1
|
Yao R, Lu P, Liu Y, Hu H, Zhang H, Zhang X. Fluxomic, Metabolomic, and Transcriptomic Analyses Reveal Metabolic Responses to Phenazine-1-carboxamide Synthesized in Pseudomonas chlororaphis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23928-23936. [PMID: 39422022 DOI: 10.1021/acs.jafc.4c05558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Phenazine-1-carboxamide (PCN) has been exploited as a successful biopesticide due to its broad-spectrum antifungal activity. We engineered a PCN-overproducing Pseudomonas chlororaphis strain through overexpressing shikimate pathway genes (aroB, aroQ, aroE, and phzC) and deleting negative regulatory genes (relA, fleQ, and pykF). The optimized strain produced 1.92 g/L PCN with a yield of 0.11 g/g glycerol, the highest titer ever reported by using minimal media. To gain deeper insights into the underlying regulatory network, the final strain and the parental strain were examined using three distinct omic data sets. 13C-metabolic flux analysis revealed a substantial flux reconfiguration in the optimized strain, including the activation of the EDEMP cycle, the PP pathway, the glyoxylate shunt, and the shikimate pathway. Metabolomic results indicated that central carbon was rerouted to the shikimate pathway. Transcriptomic data identified global gene expression changes. This study forms the basis for further engineering of strains to achieve outstanding performance.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peisheng Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiling Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE and School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Emwas AH, Szczepski K, Al-Younis I, Lachowicz JI, Jaremko M. Fluxomics - New Metabolomics Approaches to Monitor Metabolic Pathways. Front Pharmacol 2022; 13:805782. [PMID: 35387341 PMCID: PMC8977530 DOI: 10.3389/fphar.2022.805782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Fluxomics is an innovative -omics research field that measures the rates of all intracellular fluxes in the central metabolism of biological systems. Fluxomics gathers data from multiple different -omics fields, portraying the whole picture of molecular interactions. Recently, fluxomics has become one of the most relevant approaches to investigate metabolic phenotypes. Metabolic flux using 13C-labeled molecules is increasingly used to monitor metabolic pathways, to probe the corresponding gene-RNA and protein-metabolite interaction networks in actual time. Thus, fluxomics reveals the functioning of multi-molecular metabolic pathways and is increasingly applied in biotechnology and pharmacology. Here, we describe the main fluxomics approaches and experimental platforms. Moreover, we summarize recent fluxomic results in different biological systems.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Inas Al-Younis
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Vieto S, Rojas-Gätjens D, Jiménez JI, Chavarría M. The potential of Pseudomonas for bioremediation of oxyanions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:773-789. [PMID: 34369104 DOI: 10.1111/1758-2229.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Non-metal, metal and metalloid oxyanions occur naturally in minerals and rocks of the Earth's crust and are mostly found in low concentrations or confined in specific regions of the planet. However, anthropogenic activities including urban development, mining, agriculture, industrial activities and new technologies have increased the release of oxyanions to the environment, which threatens the sustainability of natural ecosystems, in turn affecting human development. For these reasons, the implementation of new methods that could allow not only the remediation of oxyanion contaminants but also the recovery of valuable elements from oxyanions of the environment is imperative. From this perspective, the use of microorganisms emerges as a strategy complementary to physical, mechanical and chemical methods. In this review, we discuss the opportunities that the Pseudomonas genus offers for the bioremediation of oxyanions, which is derived from its specialized central metabolism and the high number of oxidoreductases present in the genomes of these bacteria. Finally, we review the current knowledge on the transport and metabolism of specific oxyanions in Pseudomonas species. We consider that the Pseudomonas genus is an excellent starting point for the development of biotechnological approaches for the upcycling of oxyanions into added-value metal and metalloid byproducts.
Collapse
Affiliation(s)
- Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - José I Jiménez
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| |
Collapse
|
4
|
Mendonca CM, Wilkes RA, Aristilde L. Advancements in 13C isotope tracking of synergistic substrate co-utilization in Pseudomonas species and implications for biotechnology applications. Curr Opin Biotechnol 2020; 64:124-133. [DOI: 10.1016/j.copbio.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
|
5
|
Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources. mBio 2020; 11:mBio.02684-19. [PMID: 32184246 PMCID: PMC7078475 DOI: 10.1128/mbio.02684-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer (“fluxomic”) analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed (“fluxed”) through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell’s electron transfer pathways. Having access to this “blueprint” is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents. Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized “EDEMP cycle” (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each.
Collapse
|
6
|
Shimizu K, Matsuoka Y. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol Adv 2019; 37:107441. [PMID: 31472206 DOI: 10.1016/j.biotechadv.2019.107441] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/04/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The micro-aerophilic organisms and aerobes as well as yeast and higher organisms have evolved to gain energy through respiration (via oxidative phosphorylation), thereby enabling them to grow much faster than anaerobes. However, during respiration, reactive oxygen species (ROSs) are inherently (inevitably) generated, and threaten the cell's survival. Therefore, living organisms (or cells) must furnish the potent defense systems to keep such ROSs at harmless level, where the cofactor balance plays crucial roles. Namely, NADH is the source of energy generation (catabolism) in the respiratory chain reactions, through which ROSs are generated, while NADPH plays important roles not only for the cell synthesis (anabolism) but also for detoxifying ROSs. Therefore, the cell must rebalance the redox ratio by modulating the fluxes of the central carbon metabolism (CCM) by regulating the multi-level regulation machinery upon genetic perturbations and the change in the growth conditions. Here, we discuss about how aerobes accomplish such cofactor homeostasis against redox perturbations. In particular, we consider how single-gene mutants (including pgi, pfk, zwf, gnd and pyk mutants) modulate their metabolisms in relation to cofactor rebalance (and also by adaptive laboratory evolution). We also discuss about how the overproduction of NADPH (by the pathway gene mutation) can be utilized for the efficient production of useful value-added chemicals such as medicinal compounds, polyhydroxyalkanoates, and amino acids, all of which require NADPH in their synthetic pathways. We then discuss about the metabolic responses against oxidative stress, where αketoacids play important roles not only for the coordination between catabolism and anabolism, but also for detoxifying ROSs by non-enzymatic reactions, as well as for reducing the production of ROSs by repressing the activities of the TCA cycle and respiration (via carbon catabolite repression). Thus, we discuss about the mechanisms (basic strategies) that modulate the metabolism from respiration to respiro-fermentative metabolism causing overflow, based on the role of Pyk activity, affecting the NADPH production at the oxidative pentose phosphate (PP) pathway, and the roles of αketoacids for the change in the source of energy generation from the oxidative phosphorylation to the substrate level phosphorylation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio university, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
7
|
Lehnen M, Ebert BE, Blank LM. Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts. BMC Microbiol 2019; 19:100. [PMID: 31101012 PMCID: PMC6525440 DOI: 10.1186/s12866-019-1453-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Thermotolerance is a highly desirable trait of microbial cell factories and has been the focus of extensive research. Yeast usually tolerate only a narrow temperature range and just two species, Kluyveromyces marxianus and Ogataea polymorpha have been described to grow at reasonable rates above 40 °C. However, the complex mechanisms of thermotolerance in yeast impede its full comprehension and the rare physiological data at elevated temperatures has so far not been matched with corresponding metabolic analyses. RESULTS To elaborate on the metabolic network response to increased fermentation temperatures of up to 49 °C, comprehensive physiological datasets of several Kluyveromyces and Ogataea strains were generated and used for 13C-metabolic flux analyses. While the maximum growth temperature was very similar in all investigated strains, the metabolic network response to elevated temperatures was not conserved among the different species. In fact, metabolic flux distributions were remarkably irresponsive to increasing temperatures in O. polymorpha, while the K. marxianus strains exhibited extensive flux rerouting at elevated temperatures. CONCLUSIONS While a clear mechanism of thermotolerance is not deducible from the fluxome level alone, the generated data can be valued as a knowledge repository for using temperature to modulate the metabolic activity towards engineering goals.
Collapse
Affiliation(s)
- Mathias Lehnen
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Birgitta E. Ebert
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| |
Collapse
|
8
|
Wilkes RA, Mendonca CM, Aristilde L. A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization. Appl Environ Microbiol 2019; 85:e02084-18. [PMID: 30366991 PMCID: PMC6293094 DOI: 10.1128/aem.02084-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/17/2018] [Indexed: 11/20/2022] Open
Abstract
The genetic characterization of Pseudomonas protegens Pf-5 was recently completed. However, the inferred metabolic network structure has not yet been evaluated experimentally. Here, we employed 13C-tracers and quantitative flux analysis to investigate the intracellular network for carbohydrate metabolism. In lieu of the direct phosphorylation of glucose by glucose kinase, glucose catabolism was characterized primarily by the oxidation of glucose to gluconate and 2-ketogluconate before the phosphorylation of these metabolites to feed the Entner-Doudoroff (ED) pathway. In the absence of phosphofructokinase activity, a cyclic flux from the ED pathway to the upper Embden-Meyerhof-Parnas (EMP) pathway was responsible for routing glucose-derived carbons to the non-oxidative pentose phosphate (PP) pathway. Consistent with the lack of annotated genes in P. protegens Pf-5 for the transport or initial catabolism of pentoses and galactose, only glucose was assimilated into intracellular metabolites in the presence of xylose, arabinose, or galactose. However, when glucose was fed simultaneously with fructose or mannose, co-uptake of these hexoses was evident, but glucose was preferred over fructose (3 to 1) and over mannose (4 to 1). Despite gene annotation of mannose catabolism to fructose-6-phosphate, metabolite labeling patterns revealed that mannose was assimilated into fructose-1,6-bisphosphate, similarly to fructose catabolism. Remarkably, carbons from mannose and fructose were also found to cycle backward through the upper EMP pathway toward the ED pathway. Therefore, the operational metabolic network for processing carbohydrates in P. protegens Pf-5 prioritizes flux through the ED pathway to channel carbons to EMP, PP, and downstream pathways.IMPORTANCE Species of the Pseudomonas genus thrive in various nutritional environments and have strong biocatalytic potential due to their diverse metabolic capabilities. Carbohydrate substrates are ubiquitous both in environmental matrices and in feedstocks for engineered bioconversion. Here, we investigated the metabolic network for carbohydrate metabolism in Pseudomonas protegens Pf-5. Metabolic flux quantitation revealed the relative involvement of different catabolic routes in channeling carbohydrate carbons through a cyclic metabolic network. We also uncovered that mannose catabolism was similar to fructose catabolism, despite the annotation of a different pathway in the genome. Elucidation of the constitutive metabolic network in P. protegens is important for understanding its innate carbohydrate processing, thus laying the foundation for targeting metabolic engineering of this untapped Pseudomonas species.
Collapse
Affiliation(s)
- Rebecca A Wilkes
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Caroll M Mendonca
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Optimization of the quenching and extraction procedures for a metabolomic analysis of Lactobacillus plantarum. Anal Biochem 2018; 557:62-68. [DOI: 10.1016/j.ab.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
|
10
|
Alginate Oligomers and Their Use as Active Pharmaceutical Drugs. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-6910-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Identification of a New Phosphatase Enzyme Potentially Involved in the Sugar Phosphate Stress Response in Pseudomonas fluorescens. Appl Environ Microbiol 2016; 83:AEM.02361-16. [PMID: 27836849 DOI: 10.1128/aem.02361-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/06/2016] [Indexed: 11/20/2022] Open
Abstract
The alginate-producing bacterium Pseudomonas fluorescens utilizes the Entner-Doudoroff (ED) and pentose phosphate (PP) pathways to metabolize fructose, since the upper part of its Embden-Meyerhof-Parnas pathway is defective. Our previous study indicated that perturbation of the central carbon metabolism by diminishing glucose-6-phosphate dehydrogenase activity could lead to sugar phosphate stress when P. fluorescens was cultivated on fructose. In the present study, we demonstrate that PFLU2693, annotated as a haloacid dehalogenase-like enzyme, is a new sugar phosphate phosphatase, now designated Spp, which is able to dephosphorylate a range of phosphate substrates, including glucose 6-phosphate and fructose 6-phosphate, in vitro The effect of spp overexpression on growth and alginate production was investigated using both the wild type and several mutant strains. The results obtained suggested that sugar phosphate accumulation caused diminished growth in some of the mutant strains, since this was partially relieved by spp overexpression. On the other hand, overexpression of spp in fructose-grown alginate-producing strains negatively affected both growth and alginate production. The latter implies that Spp dephosphorylates the sugar phosphates, thus depleting the pool of these important metabolites. Deletion of the spp gene did not affect growth of the wild-type strain on fructose, but the gene could not be deleted in the alginate-producing strain. This indicates that Spp is essential for relieving the cells of sugar phosphate stress in P. fluorescens actively producing alginate. IMPORTANCE In enteric bacteria, the sugar phosphate phosphatase YigL is known to play an important role in combating stress caused by sugar phosphate accumulation. In this study, we identified a sugar phosphate phosphatase, designated Spp, in Pseudomonas fluorescens Spp utilizes glucose 6-phosphate, fructose 6-phosphate, and ribose 5-phosphate as substrates, and overexpression of the gene had a positive effect on growth in P. fluorescens mutants experiencing sugar phosphate stress. The gene was localized downstream of gnd and zwf-2, which encode enzymes involved in the pentose phosphate and Entner-Doudoroff pathways. Genes encoding Spp homologues were identified in similar genetic contexts in some bacteria belonging to several phylogenetically diverse families, suggesting similar functions.
Collapse
|
12
|
Poblete-Castro I, Borrero-de Acuña JM, Nikel PI, Kohlstedt M, Wittmann C. Host Organism: Pseudomonas putida. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ignacio Poblete-Castro
- Universidad Andrés Bello; Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Faculty of Biological Sciences; Av. República 239 8340176 Santiago de Chile Chile
| | - José M. Borrero-de Acuña
- Universidad Andrés Bello; Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Faculty of Biological Sciences; Av. República 239 8340176 Santiago de Chile Chile
| | - Pablo I. Nikel
- Systems and Synthetic Biology Program; National Spanish Center for Biotechnology (CNB-CSIC); Calle Darwin, 3 28049 Madrid, Spain
| | - Michael Kohlstedt
- Saarland University; Institute of Systems Biology, Biosciences; Campus A1.5 66123 Saarbrücken, Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biology, Biosciences; Campus A1.5 66123 Saarbrücken, Germany
| |
Collapse
|
13
|
Metabolic flux analyses of Pseudomonas aeruginosa cystic fibrosis isolates. Metab Eng 2016; 38:251-263. [PMID: 27637318 DOI: 10.1016/j.ymben.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/07/2016] [Accepted: 09/11/2016] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is a metabolically versatile wide-ranging opportunistic pathogen. In humans P. aeruginosa causes infections of the skin, urinary tract, blood, and the lungs of Cystic Fibrosis patients. In addition, P. aeruginosa's broad environmental distribution, relatedness to biotechnologically useful species, and ability to form biofilms have made it the focus of considerable interest. We used 13C metabolic flux analysis (MFA) and flux balance analysis to understand energy and redox production and consumption and to explore the metabolic phenotypes of one reference strain and five strains isolated from the lungs of cystic fibrosis patients. Our results highlight the importance of the oxidative pentose phosphate and Entner-Doudoroff pathways in P. aeruginosa growth. Among clinical strains we report two divergent metabolic strategies and identify changes between genetically related strains that have emerged during a chronic infection of the same patient. MFA revealed that the magnitude of fluxes through the glyoxylate cycle correlates with growth rates.
Collapse
|
14
|
Maleki S, Mærk M, Hrudikova R, Valla S, Ertesvåg H. New insights into Pseudomonas fluorescens alginate biosynthesis relevant for the establishment of an efficient production process for microbial alginates. N Biotechnol 2016; 37:2-8. [PMID: 27593394 DOI: 10.1016/j.nbt.2016.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
Alginate denotes a family of linear polysaccharides with a wide range of industrial and pharmaceutical applications. Presently, all commercially available alginates are manufactured from brown algae. However, bacterial alginates have advantages with regard to compositional homogeneity and reproducibility. In order to be able to design bacterial strains that are better suited for industrial alginate production, defining limiting factors for alginate biosynthesis is of vital importance. Our group has been studying alginate biosynthesis in Pseudomonas fluorescens using several complementary approaches. Alginate is synthesised and transported out of the cell by a multiprotein complex spanning from the inner to the outer membrane. We have developed an immunogold labelling procedure in which the porin AlgE, as a part of this alginate factory, could be detected by transmission electron microscopy. No time-dependent correlation between the number of such factories on the cell surface and alginate production level was found in alginate-producing strains. Alginate biosynthesis competes with the central carbon metabolism for the key metabolite fructose 6-phosphate. In P. fluorescens, glucose, fructose and glycerol, are metabolised via the Entner-Doudoroff and pentose phosphate pathways. Mutational analysis revealed that disruption of the glucose 6-phosphate dehydrogenase gene zwf-1 resulted in increased alginate production when glycerol was used as carbon source. Furthermore, alginate-producing P. fluorescens strains cultivated on glucose experience acid stress due to the simultaneous production of alginate and gluconate. The combined results from our studies strongly indicate that the availability of fructose 6-phosphate and energy requires more attention in further research aimed at the development of an optimised alginate production process.
Collapse
Affiliation(s)
- Susan Maleki
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway; Department of Biotechnology and Nanomedicine, Unit of SINTEF Materials and Chemistry, N-7465 Trondheim, Norway
| | - Mali Mærk
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Radka Hrudikova
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| |
Collapse
|
15
|
A scientific workflow framework for 13C metabolic flux analysis. J Biotechnol 2016; 232:12-24. [DOI: 10.1016/j.jbiotec.2015.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 12/15/2022]
|
16
|
Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, Shimizu K, Tang YJ, Bao FS. Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming. PLoS Comput Biol 2016; 12:e1004838. [PMID: 27092947 PMCID: PMC4836714 DOI: 10.1371/journal.pcbi.1004838] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.
Collapse
Affiliation(s)
- Stephen Gang Wu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Yuxuan Wang
- Department of Computer Science and Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Wu Jiang
- Boxed Wholesale, Edison, New Jersey, United States of America
| | - Tolutola Oyetunde
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, People’s Republic of China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, People’s Republic of China
| | - Kazuyuki Shimizu
- Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail: (YJT); (FSB)
| | - Forrest Sheng Bao
- Department of Electrical and Computer Engineering, University of Akron, Akron, Ohio, United States of America
- * E-mail: (YJT); (FSB)
| |
Collapse
|
17
|
Banerjee C, Dubey KK, Shukla P. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges. Front Microbiol 2016; 7:432. [PMID: 27065986 PMCID: PMC4815533 DOI: 10.3389/fmicb.2016.00432] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.
Collapse
Affiliation(s)
- Chiranjib Banerjee
- Department of Environmental Science and Engineering, Indian School of Mines Dhanbad, India
| | - Kashyap K Dubey
- Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, India
| |
Collapse
|
18
|
Sheng L, Liu C, Tong Q, Ma M. Central metabolic pathways of Aureobasidium pullulans CGMCC1234 for pullulan production. Carbohydr Polym 2015; 134:333-6. [PMID: 26428132 DOI: 10.1016/j.carbpol.2015.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 11/20/2022]
Abstract
With the purpose of understanding the metabolic network of Aureobasidium pullulans, the central metabolic pathways were confirmed by the activities of the key enzymes involved in different pathways. The effect of different iodoacetic acid concentrations on pullulan fermentation was also investigated in this paper. The activities of phosphofructokinases and glucose-6-phosphate dehydrogenase existed in A. pullulans CGMCC1234, whereas 2-keto-3-deoxy-6-phosphogluconate aldolase activity was not detected. We proposed that the central metabolic pathways of A. pullulans CGMCC1234 included EMP and PPP, but no ED. Pullulan production declined fast as the iodoacetic acid increased, while cell growth offered upgrade firstly than descending latter tendency. Compared to the control group, the ratio of ATP/ADP of 0.60 mM iodoacetic acid group was lower at different stages of pullulan fermentation. The findings revealed that low concentration of iodoacetic acid might impel carbon flux flow toward the PPP, but reduce the flux of the EMP.
Collapse
Affiliation(s)
- Long Sheng
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang Liu
- Hsingwu Business and Tourism School, Shanghai Lida Polytechnic Institute, Shanghai, China; The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qunyi Tong
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Meihu Ma
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
19
|
Elementary Flux Mode Analysis Revealed Cyclization Pathway as a Powerful Way for NADPH Regeneration of Central Carbon Metabolism. PLoS One 2015; 10:e0129837. [PMID: 26086807 PMCID: PMC4472234 DOI: 10.1371/journal.pone.0129837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/13/2015] [Indexed: 01/18/2023] Open
Abstract
NADPH regeneration capacity is attracting growing research attention due to its important role in resisting oxidative stress. Besides, NADPH availability has been regarded as a limiting factor in production of industrially valuable compounds. The central carbon metabolism carries the carbon skeleton flux supporting the operation of NADPH-regenerating enzyme and offers flexibility in coping with NADPH demand for varied intracellular environment. To acquire an insightful understanding of its NADPH regeneration capacity, the elementary mode method was employed to compute all elementary flux modes (EFMs) of a network representative of central carbon metabolism. Based on the metabolic flux distributions of these modes, a cluster analysis of EFMs with high NADPH regeneration rate was conducted using the self-organizing map clustering algorithm. The clustering results were used to study the relationship between the flux of total NADPH regeneration and the flux in each NADPH producing enzyme. The results identified several reaction combinations supporting high NADPH regeneration, which are proven to be feasible in cells via thermodynamic analysis and coincident with a great deal of previous experimental report. Meanwhile, the reaction combinations showed some common characteristics: there were one or two decarboxylation oxidation reactions in the combinations that produced NADPH and the combination constitution included certain gluconeogenesis pathways. These findings suggested cyclization pathways as a powerful way for NADPH regeneration capacity of bacterial central carbon metabolism.
Collapse
|