1
|
Merghany RM, El-Sawi SA, Naser AFA, Ezzat SM, Moustafa SFA, Meselhy MR. A comprehensive review of natural compounds and their structure-activity relationship in Parkinson's disease: exploring potential mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2229-2258. [PMID: 39392484 PMCID: PMC11920337 DOI: 10.1007/s00210-024-03462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine-producing cells in the Substantia nigra region of the brain. Complementary and alternative medicine approaches have been utilized as adjuncts to conventional therapies for managing the symptoms and progression of PD. Natural compounds have gained attention for their potential neuroprotective effects and ability to target various pathways involved in the pathogenesis of PD. This comprehensive review aims to provide an in-depth analysis of the molecular targets and mechanisms of natural compounds in various experimental models of PD. This review will also explore the structure-activity relationship (SAR) of these compounds and assess the clinical studies investigating the impact of these natural compounds on individuals with PD. The insights shared in this review have the potential to pave the way for the development of innovative therapeutic strategies and interventions for PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 PMCID: PMC11641752 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
3
|
Diachenko AI, Rodin IA, Krasnova TN, Klychnikov OI, Nefedova LN. The Role of Vitamin K in the Development of Neurodegenerative Diseases. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S57-S70. [PMID: 38621744 DOI: 10.1134/s0006297924140049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 04/17/2024]
Abstract
Neurodegenerative diseases are a growing global health problem with enormous consequences for individuals and society. The most common neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, can be caused by both genetic factors (mutations) and epigenetic changes caused by the environment, in particular, oxidative stress. One of the factors contributing to the development of oxidative stress that has an important effect on the nervous system is vitamin K, which is involved in redox processes. However, its role in cells is ambiguous: accumulation of high concentrations of vitamin K increases the content of reactive oxygen species increases, while small amounts of vitamin K have a protective effect and activate the antioxidant defense systems. The main function of vitamin K is its involvement in the gamma carboxylation of the so-called Gla proteins. Some Gla proteins are expressed in the nervous system and participate in its development. Vitamin K deficiency can lead to a decrease or loss of function of Gla proteins in the nervous system. It is assumed that the level of vitamin K in the body is associated with specific changes involved in the development of dementia and cognitive abilities. Vitamin K also influences the sphingolipid profile in the brain, which also affects cognitive function. The role of vitamin K in the regulation of biochemical processes at the cellular and whole-organism levels has been studied insufficiently. Further research can lead to the discovery of new targets for vitamin K and development of personalized diets and therapies.
Collapse
Affiliation(s)
- Anna I Diachenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Igor A Rodin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatiana N Krasnova
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oleg I Klychnikov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia N Nefedova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Levodopa responsiveness in Parkinson's disease: harnessing real-life experience with machine-learning analysis. J Neural Transm (Vienna) 2022; 129:1289-1297. [PMID: 36030311 DOI: 10.1007/s00702-022-02540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Responsiveness to levodopa varies greatly among patients with Parkinson's disease (PD). The factors that affect it are ill defined. The aim of the study was to identify factors predictive of long-term response to levodopa. The medical records of 296 patients with PD (mean age of onset, 62.2 ± 9.7 years) were screened for demographics, previous treatments, and clinical phenotypes. All patients were assessed with the Unified PD Rating Scale (UPDRS)-III before and 3 months after levodopa initiation. Regression and machine-learning analyses were used to determine factors that are associated with levodopa responsiveness and might identify patients who will benefit from treatment. The UPDRS-III score improved by ≥ 30% (good response) in 128 patients (43%). On regression analysis, female gender, young age at onset, and early use of dopamine agonists predicted a good response. Time to initiation of levodopa treatment had no effect on responsiveness except in patients older than 72 years, who were less responsive. Machine-learning analysis validated these factors and added several others: symptoms of rigidity and bradykinesia, disease onset in the legs and on the left side, and fewer white vascular ischemic changes, comorbidities, and pre-non-motor symptoms. The main determinants of variations in levodopa responsiveness are gender, age, and clinical phenotype. Early use of dopamine agonists does not hamper levodopa responsiveness. In addition to validating the regression analysis results, machine-learning methods helped to determine the specific clinical phenotype of patients who may benefit from levodopa in terms of comorbidities and pre-motor and non-motor symptoms.
Collapse
|
5
|
Multivariate genomic and transcriptomic determinants of imaging-derived personalized therapeutic needs in Parkinson's disease. Sci Rep 2022; 12:5483. [PMID: 35361840 PMCID: PMC8971452 DOI: 10.1038/s41598-022-09506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Due to the marked interpersonal neuropathologic and clinical heterogeneity of Parkinson's disease (PD), current interventions are not personalized and fail to benefit all patients. Furthermore, we continue to lack well-established methods and clinical tests to tailor interventions at the individual level in PD. Here, we identify the genetic determinants of individual-tailored treatment needs derived from longitudinal multimodal neuroimaging data in 294 PD patients (PPMI data). Advanced multivariate statistical analysis revealed that both genomic and blood transcriptomic data significantly explain (P < 0.01, FWE-corrected) the interindividual variability in therapeutic needs associated with dopaminergic, functional, and structural brain reorganization. We confirmed a high overlap between the identified highly predictive molecular pathways and determinants of levodopa clinical responsiveness, including well-known (Wnt signaling, angiogenesis, dopaminergic activity) and recently discovered (immune markers, gonadotropin-releasing hormone receptor) pathways/components. In addition, the observed strong correspondence between the identified genomic and baseline-transcriptomic determinants of treatment needs/response supports the genome's active role at the time of patient evaluation (i.e., beyond individual genetic predispositions at birth). This study paves the way for effectively combining genomic, transcriptomic and neuroimaging data for implementing successful individually tailored interventions in PD and extending our pathogenetic understanding of this multifactorial and heterogeneous disorder.
Collapse
|
6
|
Reith MEA, Kortagere S, Wiers CE, Sun H, Kurian MA, Galli A, Volkow ND, Lin Z. The dopamine transporter gene SLC6A3: multidisease risks. Mol Psychiatry 2022; 27:1031-1046. [PMID: 34650206 PMCID: PMC9008071 DOI: 10.1038/s41380-021-01341-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 02/02/2023]
Abstract
The human dopamine transporter gene SLC6A3 has been consistently implicated in several neuropsychiatric diseases but the disease mechanism remains elusive. In this risk synthesis, we have concluded that SLC6A3 represents an increasingly recognized risk with a growing number of familial mutants associated with neuropsychiatric and neurological disorders. At least five loci were related to common and severe diseases including alcohol use disorder (high activity variant), attention-deficit/hyperactivity disorder (low activity variant), autism (familial proteins with mutated networking) and movement disorders (both regulatory variants and familial mutations). Association signals depended on genetic markers used as well as ethnicity examined. Strong haplotype selection and gene-wide epistases support multimarker assessment of functional variations and phenotype associations. Inclusion of its promoter region's functional markers such as DNPi (rs67175440) and 5'VNTR (rs70957367) may help delineate condensate-based risk action, testing a locus-pathway-phenotype hypothesis for one gene-multidisease etiology.
Collapse
Affiliation(s)
- Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, 10016, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Sun
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Diseases in Children, UCL Great Ormond Street Institute of Child Health, and Department of Neurology, Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
- National Institute on Drug Abuse, Bethesda, MD, 20817, USA
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, and Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
7
|
Salles PA, Mata IF, Fernandez HH. Should we start integrating genetic data in decision-making on device-aided therapies in Parkinson disease? A point of view. Parkinsonism Relat Disord 2021; 88:51-57. [PMID: 34119931 DOI: 10.1016/j.parkreldis.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Parkinson disease (PD) is a complex heterogeneous neurodegenerative disorder. Association studies have revealed numerous genetic risk loci and variants, and about 5-10% suffer from a monogenic form. Because the presentation and course of PD is unique to each patient, personalized symptomatic treatment should ideally be offered to treat the most disabling motor and non-motor symptoms. Indeed, clinical milestones and treatment complications that appear during disease progression are influenced by the genetic imprint. With recent advances in PD, more patients live longer to become eligible for device-aided therapies, such as apomorphine continuous subcutaneous infusion, levodopa duodenal gel infusion, and deep brain stimulation surgery, each with its own inclusion and exclusion criteria, advantages and disadvantages. Because genetic variants influence the expression of particular clinical profiles, factors for better or worse outcomes for device-aided therapies may then be proactively identified. For example, mutations in PRKN, LRRK2 and GBA express phenotypes that favor suitability for different device therapies, although with marked differences in the therapeutic window; whereas multiplications of SNCA express phenotypes that make them less desirable for device therapies.
Collapse
Affiliation(s)
- Philippe A Salles
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, OH, USA; Movement Disorders Center, CETRAM, Santiago, Chile.
| | - Ignacio F Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Hubert H Fernandez
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, OH, USA.
| |
Collapse
|
8
|
Pitz V, Malek N, Tobias ES, Grosset KA, Gentleman S, Grosset DG. The Levodopa Response Varies in Pathologically Confirmed Parkinson's Disease: A Systematic Review. Mov Disord Clin Pract 2020; 7:218-222. [PMID: 32071945 DOI: 10.1002/mdc3.12885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 01/18/2023] Open
Abstract
Background A good response to levodopa is a key feature of Parkinson's disease (PD), and a poor response suggests an alternative diagnosis, but the extent of variation in the levodopa response in definite PD is not well defined. Literature Review A systematic review of articles reporting pathologically confirmed PD and levodopa responsiveness from 1971 to 2018 was performed using the medical subheadings "postmortem," "Parkinson's disease," "levodopa," and "l-dopa" in PubMed, Embase, and Latin American and Caribbean Health Sciences Literature (LILACS) databases. Cases A total of 12 articles described 445 PD cases: 61.7% male, age at disease onset 64.0 years (SD 9.6), age at death 77.1 years (SD 7.2). Levodopa responsiveness was reported in 399 cases (89.7%) either as a graded or a binary response. In the 280 cases (70.2%) describing a graded response, it was excellent in 37.5%, good in 45.7%, moderate in 12.1%, and poor in 4.6%. In the 119 cases describing a binary response (29.8%), 73.1% were levodopa responsive, and 26.9% were nonresponsive. Comorbid brain pathology was present in 137 of 235 cases assessed, being cerebrovascular in 46.0% and Alzheimer's disease in 37.2% of these, but its contribution to levodopa responsiveness was unclear. Conclusions The levodopa motor response varies in definite PD. Explanations other than diagnostic inaccuracy should be explored.
Collapse
Affiliation(s)
- Vanessa Pitz
- Institute of Neuroscience and Psychology University of Glasgow Glasgow United Kingdom
| | - Naveed Malek
- Department of Neurology Ipswich Hospital NHS Trust Ipswich United Kingdom
| | - Edward S Tobias
- School of Medicine, Dentistry and Nursing University of Glasgow Glasgow United Kingdom.,Department of Clinical Genetics Queen Elizabeth University Hospital Glasgow United Kingdom
| | - Katherine A Grosset
- Institute of Neuroscience and Psychology University of Glasgow Glasgow United Kingdom.,Department of Neurology Institute of Neurological Sciences, Queen Elizabeth University Hospital Glasgow United Kingdom
| | - Steve Gentleman
- Department of Medicine Imperial College London London United Kingdom
| | - Donald G Grosset
- Institute of Neuroscience and Psychology University of Glasgow Glasgow United Kingdom.,Department of Neurology Institute of Neurological Sciences, Queen Elizabeth University Hospital Glasgow United Kingdom
| |
Collapse
|
9
|
Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience 2019; 454:116-139. [PMID: 31887357 DOI: 10.1016/j.neuroscience.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023]
Abstract
The postsynaptic density (PSD) is a complex subcellular domain important for postsynaptic signaling, function, and plasticity. The PSD is present at excitatory synapses and specialized to allow for precise neuron-to-neuron transmission of information. The PSD is localized immediately underneath the postsynaptic membrane forming a major protein network that regulates postsynaptic signaling and synaptic plasticity. Glutamatergic synaptic dysfunction affecting PSD morphology and signaling events have been described in many neurodegenerative disorders, either sporadic or familial forms. Thus, in this review we describe the main protein players forming the PSD and their activity, as well as relevant modifications in key components of the postsynaptic architecture occurring in Huntington's, Parkinson's and Alzheimer's diseases.
Collapse
|
10
|
Tabassum R, Jeong NY. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. Int J Med Sci 2019; 16:1386-1396. [PMID: 31692944 PMCID: PMC6818192 DOI: 10.7150/ijms.36516] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Oxidative phosphorylation is a source of energy production by which many cells satisfy their energy requirements. Endogenous reactive oxygen species (ROS) are by-products of oxidative phosphorylation. ROS are formed due to the inefficiency of oxidative phosphorylation, and lead to oxidative stress that affects mitochondrial metabolism. Chronic oxidative stress contributes to the onset of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The immediate consequences of oxidative stress include lipid peroxidation, protein oxidation, and mitochondrial deoxyribonucleic acid (mtDNA) mutation, which induce neuronal cell death. Mitochondrial binding of amyloid-β (Aβ) protein has been identified as a contributing factor in AD. In PD and HD, respectively, α-synuclein (α-syn) and huntingtin (Htt) gene mutations have been reported to exacerbate the effects of oxidative stress. Similarly, abnormalities in mitochondrial dynamics and the respiratory chain occur in ALS due to dysregulation of mitochondrial complexes II and IV. However, oxidative stress-induced dysfunctions in neurodegenerative diseases can be mitigated by the antioxidant function of hydrogen sulfide (H2S), which also acts through the potassium (KATP/K+) ion channel and calcium (Ca2+) ion channels to increase glutathione (GSH) levels. The pharmacological activity of H2S is exerted by both inorganic and organic compounds. GSH, glutathione peroxidase (Gpx), and superoxide dismutase (SOD) neutralize H2O2-induced oxidative damage in mitochondria. The main purpose of this review is to discuss specific causes and effects of mitochondrial oxidative stress in neurodegenerative diseases, and how these are impacted by the antioxidant functions of H2S to support the development of advancements in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Rubaiya Tabassum
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
- Department of Medicine, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
- Department of Medicine, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
| |
Collapse
|
11
|
Kelly MJ, Lawton MA, Baig F, Ruffmann C, Barber TR, Lo C, Klein JC, Ben‐Shlomo Y, Hu MT. Predictors of motor complications in early Parkinson's disease: A prospective cohort study. Mov Disord 2019; 34:1174-1183. [PMID: 31283854 PMCID: PMC6771533 DOI: 10.1002/mds.27783] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The objective of this study was to identify clinical predictors of motor complications (dyskinesia and motor fluctuations) of levodopa in a prospectively recruited PD cohort using longitudinal analysis. METHODS An inception cohort (Oxford Discovery) of 734 patients was followed to a maximum of 10 years from diagnosis using a discrete-time survival analysis. A subset analysis was used to validate an online dyskinesia-risk calculator developed from the results of the Stalevo Reduction in Dyskinesia Evaluation PD trial. RESULTS A total of 186 cases of dyskinesia and 254 cases of motor fluctuations were observed. Dyskinesia incidence increased with time (risk per 100 participants [95% confidence interval] 13 [11-16] <3.5 years, 16 [13-21] 3.5-5.0 years, 19 [14-26] 5-6.5 years, and 23 [16-33] >6.5 years from diagnosis). Motor complication predictors were grouped as medication predictors, disease predictors and patient predictors. Baseline nonmotor feature severity, low mood, anxiety, and age at symptom onset were associated with motor complications among a number of previously identified predictors. Replication of the Stalevo Reduction in Dyskinesia Evaluation PD calculator was reasonable with the area under the curve for dyskinesia risk score as a predictor of dyskinesia being 0.68 (95% confidence interval, 0.55-0.81). CONCLUSIONS This study quantifies risk of motor complications, finds consistent predictors, and demonstrates the novel finding that nonmotor features of PD, particularly low mood and anxiety, are significant risk factors for motor complications. Further validation of dyskinesia risk scores are required as well as evidence to determine if the routine use of such scores can be clinically valuable in enhancing patient care and quality of life. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mark J. Kelly
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | | | - Fahd Baig
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Claudio Ruffmann
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Neurology DepartmentHampshire Hospitals National Health Service (NHS) Foundation TrustBasingstokeUK
| | - Thomas R. Barber
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Christine Lo
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Johannes C. Klein
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | | | - Michele T. Hu
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
12
|
Abstract
The human dopamine transporter gene SLC6A3 is involved in substance use disorders (SUDs) among many other common neuropsychiatric illnesses but allelic association results including those with its classic genetic markers 3'VNTR or Int8VNTR remain mixed and unexplainable. To better understand the genetics for reproducible association signals, we report the presence of recombination hotspots based on sequencing of the entire 5' promoter regions in two small SUDs cohorts, 30 African Americans (AAs) and 30 European Americans (EAs). Recombination rate was the highest near the transcription start site (TSS) in both cohorts. In addition, each cohort carried 57 different promoter haplotypes out of 60 and no haplotypes were shared between the two ethnicities. A quarter of the haplotypes evolved in an ethnicity-specific manner. Finally, analysis of five hundred subjects of European ancestry, from the 1000 Genome Project, confirmed the promoter recombination hotspots and also revealed several additional ones in non-coding regions only. These findings provide an explanation for the mixed results as well as guidance for selection of effective markers to be used in next generation association validation (NGAV), facilitating the delineation of pathogenic variation in this critical neuropsychiatric gene.
Collapse
|
13
|
da Silva N, Verri E, Palinkas M, Hallak J, Regalo S, Siéssere S. Impact of Parkinson's disease on the efficiency of masticatory cycles: Electromyographic analysis. Med Oral Patol Oral Cir Bucal 2019; 24:e314-e318. [PMID: 31012437 PMCID: PMC6530957 DOI: 10.4317/medoral.22841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/04/2019] [Indexed: 01/22/2023] Open
Abstract
Background This study evaluated the efficiency of masticatory cycles by means of the linear envelope of the electromyographic signal of the masseter and temporalis muscles in individuals with Parkinson’s disease. Material and Methods Twenty-four individuals were assigned into two groups: with Parkinson’s disease, average ± SD 66.1 ± 3.3 years (n = 12) and without the disease, average ± SD: 65.8 ± 3.0 years (n = 12). The MyoSystem-I P84 electromyograph was used to analyze the activity of masticatory cycles through the linear envelope integral in habitual mastication of peanuts and raisins and non-habitual mastication of Parafilm M®. Results There was statistically significant difference (P ≤ 0.05) between individuals with Parkinson’s disease and without the disease in non-habitual mastication of Parafilm M®, in the right temporal muscle (P = 0.01); habitual mastication of peanuts, in the right temporal muscle (P = 0.02), left temporal muscle (P = 0.03), and right masseter muscle (P = 0.01); and habitual mastication of raisins in the right temporal muscle (P = 0.001), left temporal muscle (P= 0.001), right masseter muscle (P= 0.001) and left masseter muscle (P= 0.03). Conclusions These results suggest that Parkinson’s disease interferes in the electromyographic activity of the masticatory cycles by reducing muscular efficiency. Key words:Parkinson’s Disease, electromyography, masticatory efficiency, masseter muscle, temporal muscle.
Collapse
Affiliation(s)
- N da Silva
- School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Bairro Monte Alegre, CEP 14040-904 Ribeirão Preto, SP, Brazil,
| | | | | | | | | | | |
Collapse
|
14
|
Srivastava A, Singh P, Gupta H, Kaur H, Kanojia N, Guin D, Sood M, Chadda RK, Yadav J, Vohora D, Saso L, Kukreti R. Systems Approach to Identify Common Genes and Pathways Associated with Response to Selective Serotonin Reuptake Inhibitors and Major Depression Risk. Int J Mol Sci 2019; 20:1993. [PMID: 31018568 PMCID: PMC6514561 DOI: 10.3390/ijms20081993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 12/27/2022] Open
Abstract
Despite numerous studies on major depressive disorder (MDD) susceptibility, the precise underlying molecular mechanism has not been elucidated which restricts the development of etiology-based disease-modifying drug. Major depressive disorder treatment is still symptomatic and is the leading cause of (~30%) failure of the current antidepressant therapy. Here we comprehended the probable genes and pathways commonly associated with antidepressant response and MDD. A systematic review was conducted, and candidate genes/pathways associated with antidepressant response and MDD were identified using an integrative genetics approach. Initially, single nucleotide polymorphisms (SNPs)/genes found to be significantly associated with antidepressant response were systematically reviewed and retrieved from the candidate studies and genome-wide association studies (GWAS). Also, significant variations concerning MDD susceptibility were extracted from GWAS only. We found 245 (Set A) and 800 (Set B) significantly associated genes with antidepressant response and MDD, respectively. Further, gene set enrichment analysis revealed the top five co-occurring molecular pathways (p ≤ 0.05) among the two sets of genes: Cushing syndrome, Axon guidance, cAMP signaling pathway, Insulin secretion, and Glutamatergic synapse, wherein all show a very close relation to synaptic plasticity. Integrative analyses of candidate gene and genome-wide association studies would enable us to investigate the putative targets for the development of disease etiology-based antidepressant that might be more promising than current ones.
Collapse
Affiliation(s)
- Ankit Srivastava
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Priyanka Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi 110007, India.
| | - Hitesh Gupta
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
| | - Harpreet Kaur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi 110007, India.
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India.
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Jyoti Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
| |
Collapse
|
15
|
Purcaro C, Vanacore N, Moret F, Di Battista ME, Rubino A, Pierandrei S, Lucarelli M, Meco G, Fattapposta F, Pascale E. DAT gene polymorphisms (rs28363170, rs393795) and levodopa-induced dyskinesias in Parkinson's disease. Neurosci Lett 2018; 690:83-88. [PMID: 30316985 DOI: 10.1016/j.neulet.2018.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023]
Abstract
L-dopa-induced dyskinesias (LID) is a common motor side effect of levodopa therapy of Parkinson's disease (PD). The identified predictors may only partially account for the risk of developing LID and genetic factors may contribute to this variability. The present study is aimed to investigate whether polymorphisms in the dopamine transporter gene (DAT) are associated with the risk of developing LID. Genotyping of the 40-bp VNTR (rs28363170) and rs393795 (A/C) polymorphisms of the DAT gene was performed in a well-characterized cohort of 181 Italian PD patients in treatment with L-DOPA for 3 years or more. The results of our study show that there is no difference in dyskinesias prevalence among carriers of the two DAT gene polymorphisms. However, the combination of the two genotypes 10R/10R (rs28363170) and A carrier (rs393795) of the DAT gene reduces the risk of LID occurrence during long-term therapy with l-DOPA with respect to the PD subjects who did not carry these alleles (OR = 0.31; 95% CI, 0.09-0.88). Also based on a logistic regression analysis, the 10R/10R and the A carrier allele of the rs393795 polymorphisms of the DAT gene, could reduce the susceptibility to develop LID during levodopa therapy adjusted by demographical and clinical variables (OR = 0.19; 95% CI, 0.05-0.69). Additional studies further investigating the rs28363170 and rs393795 polymorphisms with LID in PD are needed to clarify their role in different ethnicities.
Collapse
Affiliation(s)
- Carlo Purcaro
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, National Institute of Health, Rome, Italy
| | - Federica Moret
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | | | - Alfonso Rubino
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Silvia Pierandrei
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Marco Lucarelli
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Giuseppe Meco
- Research Centre of Social Diseases (CIMS), Sapienza University, Rome, Italy
| | | | - Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Rome, Italy.
| |
Collapse
|