1
|
Li Y, Wang Y, Dang J, Zhuo W, Xu B, Guo Y. The 133-kDa N-terminal region of myosin XVa is critical for normal structure and function of auditory and hair cells. Acta Otolaryngol 2025; 145:363-374. [PMID: 40126902 DOI: 10.1080/00016489.2025.2479632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND MYO15A is a commonly implicated gene in severe to profound sensorineural hearing loss. Numerous studies have identified mutations in MYO15A in humans, analyzed their presence and co-segregation, and predicted their pathogenicity using software tools. However, few have investigated the pathogenic mechanisms of these mutations using mouse models. In a prior study, we identified the MYO15A c.2482 C > T mutation as a potential causative gene for deafness in a Uygur family from Xinjiang. To further explore the pathogenicity and mechanisms of this mutation, we constructed a mouse model harboring the Myo15a c.2455A > T mutation. This study demonstrates that mice with the Myo15a c.2455A > T spot knock-in exhibit the abnormal hair cell morphology, dysfunction, and hearing loss phenotype observed in humans. OBJECTIVES To investigate the pathogenic mechanism of deafness caused by MYO15A c.2482C > T mutation. MATERIAL AND METHODS To assess the impact of the MYO15A mutation on hair cell morphology and function, mice underwent audiological tests, quantitative real-time PCR, scanning electron microscopy, immunofluorescence, and Western blot analysis. RESULTS The p.Arg819* mutation located in the N-terminal domain of MYO15A showed marked differences in hair cell morphology and function between homozygous mutant mice and normal controls. Notably, the homozygous mutant mice retained residual hearing up to approximately five weeks of age. CONCLUSIONS AND SIGNIFICANCE Our findings confirm that Myo15a c.2455A > T spot knock-in mice replicate the abnormal hair cell morphology and dysfunction, as well as the hearing loss phenotype. Additionally, our results indicate that the novel c.2482C > T variant in the MYO15A gene can cause inner ear hair cell dysfunction and audiological disorders in this family.
Collapse
Affiliation(s)
- Yong Li
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanli Wang
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiong Dang
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenjing Zhuo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Morovvati S, Sarband MM, Doostmohammadi S, Rayat S, Emamdjomeh H, Farhadi M, Asghari A, Garshasbi M, Falah M. The clinical and genetic spectrum of twenty-six individuals with hearing loss affected by MYO15A variants. Sci Rep 2025; 15:14320. [PMID: 40275102 PMCID: PMC12022297 DOI: 10.1038/s41598-025-99417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Myosin XVA (MYO15A) is a member of the myosin superfamily that, as a motor protein, plays an essential role in actin polymerization at the tip of the stereocilia in hair cells. Variants in MYO15A are known to be the third most common reason for autosomal recessive non-syndromic hearing loss (ARNSHL). Here, we present twenty-six unrelated families with MYO15A variants from an Iranian cohort. Whole exome sequencing (WES) was performed following a comprehensive medical evaluation. The identified variants were assessed based on the American College of Medical Genetics and Genomics guidelines. Twenty-seven distinct variants linked to MYO15A were identified as contributors to profound ARNSHL. These included ten novel variants and seventeen previously documented variants that co-segregated. Most variants were truncating, with an equal distribution of missense and splicing variants. This research expands the mutational spectrum of MYO15A by introducing ten novel variants and highlights its importance in profound ARNSHL. Moreover, comparing the variants in different domains of MYO15A with previously reported variants in these domains provides more information about the MYO15A protein's role in the hearing process. This information can enhance understanding of the genetic basis of hearing loss and improve future management strategies, including prognosis, prevention, and treatment based on gene modification.
Collapse
Affiliation(s)
- Saeid Morovvati
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Samaneh Doostmohammadi
- Faculty of Converging Sciences and Technologies (NBIC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sima Rayat
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hessamaldin Emamdjomeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zheng K, Lin S, Gao J, Chen S, Su J, Liu Z, Duan S. Novel compound heterozygous MYO15A splicing variants in autosomal recessive non-syndromic hearing loss. BMC Med Genomics 2024; 17:4. [PMID: 38167320 PMCID: PMC10763153 DOI: 10.1186/s12920-023-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hereditary hearing loss is a highly heterogeneous disorder. This study aimed to identify the genetic cause of a Chinese family with autosomal recessive non-syndromic sensorineural hearing loss (ARNSHL). METHODS Clinical information and peripheral blood samples were collected from the proband and its parents. Two-step high-throughput next-generation sequencing on the Ion Torrent platform was applied to detect variants as follows. First, long-range PCR was performed to amplify all the regions of the GJB2, GJB3, SLC26A4, and MT-RNR1 genes, followed by next-generation sequencing. If no candidate pathogenetic variants were found, the targeted exon sequencing with AmpliSeq technology was employed to examine another 64 deafness-associated genes. Sanger sequencing was used to identify variants and the lineage co-segregation. The splicing of the MYO15A gene was assessed by in silico bioinformatics prediction and minigene assays. RESULTS Two candidate MYO15A gene (OMIM, #602,666) heterozygous splicing variants, NG_011634.2 (NM_016239.3): c.6177 + 1G > T and c.9690 + 1G > A, were identified in the proband, and these two variants were both annotated as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Further bioinformatic analysis predicted that the c.6177 + 1G > T variant might cause exon skipping and that the c.9690 + 1G > A variant might activate a cryptic splicing donor site in the downstream intronic region. An in vitro minigene assay confirmed the above predictions. CONCLUSIONS We identified a compound heterozygous splicing variant in the MYO15A gene in a Han Chinese family with ARNSHL. Our results broaden the spectrum of MYO15A variants, potentially benefiting the early diagnosis, prevention, and treatment of the disease.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Jian Gao
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Shiguo Chen
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jindi Su
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhiqiang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Shan Duan
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
4
|
Chen A, Ling J, Peng X, Liu X, Mao S, Chen Y, Qin M, Zhang S, Bai Y, Song J, Feng Z, Ma L, He D, Mei L, He C, Feng Y. A Novel EYA1 Mutation Causing Alternative RNA Splicing in a Chinese Family With Branchio-Oto Syndrome: Implications for Molecular Diagnosis and Clinical Application. Clin Exp Otorhinolaryngol 2023; 16:342-358. [PMID: 37817567 DOI: 10.21053/ceo.2023.00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/11/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVES Branchio-oto syndrome (BOS) primarily manifests as hearing loss, preauricular pits, and branchial defects. EYA1 is the most common pathogenic gene, and splicing mutations account for a substantial proportion of cases. However, few studies have addressed the structural changes in the protein caused by splicing mutations and potential pathogenic factors, and several studies have shown that middle-ear surgery has limited effectiveness in improving hearing in these patients. BOS has also been relatively infrequently reported in the Chinese population. This study explored the genetic etiology in the family of a proband with BOS and provided clinical treatment to improve the patient's hearing. METHODS We collected detailed clinical features and peripheral blood samples from the patients and unaffected individuals within the family. Pathogenic mutations were identified by whole-exome sequencing and cosegregation analysis and classified according to the American College of Medical Genetics and Genomics guidelines. Alternative splicing was verified through a minigene assay. The predicted three-dimensional protein structure and biochemical experiments were used to investigate the pathogenicity of the mutation. The proband underwent middle-ear surgery and was followed up at 1 month and 6 months postoperatively to monitor auditory improvement. RESULTS A novel heterozygous EYA1 splicing variant (c.1050+4 A>C) was identified and classified as pathogenic (PVS1(RNA), PM2, PP1). Skipping of exon 11 of the EYA1 pre-mRNA was confirmed using a minigene assay. This mutation may impair EYA1-SIX1 interactions, as shown by an immunoprecipitation assay. The EYA1-Mut protein exhibited cellular mislocalization and decreased protein expression in cytological experiments. Middle-ear surgery significantly improved hearing loss caused by bone-conduction abnormalities in the proband. CONCLUSION We reported a novel splicing variant of EYA1 in a Chinese family with BOS and revealed the potential molecular pathogenic mechanism. The significant hearing improvement observed in the proband after middle-ear surgery provides a reference for auditory rehabilitation in similar patients.
Collapse
Affiliation(s)
- Anhai Chen
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medicine, Central South University, Changsha, China
| | - Xin Peng
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianlin Liu
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Mao
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yongjia Chen
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Mengyao Qin
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Zhang
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yijiang Bai
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- MOE Key Lab of Rare Pediatric Diseases and Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Lu Ma
- MOE Key Lab of Rare Pediatric Diseases and Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, China
| | - Dinghua He
- Department of Otorhinolaryngology, The Affiliated Maternal and Child Health Hospital of Hunan Province, Hengyang Medical School, University of South China, Changsha, China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Feng
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- MOE Key Lab of Rare Pediatric Diseases and Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
- Department of Otorhinolaryngology, The Affiliated Maternal and Child Health Hospital of Hunan Province, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|