mirabilis in vivo and in vitro environments. Methods The in vitro therapeutic potential of bacteriophage P2-71 was assessed through the ability of phage to kill Proteus mirabilis by using a plate counting assay, and biofilm inhibition and biofilm lysis assays using a microtitre plate method. Additionally, an in vivo UTI model in C57BL/6Jmice was developed via urethral inoculation of the bacterium. Phage therapy was administered through urethral injection over a period of 5 days. Therapeutic outcomes were measured by analyzing bacterial load, phage titer, inflammatory markers, and histopathological changes in the urine, urogenital tissues, and spleen. Results In vitro, bacteriophage P2-71 achieved significant reductions in P. mirabilis concentrations, with log reductions of 1.537 and 0.7009 CFU/mL in laboratory and urine environments, respectively (p < 0.001). The phage also decreased biofilm formation by 34-49% and lysed 15-25% of mature biofilms at various multiplicities of infection (MOIs) (p < 0.001). In vivo, phage treatment significantly lowered bacterial concentrations in the urine on Days 1 and 3 (p < 0.0001), achieving a maximum reduction of 4.602 log₁₀ CFU/mL; however, its effectiveness diminished by Day 5 (p > 0.05). Concurrently, phage titers decreased over time. Importantly, phage treatment notably reduced bacterial load in the bladder, kidneys, and spleen (p < 0.001). Inflammatory markers such as IL-6, IL-1β, and TNF-α were significantly lower in the treatment group, especially in the bladder (p < 0.0001), indicating an effective reduction in inflammation. Histopathological analysis showed significant mitigation of tissue damage. Conclusion The results demonstrated that bacteriophage P2-71 is a promising alternative therapy for UTIs caused by MDR Proteus mirabilis. This bacteriophage therapy offers a viable strategy for managing infections where traditional antimicrobials fail, highlighting its potential in clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Kong N, Hu Y, Lan C, Bi S. A novel PCR-based genotyping method for Proteus mirabilis - Intergenic region polymorphism analysis. J Microbiol Methods 2024; 224:107008. [PMID: 39103095 DOI: 10.1016/j.mimet.2024.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Proteus mirabilis is a predominant species in cases of food poisoning associated with meat products and is also an opportunistic pathogen causing numerous infections in humans. This study aimed to differentiate P. mirabilis isolates using intergenic region polymorphism analysis (IRPA). The IRPA typing scheme was developed to amplify polymorphic fragments in intergenic regions (IGRs). The presence, absence, or size change of amplified products were identified and utilized as genetic markers for rapid differentiation of strains. A total of 75 P. mirabilis isolates were isolated from 63 fresh poultry and pork samples were subtyped using the IRPA and ERIC-PCR methods, and their antibiotic resistance profiles were tested. The majority of P. mirabilis isolates showed resistance to tetracycline (85.3%), doxycycline (93.3%), chloramphenicol (82.7%), streptomycin (92.0%), spectinomycin (80.0%), trimethoprim (97.3%); trimethoprim-sulfalleth (82.7%), and erythromycin (100.0%). In contrast, resistance rates to ceftriaxon, cefoxitin, cefepime, and cefotaxim were lower at only 17.3%, 5.3%, 6.7%, and 13.3%, respectively, among P. mirabilis isolates. Eleven loci were selected for analysis of the genetic diversity of 75 P. mirabilis isolates. A combination of 4 loci was determined as the optimal combination. The results compared to those obtained using ERIC-PCR for the same isolates. The Simpson's index of diversity was 0.999 for IRPA and 0.923 for ERIC-PCR, indicating that IRPA has a higher discriminatory power than ERIC-PCR. The concordance between IRPA and ERIC-PCR methods was low, primarily because IRPA classified isolates from the same ERIC cluster into separate clusters due to its high resolution. The IRPA method presented in this study offers a rapid, simple, reproducible, and economical approach for genotyping P. mirabilis.
Collapse
Affiliation(s)
- Nianqing Kong
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China; Nanfang Hospital Baiyun Branch, Southern Medical University, Guangzhou, Guangdong 510600, China
| | - Yilin Hu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Chenglu Lan
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Shuilian Bi
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China.
| |
Collapse
|
8
|
Zhang Z, Pan Y, Hussain W, Chen G, Li E. BBSdb, an open resource for bacterial biofilm-associated proteins. Front Cell Infect Microbiol 2024; 14:1428784. [PMID: 39149420 PMCID: PMC11324577 DOI: 10.3389/fcimb.2024.1428784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Bacterial biofilms are organized heterogeneous assemblages of microbial cells encased within a self-produced matrix of exopolysaccharides, extracellular DNA and proteins. Over the last decade, more and more biofilm-associated proteins have been discovered and investigated. Furthermore, omics techniques such as transcriptomes, proteomes also play important roles in identifying new biofilm-associated genes or proteins. However, those important data have been uploaded separately to various databases, which creates obstacles for biofilm researchers to have a comprehensive access to these data. In this work, we constructed BBSdb, a state-of-the-art open resource of bacterial biofilm-associated protein. It includes 48 different bacteria species, 105 transcriptome datasets, 21 proteome datasets, 1205 experimental samples, 57,823 differentially expressed genes (DEGs), 13,605 differentially expressed proteins (DEPs), 1,930 'Top 5% differentially expressed genes', 444 'Threshold-based DEGs' and a predictor for prediction of biofilm-associated protein. In addition, 1,781 biofilm-associated proteins, including annotation and sequences, were extracted from 942 articles and public databases via text-mining analysis. We used E. coli as an example to represent how to explore potential biofilm-associated proteins in bacteria. We believe that this study will be of broad interest to researchers in field of bacteria, especially biofilms, which are involved in bacterial growth, pathogenicity, and drug resistance. Availability and implementation: The BBSdb is freely available at http://124.222.145.44/#!/.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu, China
| | - Yuanyuan Pan
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu, China
| | - Wajid Hussain
- Advanced Biomaterials and Tissue Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
10
|
Elumalai R, Vishwakarma A, Balakrishnan A, Ramya M. Assessment of the growth inhibition and anti-biofilm activity of aptamer (PmA2G02) against Proteus mirabilis 1429 T. Res Microbiol 2024; 175:104105. [PMID: 37429429 DOI: 10.1016/j.resmic.2023.104105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Proteus mirabilis is known to cause Catheter-associated urinary tract infections (CAUTIs), which exhibit virulence factors linked to forming biofilms. Aptamers have recently been explored as potential anti-biofilm agents. This study demonstrates the anti-biofilm activity of aptamer (PmA2G02) targeting P. mirabilis 1429T, a pathogenic bacteria known to cause Catheter-associated urinary tract infections (CAUTIs). The studied aptamer inhibited biofilm formation, swarming motility, and cell viability at a concentration of 3 μM. The study also showed that the PmA2G02 had a binding affinity towards fimbrial outer membrane usher protein (PMI1466), flagellin protein (PMI1619), and regulator of swarming behavior (rsbA), which are responsible for adhesion, motility, and quorum sensing, respectively. Crystal violet assay, SEM, and confocal imaging confirmed the effectiveness of the PmA2G02 as an anti-biofilm agent. Moreover, as verified by qPCR, the expression levels of fimD, fliC2, and rsbA were significantly reduced compared to the untreated group. This study suggests that aptamer may be a potential alternative to traditional antibiotics for the treatment of CAUTIs caused by P. mirabilis. These findings shed light on the mechanisms by which the aptamer inhibits biofilm formation.
Collapse
Affiliation(s)
- Rajalakshmi Elumalai
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
| | - Archana Vishwakarma
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
| | - Anandkumar Balakrishnan
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India; Homi Bhabha National Institute Kalpakkam, Mumbai 400094, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
11
|
El-Kady RA, Alotaibi SA, Aljabri TT, Haraka RR, Ibrahim IM, Mousa AI, Bashbeshi MW. Antimicrobial Susceptibility Trends of Proteeae Isolates From a Tertiary-Care Hospital in Western Saudi Arabia. Cureus 2023; 15:e47494. [PMID: 38021780 PMCID: PMC10663529 DOI: 10.7759/cureus.47494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The tribe Proteeae comprises Proteus, Providencia, and Morganella species. TheseGram-negative rods are of concern in that they are involved in diverse human infections, particularly in hospital settings. In the last two decades, there has been a sharp increase in infections by multidrug-resistant (MDR) Proteeae. Therefore, the objectives of this study were to: (i) assess the prevalence of infections caused by tribe Proteeae, (ii)determine the antimicrobial susceptibility profile of the test isolates, and (iii) identify the underlying risk factors for acquisition of infection by MDR strains. METHODS During the period from January 2019 to December 2020, we conducted a retrospective review of the electronic medical and laboratory records of adult patients who received care at our institution. In addition, we analyzed the risk factors associated with acquisition of infections by members of the tribe Proteeae using univariate and multivariate regression models. RESULTS Overall 403 adult patients (average age 59.69 ± 20.33 years) were enrolled into this study (196 males; 48.6%, and 207 females; 51.4%). Proteus mirabilis was the leading pathogen (70.7%; n=285), followed by Morganella morganii (20.1%; n=81), and Providencia species (9.2%; n=37). Most of the isolates were recovered from urine (59.3%; n=239), followed by wound swabs (23.1%; n=93), with the least from blood samples (1.7%; n=7). Out of 403 Proteeae isolates, 27.3% (n=110) were found to be extended-spectrum β-lactamase (ESBL)-producers, whereas 18.4% (n=74) were MDR. Patient's age, concomitant diabetes mellitus (DM), and long hospital stays were independently associated with infection by MDR strains. CONCLUSION Infections by MDR Proteeae are leading causes for morbidity in our tertiary-care facility. Strict adherence to infection control precautions, as well as effective implementation of antimicrobial stewardship programs, are crucial to overcome these superbugs.
Collapse
Affiliation(s)
- Rania A El-Kady
- Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, EGY
- Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, SAU
| | - Samah A Alotaibi
- Medical School, Fakeeh College for Medical Sciences, Jeddah, SAU
| | - Taef T Aljabri
- Medical School, Fakeeh College for Medical Sciences, Jeddah, SAU
| | - Razan R Haraka
- Medical School, Fakeeh College for Medical Sciences, Jeddah, SAU
| | | | - Amal I Mousa
- Medical Laboratory Sciences, Fakeeh College for Medical Sciences, Jeddah, SAU
| | - Mayar W Bashbeshi
- Medical Laboratory Sciences, Fakeeh College for Medical Sciences, Jeddah, SAU
| |
Collapse
|
12
|
Elhoshi M, El-Sherbiny E, Elsheredy A, Aboulela AG. A correlation study between virulence factors and multidrug resistance among clinical isolates of Proteus mirabilis. Braz J Microbiol 2023; 54:1387-1397. [PMID: 37535261 PMCID: PMC10484824 DOI: 10.1007/s42770-023-01080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
Treatment of Proteus mirabilis infections is a challenge due to the high abundance of virulence factors and the high intrinsic resistance to antimicrobials. Multidrug resistance (MDR) and extensive drug resistance (XDR) further challenge the control of P. mirabilis infection. This study aimed to investigate the correlation between virulence determinants and multidrug resistance in 100 clinical isolates of P. mirabilis collected in Alexandria from December 2019 to June 2021. Susceptibility to antimicrobials was tested by the Kirby Bauer method. Detection of swarming, urease, protease, hemolysin, and biofilm formation was performed phenotypically and by PCR amplification of zapA, flaA, ureC, mrpA, atfA, ucaA, hpmA, and luxS. MDR and XDR were detected in 34% and 5%, respectively. All isolates were positive for motility, swarming, urease, and protease production. Ninety percent were positive for hemolysin production, while 73% formed biofilm. All isolates possessed the ureC and zapA genes. The luxS, flaA, ucaA, hpmA, mrpA, and atfA genes were detected in 99%, 98%, 96% 90%, 89%, and 84%, respectively. The presence of a single biofilm-related gene was statistically correlated with non-biofilm production (P= 0.018). It was concluded that P. mirabilis isolates from catheterized-urine samples were significantly associated with biofilm formation. MDR and virulence were not statistically correlated. A significant positive correlation was detected between some virulence genes in P. mirabilis. Non-MDR isolates of P. mirabilis had a high abundance of virulence factors with no statistically significant difference from MDR. Most of the MDR and all XDR isolates could produce biofilm.
Collapse
Affiliation(s)
- Mai Elhoshi
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eglal El-Sherbiny
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amel Elsheredy
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
13
|
Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Phosphoethanolamine Transferases as Drug Discovery Targets for Therapeutic Treatment of Multi-Drug Resistant Pathogenic Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1382. [PMID: 37760679 PMCID: PMC10525099 DOI: 10.3390/antibiotics12091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance caused by multidrug-resistant (MDR) bacteria is a major challenge to global public health. Polymyxins are increasingly being used as last-in-line antibiotics to treat MDR Gram-negative bacterial infections, but resistance development renders them ineffective for empirical therapy. The main mechanism that bacteria use to defend against polymyxins is to modify the lipid A headgroups of the outer membrane by adding phosphoethanolamine (PEA) moieties. In addition to lipid A modifying PEA transferases, Gram-negative bacteria possess PEA transferases that decorate proteins and glycans. This review provides a comprehensive overview of the function, structure, and mechanism of action of PEA transferases identified in pathogenic Gram-negative bacteria. It also summarizes the current drug development progress targeting this enzyme family, which could reverse antibiotic resistance to polymyxins to restore their utility in empiric therapy.
Collapse
Affiliation(s)
- Van C. Thai
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| |
Collapse
|
14
|
Liu L, Dong Z, Ai S, Chen S, Dong M, Li Q, Zhou Z, Liu H, Zhong Z, Ma X, Hu Y, Ren Z, Fu H, Shu G, Qiu X, Peng G. Virulence-related factors and antimicrobial resistance in Proteus mirabilis isolated from domestic and stray dogs. Front Microbiol 2023; 14:1141418. [PMID: 37234544 PMCID: PMC10206225 DOI: 10.3389/fmicb.2023.1141418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Proteus mirabilis is a multi-host pathogen that causes diseases of varying severity in a wide range of mammals, including humans. Proteus mirabilis is resistant to multiple antibiotics and has acquired the ability to produce expanded spectrum of β-lactamases, leading to serious public health problems. However, the available information on P. mirabilis isolated from feces of dogs, is still poorly understood, as is the correlation between its virulence-associated genes (VAGs) and antibiotic resistance genes (ARGs). Method In this study, we isolated 75 strains of P. mirabilis from 241 samples, and investigated the swarming motility, biofilm formation, antimicrobial resistance (AMR), distribution of VAGs and ARGs, as well as the presence of class 1, 2, and 3 integrons in these isolates. Results Our findings suggest a high prevalence of intensive swarming motility and strong biofilm formation ability among P. mirabilis isolates. Isolates were primarily resistant to cefazolin (70.67%) and imipenem (70.67%). These isolates were found to carry ureC, FliL, ireA, zapA, ptA, hpmA, hpmB, pmfA, rsbA, mrpA, and ucaA with varying prevalence levels of 100.00, 100.00, 100.00, 98.67, 98.67, 90.67, 90.67, 90.67, 90.67, 89.33, and 70.67%, respectively. Additionally, the isolates were found to carry aac(6')-Ib, qnrD, floR, blaCTX-M, blaCTX-M-2, blaOXA-1, blaTEM, tetA, tetB and tetM with varying prevalence levels of 38.67, 32.00, 25.33, 17.33, 16.00, 10.67, 5.33, 2.67, 1.33, and 1.33%, respectively. Among 40 MDR strains, 14 (35.00%) were found to carry class 1 integrons, 12 (30.00%) strains carried class 2 integrons, while no class 3 integrons was detected. There was a significant positive correlation between the class 1 integrons and three ARGs: blaTEM, blaCTX-M, and blaCTX-M-2. This study revealed that P. mirabilis strains isolated from domestic dogs exhibited a higher prevalence of MDR, and carried fewer VAGs but more ARGs compared to those isolated from stay dogs. Furthermore, a negative correlation was observed between VAGs and ARGs. Discussion Given the increasing antimicrobial resistance of P. mirabilis, veterinarians should adopt a prudent approach towards antibiotics administration in dogs to mitigate the emergence and dissemination of MDR strains that pose a potential threat to public health.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiyou Dong
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shengquan Ai
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Shanyu Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Dong
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qianlan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Ma S, Shen J, Xu Y, Ding P, Gao X, Pan Y, Wu H, Hu G, He D. Epidemic characteristics of the SXT/R391 integrated conjugative elements in multidrug-resistant Proteus mirabilis isolated from chicken farm. Poult Sci 2023; 102:102640. [PMID: 37068352 PMCID: PMC10130350 DOI: 10.1016/j.psj.2023.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
This study was designed to depict prevalence and antimicrobial resistance characteristics of Proteus mirabilis (P. mirabilis) strains in 4 chicken farms and to probe the transfer mechanism of resistance genes. A total of 187 P. mirabilis isolates were isolated from 4 chicken farms. The susceptibility testing of these isolates to 14 antimicrobials showed that the multidrug resistance (MDR) rate was as high as 100%. The β-lactamase resistance genes blaOXA-1, blaCTX-M-1G, blaCTX-M-9G and colistin resistance gene mcr-1 were highly carried in the P. mirabilis isolates. An MDR strain W47 was selected for whole genome sequencing (WGS) and conjugation experiment. The results showed that W47 carried 23 resistance genes and 64 virulence genes, and an SXT/R391 integrated conjugative elements (ICEs) named ICEPmiChn5 carrying 17 genes was identified in chromosome. ICEPmiChn5 was able to be excised from the chromosome of W47 forming a circular intermediate, but repeated conjugation experiments were unsuccessful. Among 187 P. mirabilis isolates, 144 (77.01%, 144/187) isolates carried ICEPmiChn5-like ICEs, suggesting that ICEs may be the major vector for the transmission of resistance genes among MDR chicken P. mirabilis strains in this study. The findings were conducive to insight into the resistance mechanism of chicken P. mirabilis strains and provide a theoretical basis for the use of antibiotics for the treatment of MDR P. mirabilis infections in veterinary clinic.
Collapse
Affiliation(s)
- Shengnan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiaxing Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yakun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengyun Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
16
|
Zhao Y, Wei HM, Yuan JL, Xu L, Sun JQ. A comprehensive genomic analysis provides insights on the high environmental adaptability of Acinetobacter strains. Front Microbiol 2023; 14:1177951. [PMID: 37138596 PMCID: PMC10149724 DOI: 10.3389/fmicb.2023.1177951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Acinetobacter is ubiquitous, and it has a high species diversity and a complex evolutionary pattern. To elucidate the mechanism of its high ability to adapt to various environment, 312 genomes of Acinetobacter strains were analyzed using the phylogenomic and comparative genomics methods. It was revealed that the Acinetobacter genus has an open pan-genome and strong genome plasticity. The pan-genome consists of 47,500 genes, with 818 shared by all the genomes of Acinetobacter, while 22,291 are unique genes. Although Acinetobacter strains do not have a complete glycolytic pathway to directly utilize glucose as carbon source, most of them harbored the n-alkane-degrading genes alkB/alkM (97.1% of tested strains) and almA (96.7% of tested strains), which were responsible for medium-and long-chain n-alkane terminal oxidation reaction, respectively. Most Acinetobacter strains also have catA (93.3% of tested strains) and benAB (92.0% of tested strains) genes that can degrade the aromatic compounds catechol and benzoic acid, respectively. These abilities enable the Acinetobacter strains to easily obtain carbon and energy sources from their environment for survival. The Acinetobacter strains can manage osmotic pressure by accumulating potassium and compatible solutes, including betaine, mannitol, trehalose, glutamic acid, and proline. They respond to oxidative stress by synthesizing superoxide dismutase, catalase, disulfide isomerase, and methionine sulfoxide reductase that repair the damage caused by reactive oxygen species. In addition, most Acinetobacter strains contain many efflux pump genes and resistance genes to manage antibiotic stress and can synthesize a variety of secondary metabolites, including arylpolyene, β-lactone and siderophores among others, to adapt to their environment. These genes enable Acinetobacter strains to survive extreme stresses. The genome of each Acinetobacter strain contained different numbers of prophages (0-12) and genomic islands (GIs) (6-70), and genes related to antibiotic resistance were found in the GIs. The phylogenetic analysis revealed that the alkM and almA genes have a similar evolutionary position with the core genome, indicating that they may have been acquired by vertical gene transfer from their ancestor, while catA, benA, benB and the antibiotic resistance genes could have been acquired by horizontal gene transfer from the other organisms.
Collapse
Affiliation(s)
- Yang Zhao
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hua-Mei Wei
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jia-Li Yuan
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- *Correspondence: Ji-Quan Sun,
| |
Collapse
|
17
|
Drug-Resistant Proteus Virulence Factors Characterization and Their Inhibition Using Probiotic Bacteria. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-124234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The genus Proteus is a Gram-negative bacterium with a unique characteristic of swarming. Mainly three species are involved in initiating urinary tract infections in the community and in immunocompromised patients, particularly in patients going through long-term catheterization. Due to their strong virulence factors like biofilm formations, protease, and hemolysin, they can lead to lengthening infections in affected individuals. Probiotics are live bacteria and yeasts that are beneficial to human health and can be used as an alternative for the control of nosocomial diseases. Lactobacilli are one of the common probiotics mostly found in yogurt and other fermented foods that have been used as a substitute for infection control. Objectives: The current study was designed to screen potential probiotic bacteria to encounter antibiotic-resistant and virulent Proteus species. Methods: In the current study, using probiotics, already known antibiotic-resistant isolates (n = 25) of Proteus were processed to characterize their virulence factors and their inhibition. Biofilm formation, protease, and hemolysin activities were studied using different phenotypic detection methods. Further, their virulence genes zapA, flg, hmpA, mrp, and rsbA were explored using their genomic DNA. These isolates were found resistant to different classes of antibiotics, and a strategy was designed to inhibit their growth by using probiotic bacteria isolated from the soil. Results: Virulence factors first, all isolates were subjected to biofilm detection, and they were 32% (n = 8) strong, 40% (n = 10) moderate, 16% (n = 4) weak, and 12% (n = 3) non-biofilm producers. All isolates were positive for swarming activity by showing a differentiated ring form of growth. Protease activity showed 56% (n = 14) isolates. Only 24% (n = 6) of isolates were positive for hemolysin. Virulence factors and molecular mechanisms were studied, and gene rsbA responsible for swarming was amplified in 17 (68%) Proteus isolates, and mrp responsible for fimbria was detected in 19 (76%) bacterial isolates. Further, these isolates were subjected to flagella, protease, and hemolysin, and it was revealed that flg 11 (44%), 13 (52%) protease coding zapA, and hmA gene coding hemolysin were amplified in 2 (8%) Proteus isolates. Probiotic bacteria isolated from soil samples were probed for antagonistic activity against Proteus species. The probiotic bacteria were identified as Lactobacillus plantarum, Bacillus subtilis, and B. licheniformis. Due to their strong growth inhibitory effects against Proteus, it is crucial to characterize further the metabolites that have shown suppressive results against Proteus. Conclusions: Findings from the current study will provide new avenues for drug development and also help clinicians manage resistant pathogens in healthcare settings. Probiotic applications for infection control can be useful in treating resistant pathogens. Further purification and characterization of metabolites will provide alternative options for managing resistance issues in microbes.
Collapse
|
18
|
de Brito FAE, de Freitas APP, Nascimento MS. Multidrug-Resistant Biofilms (MDR): Main Mechanisms of Tolerance and Resistance in the Food Supply Chain. Pathogens 2022; 11:pathogens11121416. [PMID: 36558750 PMCID: PMC9784232 DOI: 10.3390/pathogens11121416] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Biofilms are mono- or multispecies microbial communities enclosed in an extracellular matrix (EPS). They have high potential for dissemination and are difficult to remove. In addition, biofilms formed by multidrug-resistant strains (MDRs) are even more aggravated if we consider antimicrobial resistance (AMR) as an important public health issue. Quorum sensing (QS) and horizontal gene transfer (HGT) are mechanisms that significantly contribute to the recalcitrance (resistance and tolerance) of biofilms, making them more robust and resistant to conventional sanitation methods. These mechanisms coordinate different strategies involved in AMR, such as activation of a quiescent state of the cells, moderate increase in the expression of the efflux pump, decrease in the membrane potential, antimicrobial inactivation, and modification of the antimicrobial target and the architecture of the EPS matrix itself. There are few studies investigating the impact of the use of inhibitors on the mechanisms of recalcitrance and its impact on the microbiome. Therefore, more studies to elucidate the effect and applications of these methods in the food production chain and the possible combination with antimicrobials to establish new strategies to control MDR biofilms are needed.
Collapse
|
19
|
Environmental Bovine Mastitis Pathogens: Prevalence, Antimicrobial Susceptibility, and Sensitivity to Thymus vulgaris L., Thymus serpyllum L., and Origanum vulgare L. Essential Oils. Antibiotics (Basel) 2022; 11:antibiotics11081077. [PMID: 36009946 PMCID: PMC9405213 DOI: 10.3390/antibiotics11081077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mastitis is considered to be one of the most important diseases of dairy cows in terms of health, production, and economy. Being the most common cause of antibiotic consumption in dairy cows, treatment of this disease is one of the biggest challenges in the veterinary profession as an increasing number of pathogens develop resistance to antibiotics used in the treatment. Therefore, new alternative approaches for limiting the use of antibiotics in livestock are required. For this reason, our study aimed to investigate prevalence of environmental mastitis associated bacterial strains, as well as the sensitivity of isolated strains to different antibiotics. Additionally, the therapeutic potential of three essential oils (EOs) was tested against bovine Serratia spp. and Proteus spp. mastitis pathogens, based on their chemical composition, as well as antibacterial potential. The study was carried out on 81 milk samples collected from dairy cows with mastitis. In order to determine prevalence of S. marcescens and P. mirabilis, microbiological isolation and identification were performed. Antimicrobial susceptibility testing was performed by disk diffusion method and the microdilution method was used to determine the antibacterial activity of selected EOs. In the oregano EO, a total of 23 compounds were detected, with carvacrol as a dominant component (78.94%). A total of 26 components were present in the EO of common thyme, where thymol was the most abundant compound (46.37%). Thymol also dominated (55.11%) the wild thyme EO. All tested EOs displayed antibacterial activity against all strains to different extents, while wild and common thyme EOs were the most effective. It could be concluded that the tested EOs represent promising therapeutic candidates for effective non-antibiotic treatment of mastitis.
Collapse
|
20
|
Shokouhfard M, Kermanshahi RK, Feizabadi MM, Teimourian S, Safari F. Lactobacillus spp. derived biosurfactants effect on expression of genes involved in Proteus mirabilis biofilm formation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105264. [PMID: 35272045 DOI: 10.1016/j.meegid.2022.105264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
Abstract
Nosocomial infections (NIs) have been defined as infections ocuurring shortly after hospitalization or discharging from the hospital. It is associated with increased morbidities and mortalities. Proteus mirabilis considered as the hospital-acquired pathogen. The purpose of this study was to investigate the effect of Lactobacillus acidophilus-derived biosurfactant on P. mirabilis biofilm formation and flhDC/rsmA expression level (P. mirabilis standard strain ATCC 7002 and urinary infection isolated P. mirabilis strains). One of the potential strategies for the prevention of nosocomial infections is the use of probiotics. L. acidophilus was selected as a probiotic strain to produce biosurfactants. A biosurfactant reduces the adhesion of strains to microtiter plate and glass slide surfaces due to the reduction of surface tension. By using Real time PCR quantitation method we showed that biosurfactant significantly reduced rsmA expression whereas increased flhDC expression in P. mirabilis isolates. Several properties of P. mirabilis cells (biofilm formation, adhesion, and gene expression) were changed after L. acidophilus- derived biosurfactant treatment. In this study we showed that biosurfacant treatment can pave the way for a possible control of biofilm development. Based on our findings, we suggest that the prepared biosurfactant may interfere with adhesion of P. mirabilis to catheters and other devices.
Collapse
Affiliation(s)
- Maliheh Shokouhfard
- Department of Microbiology, School of Science, Alzahra University, Tehran, Iran; Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - R-Kasra Kermanshahi
- Department of Microbiology, School of Science, Alzahra University, Tehran, Iran
| | - M-Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
21
|
Li Z, Peng C, Zhang G, Shen Y, Zhang Y, Liu C, Liu M, Wang F. Prevalence and characteristics of multidrug-resistant Proteus mirabilis from broiler farms in Shandong Province, China. Poult Sci 2022; 101:101710. [PMID: 35134599 PMCID: PMC8844651 DOI: 10.1016/j.psj.2022.101710] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 01/15/2023] Open
Abstract
Animal-derived Proteus mirabilis (P. mirabilis) is an important food-borne zoonotic bacillus and widely exists in the broiler-breeding industry. The present study was designed to explore the P. mirabilis prevalence and antimicrobial resistance characteristics in 6 conventional broiler-fattening farms in Shandong Province, China. The overall isolation rate of P. mirabilis was 7.07% (50/707). Antimicrobial resistance was very common in the P. mirabilis isolated from these farms and varied for different antibacterial drugs, with chloramphenicol, ciprofloxacin, and trimethoprim-sulfamethoxazole having the highest resistance rate (98%) and aztreonam the lowest (0%). Multidrug resistance was as high as 100%. The majority of the MDR isolates were resistant to between 9 and 12 of the antibiotics, with these accounting for 76% (38/50) of multidrug resistant strains. These P. mirabilis isolates carried 24 drug-resistance genes in 6 types, with stcM having the highest rate (96%) and cmlA, blaTEM, and qnrC the lowest (2%). Superdrug resistance gene blaNDM-1 was found in 10% (5/50) of isolates from poultry farms in Shandong. All the P. mirabilis isolates carried at least 6 virulence genes, with 100% detection rates of the ireA and hpmA genes. Our study revealed that the P. mirabilis strains isolated in the Shandong area all showed the MDR phenotype and the poultry-derived carbapenem-resistant MDR P. mirabilis strains may pose a potential risk to humans. Surveillance findings presented herein will be conducive to our understanding of the prevalence and characteristics of carbapenem-resistant P. mirabilis strains in Shandong, China.
Collapse
|
22
|
Lv P, Hao G, Cao Y, Cui L, Wang G, Sun S. Detection of Carbapenem Resistance of Proteus mirabilis Strains Isolated from Foxes, Raccoons and Minks in China. BIOLOGY 2022; 11:biology11020292. [PMID: 35205158 PMCID: PMC8869598 DOI: 10.3390/biology11020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
Proteus mirabilis, an opportunistic pathogen, is found to be an emerging threat to both animals and humans for a variety of infections. However, the characteristics of P. mirabilis infections from foxes, raccoons and minks remain unclear. In this context, we identified the antibiotic resistance genes and virulence genes of P. mirabilis isolates from foxes, raccoons and minks in China. Most isolates showed resistance to florfenicol (90.57%), trimethoprim-sulfamethoxazole (73.58%), and imipenem (71.70%). A total of 73.58% of isolates were resistant to antibiotics from at least three or more classes, and were categorized as multi-drug resistant. A total of 33.33% of the isolates were resistant to antibiotics from seven classes. The most prevalent resistant were sul1 (94.34%), followed by floR, blaTEM, aac(6’)Ib-cr and blaOXA-1 with the detection rate of 88.68%, 83.02%, 71.70% and 60.38%, respectively. Among the 51 P. mirabilis isolates that were resistant to beta-lactam antibiotics, all isolates carried at least one beta-lactam gene. In addition, blaNDM and blaOXA-24 genes were firstly reported in carbapenem-resistant P. mirabilis isolates from foxes, raccoons and minks. All isolates exhibited the virulence genes ureC, zapA, pmfA, atfA and mrpA. P. mirabilis isolates carrying all detected 10 virulence genes from different animal species showed different lethal abilities in a G. mellonella larvae model. More importantly, the profiles of antibiotic resistance genes of isolates from fur animals and the environment were generally similar, and phylogenetic analysis showed that the P. mirabilis isolates from farm environment samples may have close relatedness with that from animals.
Collapse
Affiliation(s)
- Penghao Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
| | - Guijuan Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
- Correspondence: (G.H.); (G.W.); (S.S.); Tel.: +86-182-5202-6546 (G.H.); +86-185-6011-3839 (G.W.); +86-137-0538-9710 (S.S.)
| | - Yanli Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
| | - Lulu Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
| | - Guisheng Wang
- Shandong Animal Disease Prevention and Control Center, Taian 261500, China
- Correspondence: (G.H.); (G.W.); (S.S.); Tel.: +86-182-5202-6546 (G.H.); +86-185-6011-3839 (G.W.); +86-137-0538-9710 (S.S.)
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (P.L.); (Y.C.); (L.C.)
- Correspondence: (G.H.); (G.W.); (S.S.); Tel.: +86-182-5202-6546 (G.H.); +86-185-6011-3839 (G.W.); +86-137-0538-9710 (S.S.)
| |
Collapse
|
23
|
Matrenov I, Larionova O, Drevko Y. Analysis of Antimicrobial Resistance of Microbiota Associated with Respiratory Diseases of Pigs. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224301029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Successful treatment of veterinary infectious diseases in the context of widespread use of antibiotic therapy depends on the effectiveness of the drugs used to contain or destroy the etiological agent. It is generally accepted that the resistance of microorganisms to antimicrobial agents is variable, including due to the horizontal movement of resistance with the help of mobile genetic elements. Antimicrobial susceptibility pattern analysis is an important component of the diagnosis and treatment of veterinary diseases. The article describes a study that includes isolation and identification of microorganisms from samples taken from pathological material of pigs and the analysis of sensitivity to eleven antimicrobial drugs by the disk-diffusion method.
Collapse
|
24
|
Algammal AM, Hashem HR, Alfifi KJ, Hetta HF, Sheraba NS, Ramadan H, El-Tarabili RM. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci Rep 2021; 11:9476. [PMID: 33947875 PMCID: PMC8096940 DOI: 10.1038/s41598-021-88861-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 02/02/2023] Open
Abstract
Proteus mirabilis is a common opportunistic pathogen causing severe illness in humans and animals. To determine the prevalence, antibiogram, biofilm-formation, screening of virulence, and antimicrobial resistance genes in P. mirabilis isolates from ducks; 240 samples were obtained from apparently healthy and diseased ducks from private farms in Port-Said Province, Egypt. The collected samples were examined bacteriologically, and then the recovered isolates were tested for atpD gene sequencing, antimicrobial susceptibility, biofilm-formation, PCR detection of virulence, and antimicrobial resistance genes. The prevalence of P. mirabilis in the examined samples was 14.6% (35/240). The identification of the recovered isolates was confirmed by the atpD gene sequencing, where the tested isolates shared a common ancestor. Besides, 94.3% of P. mirabilis isolates were biofilm producers. The recovered isolates were resistant to penicillins, sulfonamides, β-Lactam-β-lactamase-inhibitor-combinations, tetracyclines, cephalosporins, macrolides, and quinolones. Using PCR, the retrieved strains harbored atpD, ureC, rsbA, and zapA virulence genes with a prevalence of 100%, 100%, 94.3%, and 91.4%, respectively. Moreover, 31.4% (11/35) of the recovered strains were XDR to 8 antimicrobial classes that harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Besides, 22.8% (8/35) of the tested strains were MDR to 3 antimicrobial classes and possessed blaTEM, tetA, and sul1genes. Furthermore, 17.1% (6/35) of the tested strains were MDR to 7 antimicrobial classes and harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Alarmingly, three strains were carbapenem-resistant that exhibited PDR to all the tested 10 antimicrobial classes and shared blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Of them, two strains harbored the blaNDM-1 gene, and one strain carried the blaKPC gene. In brief, to the best of our knowledge, this is the first study demonstrating the emergence of XDR and MDR-P.mirabilis in ducks. Norfloxacin exhibited promising antibacterial activity against the recovered XDR and MDR-P. mirabilis. The emergence of PDR, XDR, and MDR-strains constitutes a threat alarm that indicates the complicated treatment of the infections caused by these superbugs.
Collapse
Affiliation(s)
- Abdelazeem M. Algammal
- grid.33003.330000 0000 9889 5690Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| | - Hany R. Hashem
- grid.411170.20000 0004 0412 4537Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514 Egypt
| | - Khyreyah J. Alfifi
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Science, Tabuk University, Tabuk, 7149 Saudi Arabia
| | - Helal F. Hetta
- grid.252487.e0000 0000 8632 679XDepartment of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515 Egypt
| | - Norhan S. Sheraba
- grid.463319.aVACSERA, the Holding Company for Biological Products and Vaccines, Giza, 12511 Egypt
| | - Hazem Ramadan
- grid.10251.370000000103426662Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Reham M. El-Tarabili
- grid.33003.330000 0000 9889 5690Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| |
Collapse
|
25
|
Sitovs A, Sartini I, Giorgi M. Levofloxacin in veterinary medicine: a literature review. Res Vet Sci 2021; 137:111-126. [PMID: 33964616 DOI: 10.1016/j.rvsc.2021.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023]
Abstract
A potent third-generation antimicrobial fluoroquinolone drug, levofloxacin was introduced into human clinical practice in 1993. Levofloxacin is also used in veterinary medicine, however its use is limited: it is completely banned for veterinary use in the EU, and used extralabel in only companion animals in the USA. Since its introduction to clinical practice, many studies have been published on levofloxacin in animal species, including pharmacokinetic studies, tissue drug depletion, efficacy, and animal microbial isolate susceptibility to levofloxacin. This literature overview highlights the most clinically relevant and scientifically important levofloxacin studies linked to the field of veterinary medicine.
Collapse
Affiliation(s)
- Andrejs Sitovs
- Department of Pharmacology, Rīga Stradiņš University, Riga, Latvia.
| | - Irene Sartini
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, Italy
| |
Collapse
|