1
|
Yu Z, Liao H, Wu G, Liu Y, Zhang G, Xiao L, Yang S, Liu J, Yang G. SIRT3 Inhibits Cell Proliferation of Nonsmall Cell Lung Carcinoma by Inducing ROS Production. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70033. [PMID: 39501597 PMCID: PMC11538276 DOI: 10.1111/crj.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND Sirtuin 3 (SIRT3) is located in the mitochondrial matrix, regulating acetylation levels of metabolic enzymes. As an oncogene or a tumor suppressor gene, SIRT3 plays an important role in the commencement and progression of certain cancers. In this research, we investigated the role of SIRT3 in the progression of nonsmall cell lung carcinoma (NSCLC). METHODS In this study, bioinformatics was used to analyze the differential expression of SIRT3 in NSCLC tissue and normal tissues, prognosis, single-cell analysis, and related signaling pathways. The Lentiviral overexpressing SIRT3 was constructed, and CCK8 and colony formation assay were used to evaluate the NSCLC cells proliferation, ROS production was detected by flow cytometry, and the sea-horse test was used to measure cellular oxygen consumption (OCR). RESULTS SIRT3 expression was significantly decreased in NSCLC, and low expression of SIRT3 was closely related to the poor prognosis. Besides, on the whole, upregulation of SIRT3 suppressed cell proliferation in A549 and SK-MES-1 cells via increasing oxidative phosphorylation (OXPHOS) and ROS production. CONCLUSIONS Overall, our findings suggested that SIRT3 functions as a tumor suppressor that can suppress the progression of NSCLC via stimulating ROS production.
Collapse
Affiliation(s)
- Ze Yu
- Laboratory of Cytobiology and Molecular Biology, Zhoushan HospitalZhejiang University School of MedicineZhoushanZhejiangChina
- Laboratory of Cytobiology and Molecular Biology, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Hongtao Liao
- Department of Cardiothoracic Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Guanhuai Wu
- Department of Cardiothoracic Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Ying Liu
- Department of Pharmacy, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Guoqiang Zhang
- Department of General Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| | - Liang Xiao
- Department of Surgery and OncologyShenzhen Second People's HospitalShenzhenGuangdongChina
| | - Shuibo Yang
- School of AgricultureSUN Yat‐Sen UniversityShenzhenGuangdongChina
| | - Jia Liu
- School of AgricultureSUN Yat‐Sen UniversityShenzhenGuangdongChina
- Shenzhen Zhongjia Bio‐Medical Technology Co., LTDShenzhenGuangdongChina
| | - Guocai Yang
- Department of Cardiothoracic Surgery, Zhoushan HospitalWenzhou Medical UniversityZhoushanZhejiangChina
| |
Collapse
|
2
|
Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal 2024; 22:265. [PMID: 38741195 DOI: 10.1186/s12964-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cisplatin (CDDP) is a widely used first-line chemotherapeutic drug in various cancers. However, CDDP resistance is frequently observed in cancer patients. Therefore, it is required to evaluate the molecular mechanisms associated with CDDP resistance to improve prognosis among cancer patients. Integrins are critical factors involved in tumor metastasis that regulate cell-matrix and cell-cell interactions. They modulate several cellular mechanisms including proliferation, invasion, angiogenesis, polarity, and chemo resistance. Modification of integrin expression levels can be associated with both tumor progression and inhibition. Integrins are also involved in drug resistance of various solid tumors through modulation of the tumor cell interactions with interstitial matrix and extracellular matrix (ECM). Therefore, in the present review we discussed the role of integrin protein family in regulation of CDDP response in tumor cells. It has been reported that integrins mainly promoted the CDDP resistance through interaction with PI3K/AKT, MAPK, and WNT signaling pathways. They also regulated the CDDP mediated apoptosis in tumor cells. This review paves the way to suggest the integrins as the reliable therapeutic targets to improve CDDP response in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Lin HH, Zeng WH, Yang HK, Huang LS, Pan R, Lei NX. Fanconi anemia complementation group D2 promotes sensitivity of endometrial cancer cells to chemotherapeutic agents by inhibiting the ferroptosis pathway. BMC Womens Health 2024; 24:41. [PMID: 38218826 PMCID: PMC10787983 DOI: 10.1186/s12905-023-02857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Resistance can develop during treatment of advanced endometrial cancer (EC), leading to unsatisfactory results. Fanconi anemia complementation group D2 (Fancd2) has been shown to be closely related to drug resistance in cancer cells. Therefore, this study was designed to explore the correlation of Fancd2 with EC resistance and the mechanism of Fancd2. METHODS Real-time quantitative PCR (RT-qPCR) was used to detect the expression of Fancd2 in EC tissues and cells. EC cells (Ishikawa) and paclitaxel-resistant EC cells (Ishikawa/TAX) were transfected to knock down Fancd2. In addition, the ferroptosis inhibitor Ferrostatin-1 was adopted to treat Ishikawa/TAX cells. The sensitivity of cancer cells to chemotherapeutic agents was observed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and inhibitory concentration (IC)50 was calculated. Reactive oxygen species (ROS) levels were measured by flow cytometry, the activity of malondialdehyde (MDA) and the levels of glutathione (GSH) and Fe2+ in cells were detected by corresponding kits, and protein expression of solute farrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) was obtained through western blot. RESULTS Compared with the normal tissues and endometrial epithelial cells, Fancd2 expression was significantly increased in EC tissues and Ishikawa cells, respectively. After knock-down of Fancd2, Ishikawa cells showed significantly increased sensitivity to chemotherapeutic agents. Besides, compared with Ishikawa cells, the levels of ROS, the activity of MDA, and the levels of GSH and Fe2+ were significantly decreased in Ishikawa/TAX cells, while the expression levels of SLC7A11 and GPX4 were significantly increased. Knock-down of Fancd2 significantly increased the ferroptosis levels in Ishikawa/TAX cells, but this effect could be reversed by Ferrostatin-1. CONCLUSION Fancd2 increases drug resistance in EC cells by inhibiting the cellular ferroptosis pathway.
Collapse
Affiliation(s)
- Hai-Hong Lin
- Department of Gynaecology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, 514031, China.
| | - Wei-Hong Zeng
- Department of Gynaecology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, 514031, China
| | - Hai-Kun Yang
- Department of Gynaecology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, 514031, China
| | - Li-Shan Huang
- Department of Gynaecology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, 514031, China
| | - Ru Pan
- Department of Gynaecology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, 514031, China
| | - Nan-Xiang Lei
- Department of Gynaecology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, 514031, China
| |
Collapse
|
4
|
Sengul F, Vatansev H, Ozturk B. Investigation the effects of bee venom and H-dental-derived mesenchymal stem cells on non-small cell lung cancer cells (A549). Mol Biol Rep 2023; 51:2. [PMID: 38057592 DOI: 10.1007/s11033-023-09002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Lung cancer, one of the most common oncological diseases worldwide, continues to be the leading cause of cancer-related deaths. The development of new approaches for lung cancer, which still has a low survival rate despite medical advances, is of great importance. METHODS AND RESULTS In this study, bee venom (BV), conditioned medium of MSCs isolated from dental follicles (MSC-CM) and cisplatin were applied at different doses and their effects on A549 cell line were evaluated. Dental follicles were used as a source of MSCs source and differentiation kits, and characterization studies (flow cytometry) were performed. Cell viability was measured by the MTT method and apoptosis was measured by an Annexin V-FITC/PI kit on flow cytometer. IC50 dose values were determined according to the 24th hour and were determined as 15.8 µg/mL for BV, 10.78% for MSC-CM and 5.77 µg/mL for cisplatin. IC50 values found for BV and MSC-CM were also given in combination and the effects were observed. It was found that the applied substances caused BV to decrease in cell viability and induced apoptosis in cells. In addition to the induction of apoptosis in BV, MSC-CM, and combined use, all three applications led to an increase in Bax protein expression and a decrease in Bcl-2 protein expression. The molecular mechanism of anticancer activity through inhibition of Bax and Bcl-2 proteins and the NF-κB signaling pathway may be suggested. CONCLUSION Isolated MSCs in our study showed anticancer activity and BV and MSC-CM showed synergistic antiproliferative and apoptotic effects.
Collapse
Affiliation(s)
- Fatma Sengul
- Department of Biochemistry, Faculty of Pharmacy, University of Adiyaman, Central Classroom C Block Floor:3, 02040, Adiyaman, Turkey.
| | - Husamettin Vatansev
- Department of Medical Biochemistry, Faculty of Medicine, University of Selçuk, Alaeddin Keykubat Campus, 42131, Konya, Turkey
| | - Bahadir Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, University of Selçuk, Alaeddin Keykubat Campus, 42131, Konya, Turkey
| |
Collapse
|
5
|
Zou T, Liu JY, Qin Q, Guo J, Zhou WZ, Li XP, Zhou HH, Chen J, Liu ZQ. Role of rs873601 Polymorphisms in Prognosis of Lung Cancer Patients Treated with Platinum-Based Chemotherapy. Biomedicines 2023; 11:3133. [PMID: 38137354 PMCID: PMC10741124 DOI: 10.3390/biomedicines11123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Lung cancer is still the most lethal malignancy in the world, according to the report of Cancer Statistics in 2021. Platinum-based chemotherapy combined with immunotherapy is the first-line treatment in lung cancer patients. However, the 5-year survival rate is always affected by the adverse reactions and drug resistance caused by platinum-based chemotherapy. DNA damage and repair system is one of the important mechanisms that can affect the response to chemotherapy and clinical outcomes in lung cancer patients. OBJECTIVE The objective of this study is to find the relationship between the polymorphisms of DNA repair genes with the prognosis of platinum-based chemotherapy in lung cancer patients. PATIENTS AND METHODS We performed genotyping in 17 single nucleotide polymorphisms (SNPs) of Excision Repair Cross-Complementation group (ERCC) genes and X-ray Repair Cross-Complementing (XRCC) genes of 345 lung cancer patients via Sequenom MassARRAY. We used Cox proportional hazard models, state, and plink to analyze the associations between SNPs and the prognosis of lung cancer patients. RESULTS We found that the ERCC5 rs873601 was associated with the overall survival time in lung cancer patients treated with platinum-based chemotherapy (p = 0.031). There were some polymorphisms that were related to the prognosis in specific subgroups of lung cancer. Rs873601 showed a great influence on the prognosis of patients more than 55 years, Small Cell Lung Cancer (SCLC), and smoking patients. Rs2444933 was associated with prognosis in age less than 55 years, SCLC, metastasis, and stage III/IV/ED patients. Rs3740051 played an important role in the prognosis of SCLC and metastasis patients. Rs1869641 was involved in the prognosis of SCLC patients. Rs1051685 was related to the prognosis in non-metastasis patients. CONCLUSION The ERCC5 rs873601 (G>A) was a valuable biomarker for predicting the prognosis in lung cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ting Zou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Qun Qin
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Jie Guo
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Wen-Zhi Zhou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Xiang-Ping Li
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
| | - Juan Chen
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Wei B, Zheng J, Jiang C, Zhang H, Zhang M, Cheng T, Li J, Wang Z, Deng L, Wang L, Xia Q, Ma J. Improved detection of homologous recombination deficiency in Chinese patients with ovarian cancer: a novel non-exonic single-nucleotide polymorphism-based next-generation sequencing panel. Mol Oncol 2023. [PMID: 36852736 PMCID: PMC10399708 DOI: 10.1002/1878-0261.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
As homologous recombination deficiency (HRD) is a biomarker to predict the efficiency of PARP inhibitor treatment, this study developed a non-exonic single-nucleotide polymorphism (SNP)-based targeted next-generation sequencing panel and comprehensively examined it both on standard and clinical ovarian cancer tissues. The HRD scores calculated by the panel and whole-genome sequencing were consistent, with the analysis by sequenza being the most reliable. The results on clinical samples revealed that the panel performed better in HRD analysis compared with the SNP microarray. There are several distinctions between this newly developed kit and reported HRD detection panels. First, the panel covers only 52 592 SNPs, which makes it capable of detecting genomic instability. Secondly, all the SNPs are non-exonic; as a result, the panel can be used cooperatively with any exon panel. Thirdly, all the SNPs selected have a high minor allele frequency in Chinese people, making it a better choice for HRD detection in Chinese patients. In summary, this panel shows promise as a clinical application to guide PARP inhibitors or platinum drugs used in the treatment of ovarian and other cancers.
Collapse
Affiliation(s)
- Bing Wei
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Jinxiang Zheng
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Cai Jiang
- Nanodigmbio (Nanjing) Biotechnology Co., Ltd., China
| | - He Zhang
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Mingye Zhang
- Nanodigmbio (Nanjing) Biotechnology Co., Ltd., China
| | - Taoran Cheng
- Nanodigmbio (Nanjing) Biotechnology Co., Ltd., China
| | - Jun Li
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Zhizhong Wang
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Lijun Deng
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Li Wang
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Qingxin Xia
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Jie Ma
- Department of Molecular Pathology, Henan Key Laboratory of Molecular Pathology, Zhengzhou, China.,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| |
Collapse
|
7
|
Krassnig SC, Mäser M, Probst NA, Werner J, Schlett C, Schumann N, von Scheven G, Mangerich A, Bürkle A. Comparative analysis of chlorambucil-induced DNA lesion formation and repair in a spectrum of different human cell systems. Toxicol Rep 2023; 10:171-189. [PMID: 36714466 PMCID: PMC9881385 DOI: 10.1016/j.toxrep.2023.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Chlorambucil (CLB) belongs to the class of nitrogen mustards (NMs), which are highly reactive bifunctional alkylating agents and were the first chemotherapeutic agents developed. They form DNA interstrand crosslinks (ICLs), which cause a blockage of DNA strand separation, inhibiting essential processes in DNA metabolism like replication and transcription. In fast replicating cells, e.g., tumor cells, this can induce cell death. The upregulation of ICL repair is thought to be a key factor for the resistance of tumor cells to ICL-inducing cytostatic agents including NMs. To monitor induction and repair of CLB-induced ICLs, we adjusted the automated reversed fluorometric analysis of alkaline DNA unwinding assay (rFADU) for the detection of ICLs in adherent cells. For the detection of monoalkylated DNA bases we established an LC-MS/MS method. We performed a comparative analysis of adduct formation and removal in five human cell lines and in peripheral blood mononuclear cells (PBMCs) after treatment with CLB. Dose-dependent increases in adduct formation were observed, and suitable treatment concentrations were identified for each cell line, which were then used for monitoring the kinetics of adduct formation. We observed significant differences in the repair kinetics of the cell lines tested. For example, in A2780 cells, hTERT immortalized VH10 cells, and in PBMCs a time-dependent repair of the two main monoalkylated DNA-adducts was confirmed. Regarding ICLs, repair was observed in all cell systems except for PBMCs. In conclusion, LC-MS/MS analyses combined with the rFADU technique are powerful tools to study the molecular mechanisms of NM-induced DNA damage and repair. By applying these methods to a spectrum of human cell systems of different origin and transformation status, we obtained insight into the cell-type specific repair of different CLB-induced DNA lesions, which may help identify novel resistance mechanisms of tumors and define molecular targets for therapeutic interventions.
Collapse
Key Words
- BER, base excision repair
- CLB, chlorambucil
- Chlorambucil
- DNA repair kinetics
- ICL, interstrand crosslink
- Interstrand crosslink
- MS, mass spectrometry
- Mass spectrometry
- Monoalkylated DNA adducts
- NER, nucleotide excision repair
- NM, Nitrogen mustard
- Nitrogen mustard
- PBMCs, peripheral blood mononuclear cells
- PI, propidium iodide
- RPE-1, human retinal pigment epithelial
- SD, standard deviation
- VH10, human foreskin fibroblasts
- dG, 2'-deoxyguanosine
- hTERT, human telomerase reverse transcriptase
- rFADU, reverse fluorometric analysis of alkaline DNA unwinding
Collapse
Affiliation(s)
- Sarah Ceylan Krassnig
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Marina Mäser
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nicola Anna Probst
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Jens Werner
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Charlotte Schlett
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nina Schumann
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Gudrun von Scheven
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany
| | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
8
|
Wang X, Yu G, Yan Z, Wan L, Wang W, Cui L. Lung Cancer Subtype Diagnosis by Fusing Image-Genomics Data and Hybrid Deep Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:512-523. [PMID: 34855599 DOI: 10.1109/tcbb.2021.3132292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate diagnosis of cancer subtypes is crucial for precise treatment, because different cancer subtypes are involved with different pathology and require different therapies. Although deep learning techniques have made great success in computer vision and other fields, they do not work well on Lung cancer subtype diagnosis, due to the distinction of slide images between different cancer subtypes is ambiguous. Furthermore, they often over-fit to high-dimensional genomics data with limited samples, and do not fuse the image and genomics data in a sensible way. In this paper, we propose a hybrid deep network based approach LungDIG for Lung cancer subtype Diagnosis by fusing Image-Genomics data. LungDIG first tiles the tissue slide image into small patches and extracts the patch-level features by fine-tuning an Inception-V3 model. Since the patches may contain some false positives in non-diagnostic regions, it further designs a patch-level feature combination strategy to integrate the extracted patch features and maintain the diversity between different cancer subtypes. At the same time, it extracts the genomics features from Copy Number Variation data by an attention based nonlinear extractor. Next, it fuses the image and genomics features by an attention based multilayer perceptron (MLP) to diagnose cancer subtype. Experiments on TCGA lung cancer data show that LungDIG can not only achieve higher accuracy for cancer subtype diagnosis than state-of-the-art methods, but also have a high authenticity and good interpretability.
Collapse
|
9
|
Zheng C, Ren Z, Chen H, Yuan X, Suye S, Yin H, Zhou Z, Fu C. FANCD2 promotes the malignant behavior of endometrial cancer cells and its prognostic value. Exp Cell Res 2022; 421:113388. [PMID: 36257352 DOI: 10.1016/j.yexcr.2022.113388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
Defective DNA damage repair is a key mechanism affecting tumor susceptibility, treatment response, and survival outcome of endometrial cancer (EC). Fanconi anemia complementation group D2 (FANCD2) is the core component of the Fanconi anemia repair pathway. To explore the function of FANCD2 in EC, we examined the expression of FANCD2 in human specimens and databases, and discussed the possible mechanism of carcinogenesis by in vitro assays. Immunohistochemistry results showed overexpression of FANCD2 was detected in EC tissues compared to normal and atypical hyperplasia endometrium. Higher FANCD2 expression was correlated with deeper myometrial invasion (MI) and proficient mismatch repair status. The Cancer Genome Atlas (TCGA) database analysis showed FANCD2 was upregulated in EC compared with normal tissue. The high expression of FANCD2 was associated with poor overall survival in EC. Knockdown of FANCD2 expression in EC cell lines inhibited malignant proliferation and migration ability. We demonstrated that decreased FANCD2 expression results in increased DNA damage and decreased S-phase cells, leading to a decrease in proliferative capacity in EC cells. Down-regulated FANCD2 confers sensitivity of EC cells to interstrand crosslinking agents. This study provides evidence for the malignant progression and prognostic value of FANCD2 in EC.
Collapse
Affiliation(s)
- Chunying Zheng
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhen Ren
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hongliang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaorui Yuan
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Suye Suye
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huan Yin
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Palladium(II) and Platinum(II) Deprotonated Diaminocarbene Complexes Based on N-(2-Pyridyl)ureas with Oxadiazole Periphery. INORGANICS 2022. [DOI: 10.3390/inorganics10120247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metal mediated coupling of isocyanides with substituted N-(pyridine-2-yl) ureas was first used to incorporate privileged biological motifs into platinum metal complexes. We synthesized two palladium(II) and two platinum(II) cyclometallated species with oxadiazole cores. The compounds were isolated in good yields (61–73%) and characterized by high-resolution mass spectrometry and 1H, 13C, and 195Pt NMR spectroscopies. The structures of three complexes were additionally elucidated by X-ray diffraction analysis. These complexes indeed showed cytotoxic activity. The species bearing the 1,3,4-oxadiazole moiety exhibit more potency than the ones with the 1,2,4-oxadiazole ring. Particularly, the cytotoxic effect of both 1,3,4-oxadiazole-based complexes towards T98G cells significantly exceeds the common antitumor metal-drug cisplatin.
Collapse
|
11
|
Chen J, Wang X, Ma A, Wang QE, Liu B, Li L, Xu D, Ma Q. Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data. Nat Commun 2022; 13:6494. [PMID: 36310235 PMCID: PMC9618578 DOI: 10.1038/s41467-022-34277-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2022] [Indexed: 12/25/2022] Open
Abstract
Drug screening data from massive bulk gene expression databases can be analyzed to determine the optimal clinical application of cancer drugs. The growing amount of single-cell RNA sequencing (scRNA-seq) data also provides insights into improving therapeutic effectiveness by helping to study the heterogeneity of drug responses for cancer cell subpopulations. Developing computational approaches to predict and interpret cancer drug response in single-cell data collected from clinical samples can be very useful. We propose scDEAL, a deep transfer learning framework for cancer drug response prediction at the single-cell level by integrating large-scale bulk cell-line data. The highlight in scDEAL involves harmonizing drug-related bulk RNA-seq data with scRNA-seq data and transferring the model trained on bulk RNA-seq data to predict drug responses in scRNA-seq. Another feature of scDEAL is the integrated gradient feature interpretation to infer the signature genes of drug resistance mechanisms. We benchmark scDEAL on six scRNA-seq datasets and demonstrate its model interpretability via three case studies focusing on drug response label prediction, gene signature identification, and pseudotime analysis. We believe that scDEAL could help study cell reprogramming, drug selection, and repurposing for improving therapeutic efficacy.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoying Wang
- Department of Mathematics, Shandong University, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Bingqiang Liu
- Department of Mathematics, Shandong University, Shandong, 250100, China
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Sassu CM, Palaia I, Boccia SM, Caruso G, Perniola G, Tomao F, Di Donato V, Musella A, Muzii L. Role of Circulating Biomarkers in Platinum-Resistant Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222413650. [PMID: 34948446 PMCID: PMC8707281 DOI: 10.3390/ijms222413650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is the second most common cause of death in women with gynecological cancer. Considering the poor prognosis, particularly in the case of platinum-resistant (PtR) disease, a huge effort was made to define new biomarkers able to help physicians in approaching and treating these challenging patients. Currently, most data can be obtained from tumor biopsy samples, but this is not always available and implies a surgical procedure. On the other hand, circulating biomarkers are detected with non-invasive methods, although this might require expensive techniques. Given the fervent hope in their value, here we focused on the most studied circulating biomarkers that could play a role in PtR OC.
Collapse
|
13
|
Cao Y, Li P, Wang H, Li L, Li Q. SIRT3 promotion reduces resistance to cisplatin in lung cancer by modulating the FOXO3/CDT1 axis. Cancer Med 2021; 10:1394-1404. [PMID: 33655712 PMCID: PMC7926010 DOI: 10.1002/cam4.3728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023] Open
Abstract
Background Cisplatin is an extensively used chemotherapy agent for lung cancer, but its drug resistance serves as a huge obstacle for chemotherapy failure of lung cancer patients. Hence, researchers aimed to determine role of sirtuin 3 (SIRT3) considering its action in cisplatin resistance of lung cancer. Methods The expression patterns of SIRT3, FOXO3, and CDT1 were determined using RT‐qPCR and Immunoblotting in lung cancer. Immunofluorescence and Co‐IP were adopted to detect co‐localization and interaction of FOXO3 and CDT1. Loss‐ and gain‐function assays were conducted to determine roles of SIRT3, FOXO3, and CDT1 in resulting pathological changes, while biological behavior of cells was determined using a combination of CCK‐8, flow cytometry, colony formation, and Transwell assays. The effects of SIRT3 and CDT1 were determined in the nude mice xenografted with the tumor. The proliferation‐, angiogenesis‐, and apoptosis‐associated factors levels were determined using Immunoblotting. Results SIRT3, FOXO3, and CDT1 expression was suppressed in the lung cancer tissues and cells. FOXO3 positively regulates the CDT1 expression pattern and SIRT3 elevation inhibits FOXO3 at the acetylated level, thus, elevating FOXO3 expression. The elevation of SIRT3, FOXO3, or CDT1 inhibited cell cisplatin resistance of lung cancer cells as well as inhibited viability, proliferation, and invasion in vitro. In vivo experiments, SIRT3 depletion elevated Ki‐67 and VEGFA levels, but downregulated cleaved caspase 3 level. Conclusion Collectively, overexpressed SIRT3 elevates expression of FOXO3a/CDT1 axis, thus, contributing to enhanced sensitivity of lung cancer cells.
Collapse
Affiliation(s)
- Yang Cao
- The Third Department of Medical Oncology, the Third People's Hospital of Zhengzhou, Zhengzhou, P. R. China
| | - Ping Li
- Medical Department, Women & Infants Hospital of Zhengzhou, Zhengzhou, P. R. China
| | - Haicun Wang
- The Third Department of Medical Oncology, the Third People's Hospital of Zhengzhou, Zhengzhou, P. R. China
| | - Lei Li
- The Third Department of Medical Oncology, the Third People's Hospital of Zhengzhou, Zhengzhou, P. R. China
| | - Quanwang Li
- Department of Oncology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
14
|
Targeting DNA Damage Response and Repair to Enhance Therapeutic Index in Cisplatin-Based Cancer Treatment. Int J Mol Sci 2021; 22:ijms22158199. [PMID: 34360968 PMCID: PMC8347825 DOI: 10.3390/ijms22158199] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapies, such as cisplatin, play a large role in cancer treatment. The development of resistance and treatment toxicity creates substantial barriers to disease control, yet. To enhance the therapeutic index of cisplatin-based chemotherapy, it is imperative to circumvent resistance and toxicity while optimizing tumor sensitization. One of the primary mechanisms by which cancer cells develop resistance to cisplatin is through upregulation of DNA repair pathways. In this review, we discuss the DNA damage response in the context of cisplatin-induced DNA damage. We describe the proteins involved in the pathways and their roles in resistance development. Common biomarkers for cisplatin resistance and their utilization to improve patient risk stratification and treatment personalization are addressed. Finally, we discuss some of the current treatments and future strategies to circumvent the development of cisplatin resistance.
Collapse
|
15
|
Xing L, Mi W, Zhang Y, Tian S, Zhang Y, Qi R, Lou G, Zhang C. The identification of six risk genes for ovarian cancer platinum response based on global network algorithm and verification analysis. J Cell Mol Med 2020; 24:9839-9852. [PMID: 32762026 PMCID: PMC7520306 DOI: 10.1111/jcmm.15567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer, and resistance of platinum‐based chemotherapy is the main reason for treatment failure. The aim of the present study was to identify candidate genes involved in ovarian cancer platinum response by analysing genes from homologous recombination and Fanconi anaemia pathways. Associations between these two functional genes were explored in the study, and we performed a random walk algorithm based on reconstructed gene‐gene network, including protein‐protein interaction and co‐expression relations. Following the random walk, all genes were ranked and GSEA analysis showed that the biological functions focused primarily on autophagy, histone modification and gluconeogenesis. Based on three types of seed nodes, the top two genes were utilized as examples. We selected a total of six candidate genes (FANCA, FANCG, POLD1, KDM1A, BLM and BRCA1) for subsequent verification. The validation results of the six candidate genes have significance in three independent ovarian cancer data sets with platinum‐resistant and platinum‐sensitive information. To explore the correlation between biomarkers and clinical prognostic factors, we performed differential analysis and multivariate clinical subgroup analysis for six candidate genes at both mRNA and protein levels. And each of the six candidate genes and their neighbouring genes with a mutation rate greater than 10% were also analysed by network construction and functional enrichment analysis. In the meanwhile, the survival analysis for platinum‐treated patients was performed in the current study. Finally, the RT‐qPCR assay was used to determine the performance of candidate genes in ovarian cancer platinum response. Taken together, this research demonstrated that comprehensive bioinformatics methods could help to understand the molecular mechanism of platinum response and provide new strategies for overcoming platinum resistance in ovarian cancer treatment.
Collapse
Affiliation(s)
- Linan Xing
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongjian Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Songyu Tian
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunyang Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Rui Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Lima MA, Costa VA, Franco MA, de Oliveira GP, Deflon VM, Rocha FV. Palladium(II) complexes bearing thiosemicarbazone and phosphines as inhibitors of DNA-Topoisomerase II enzyme: Synthesis, characterizations and biological studies. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Zheng P, Li L. FANCI Cooperates with IMPDH2 to Promote Lung Adenocarcinoma Tumor Growth via a MEK/ERK/MMPs Pathway. Onco Targets Ther 2020; 13:451-463. [PMID: 32021289 PMCID: PMC6970268 DOI: 10.2147/ott.s230333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose Fanconi anemia complementation group I (FANCI) is a key protein in ribosome biogenesis and DNA repair. Here, we aimed to determine the clinical significance, prognostic value and biology functions of FANCI in lung adenocarcinoma (LUAD). Methods The expression of FANCI in LUAD tissue and its relationship with patient outcomes were assessed using bioinformatics analysis, as well as quantitative reverse-transcription PCR (qRT-PCR) and Western blot analysis of LUAD tissue and adjacent normal lung tissue. The chi-squared test and Cox regression analysis were used to analyze the clinical significance of FANCI expression. The biological effects of FANCI knockdown in human LUAD cell lines were investigated by analysis of proliferation, colony formation, cell cycle distribution, migration, and invasion in vitro, and monitoring of tumor xenograft growth in vivo. FANCI interactions with IMPDH2 and involvement in MEK/ERK/MMPs signaling were analyzed using co-immunoprecipitation assays, immunofluorescence microscopy, and Western blotting. Results FANCI was identified as a hub gene for LUAD. FANCI expression was upregulated in LUAD tissues compared with normal lung tissues and was positively associated with lymphatic metastasis, distant metastasis, and poor outcome. FANCI was also an independent prognostic factor in LUAD patients. Knockdown of FANCI in LUAD cell lines decreased their proliferation, migration, invasion, and cell cycle progression in vitro, and decreased the growth of xenografts in mice. Direct binding of FANCI to IMPDH2 decreased IMPDH2 degradation, regulated activation of MEK/ERK/MMPs signaling. Overexpression of IMPDH2 reversed the inhibitory effects of FANCI knockdown. Conclusion FANCI may act as an oncogene in LUAD by cooperating with IMPDH2 to promote cell proliferation via the MEK/ERK/MMPs pathway. These results identify FANCI as a potential prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Pengchao Zheng
- Department of Cardio-Thoracic Surgery, Second People's Hospital of Jinmen, Jingmen, Hubei 448000, People's Republic of China.,Department of Cardio-Thoracic Surgery, Jingchu Center Hospital Affiliated to the Institute of Technology, Jingmen, Hubei 448000, People's Republic of China
| | - Lei Li
- Department of Cardio-Thoracic Surgery, Second People's Hospital of Jinmen, Jingmen, Hubei 448000, People's Republic of China.,Department of Cardio-Thoracic Surgery, Jingchu Center Hospital Affiliated to the Institute of Technology, Jingmen, Hubei 448000, People's Republic of China
| |
Collapse
|
18
|
Jain S, Bhar K, Kumar S, Bandyopadhyaya S, Tapryal S, Mandal CC, Sharma AK. Homo- and heteroleptic trimethoxy terpyridine–Cu(ii) complexes: synthesis, characterization, DNA/BSA binding, DNA cleavage and cytotoxicity studies. Dalton Trans 2020; 49:4100-4113. [DOI: 10.1039/d0dt00209g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the current study, four novel mononuclear Cu(ii) complexes with terpyridine (L) and different co-ligands (phen, bipy, and imd) were synthesized and characterized in detail, whereLis 4′-(3,4,5-trimethoxyphenyl)-2,2′:6′,2′′-terpyridine.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- India
| | - Kishalay Bhar
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- India
| | - Sandeep Kumar
- Department of Biotechnology
- School of Life Sciences
- India
| | | | - Suman Tapryal
- Department of Biotechnology
- School of Life Sciences
- India
| | - Chandi C. Mandal
- Department of Biochemistry
- School of Life Sciences
- Central University of Rajasthan
- India
| | - Anuj K. Sharma
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- India
| |
Collapse
|
19
|
Hou S, Jin W, Xiao W, Deng B, Wu D, Zhi J, Wu K, Cao X, Chen S, Ding Y, Shi H. Integrin α5 promotes migration and cisplatin resistance in esophageal squamous cell carcinoma cells. Am J Cancer Res 2019; 9:2774-2788. [PMID: 31911861 PMCID: PMC6943361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023] Open
Abstract
Cisplatin, as one of the front-line chemotherapeutic drugs, is employed for the treatment of esophageal squamous cell carcinoma (ESCC). However, the occurrence of cisplatin resistance and metastasis remain as challenges in clinical therapy. To investigate the mechanism involved in cisplatin resistance, in this study, we established cisplatin resistant cell lines (Res) from Eca109 and TE-1 parental cells (Par), and we observed that fibronectin (FN)-mediated cell migration and spreading abilities are significantly increased in Res cells when compared to Par cells. Furthermore, we found that the integrin α5 expression is remarkably upregulated in Res cells, and inhibition of α5 results in more apoptosis and endows the Res cells resensitize to cisplatin in vitro and in vivo. In a mechanistic manner, we identified the expression of BARD1 is significantly increased in Res cells, and silencing of BARD1 reverse the effects of α5 on cisplatin resistance. Moreover, we found that the α5/FAK/PI3K/AKT signal axis is activated in Res cells, which mediates the increased expression of BARD1, as well as the cisplatin resistance and cell survival. Thus, our results demonstrate that α5 is required for cisplatin resistance through the promotion of FAK/PI3K/AKT/BARD1 signaling to prevent cells from apoptosis and enhance the DNA damage repair ability. Taken together, our study provides plausible mechanisms of α5-mediated cisplatin resistance in ESCC cells, highlighting that inhibition of α5 may be a potential target for improving efficacy in cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Sicong Hou
- Department of Clinical Medicine, Medical College, Yangzhou UniversityYangzhou 225001, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou UniversityYangzhou 225001, China
- Mobile Post-doctoral Research Station of Yangzhou UniversityYangzhou 225009, China
| | - Weiguo Jin
- Department of Cardiothoracic Surgery, Clinical Medical College of Yangzhou UniversityYangzhou 225000, China
| | - Weiming Xiao
- Department of Clinical Medicine, Medical College, Yangzhou UniversityYangzhou 225001, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhou 225000, China
| | - Dacheng Wu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhou 225000, China
| | - Jiehua Zhi
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhou 225000, China
| | - Keyan Wu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhou 225000, China
| | - Xiaowei Cao
- Department of Clinical Medicine, Medical College, Yangzhou UniversityYangzhou 225001, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou UniversityYangzhou 225001, China
| | - Shuai Chen
- Department of Clinical Medicine, Medical College, Yangzhou UniversityYangzhou 225001, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou UniversityYangzhou 225009, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhou 225000, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of The State Administration of Traditional Chinese Medicine, Yangzhou UniversityYangzhou 225001, China
| | - Hongcan Shi
- Department of Clinical Medicine, Medical College, Yangzhou UniversityYangzhou 225001, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou UniversityYangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA ResearchYangzhou 225001, China
- Department of Cardiothoracic Surgery, Clinical Medical College of Yangzhou UniversityYangzhou 225000, China
| |
Collapse
|
20
|
Chen P, Huang HP, Wang Y, Jin J, Long WG, Chen K, Zhao XH, Chen CG, Li J. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:254. [PMID: 31196210 PMCID: PMC6567416 DOI: 10.1186/s13046-019-1234-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are being wildly used as target therapy in non-small-cell lung cancer (NSCLC). However, NSCLC patients with wild-type EGFR and KRAS mutation are primary resistant to EGFR-TKIs such as gefitinib. Curcumin has been known as a potential therapeutic agent for several major human cancers. In this study, we investigated the effect of curcumin on the reversal of gefitinib resistance in NSCLC cells as well as their molecular bases. METHODS H157 (wild-type EGFR and KARS mutation) and H1299 (wild-type EGFR and HRAS mutation) cells were treated with gefitinib or curcumin alone, or the two combination, and then cell viability, EGFR activity, expressions of Sp1 and Sp1-dependent proteins and receptor tyrosine kinases, markers of autophagy and apoptosis were examined by using CCK-8, colony formation, immunoblot, quantitative PCR, immunofluoscence, and flow cytometry assays. Also xenograft experiments were conduced to test the synergism of curcumin to gefitinib. RESULTS Our results showed that curcumin significantly enhanced inhibitory effect of gefitinib on primary gefitinib-resistant NSCLC cell lines H157 and H1299. Combination treatment with curcumin and gefitinib markedly downregulated EGFR activity through suppressing Sp1 and blocking interaction of Sp1 and HADC1, and markedly suppressed receptor tyrosine kinases as well as ERK/MEK and AKT/S6K pathways in the resistant NSCLC cells. Meanwhile, combination treatment of curcumin and gefitinib caused dramatic autophagy induction, autophagic cell death and autophagy-mediated apoptosis, compared to curcumin or gefitinib treatment alone, as evidenced by the findings that curcumin and gefitinib combination treatment-produced synergistic growth inhibition and apoptosis activation can be reversed by pharmacological autophagy inhibitors (Baf A1 or 3-MA) or knockdown of Beclin-1 or ATG7, also can be partially returned by pan-caspase inhibitor (Z-VAD-FMK) in H157 and H1299 cells. Xenograft experiments in vivo yielded similar results. CONCLUSIONS These data indicate that the synergism of curcumin on gefitinib was autophagy dependent. Curcumin can be used as a sensitizer to enhance the efficacy of EGFR-TKIs and overcome the EGFR-TKI resistance in NSCLC patients with wild-type EGFR and/or KRAS mutation.
Collapse
Affiliation(s)
- Ping Chen
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Han-Peng Huang
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Yi Wang
- grid.452247.2Center of Medical Experimental, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Jun Jin
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Wei-Guo Long
- grid.452247.2Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Kan Chen
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Xiao-Hui Zhao
- grid.452247.2Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Chen-Guo Chen
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| | - Jian Li
- grid.452247.2Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjing, 212001 China
| |
Collapse
|
21
|
Rocha FV, Farias RL, Lima MA, Batista VS, Nascimento-Júnior NM, Garrido SS, Leopoldino AM, Goto RN, Oliveira AB, Beck J, Landvogt C, Mauro AE, Netto AVG. Computational studies, design and synthesis of Pd(II)-based complexes: Allosteric inhibitors of the Human Topoisomerase-IIα. J Inorg Biochem 2019; 199:110725. [PMID: 31374424 DOI: 10.1016/j.jinorgbio.2019.110725] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
Abstract
Herein, a robust docking protocol was developed by using a low-cost workflow to highlight the modulation at ATPase domain from Human Topoisomerase-IIα (TOP2A) towards four novel Pd(II)-complexes bearing N,S-donor ligands. In vitro TOP2A inhibition assay confirmed the ability of them to prevent the enzyme functions into concentration ranging at 6.25-25μM. These results exhibited more effectivity than anticancer agent etoposide (35μM) and merbarone (40-50μM). The compounds were screened via Resazurin assay against MCF-7, MDA-MB-231 (Human breast), DU-145 (Human prostate), A549 (Human lung) and Cal27 (Human tongue) tumor cell lines revealing great cytotoxic effects, primarily to MCF-7 (IC50=1.81-4.46μM). As well, 1-4 exhibited their selectivity index (SI) higher than cisplatin against HEK-293 (human kidney) normal cells, at least 11.6-fold (SI1-4=1.4-5.0; SIcis=0.12). Further, Red Blood Cell hemolytic test suggested in vitro non-toxic character for compound 4, previously evaluated as the most effective TOP2A inhibitor.
Collapse
Affiliation(s)
- Fillipe V Rocha
- UFSCar - Univ Federal de São Carlos, Departamento de Química, São Carlos, Brazil.
| | - Renan L Farias
- UNESP - Univ Estadual Paulista, Instituto de Química, Departamento de Química Geral e Inorgânica, Araraquara, Brazil
| | - Mauro A Lima
- UFSCar - Univ Federal de São Carlos, Departamento de Química, São Carlos, Brazil
| | - Victor S Batista
- UNESP - Univ Estadual Paulista, Instituto de Química, Departamento de Química Orgânica, Araraquara, Brazil
| | | | - Saulo S Garrido
- UNESP - Univ Estadual Paulista, Instituto de Química, Departamento de Bioquímica e Tecnologia Química, Araraquara, Brazil
| | - Andréia M Leopoldino
- USP - Univ de São Paulo, Department of Clinical Analyses, Toxicology and Food Sciences, Ribeirão Preto, Brazil
| | - Renata N Goto
- USP - Univ de São Paulo, Department of Clinical Analyses, Toxicology and Food Sciences, Ribeirão Preto, Brazil
| | - Adriano B Oliveira
- UFS - Univ Federal de Sergipe, Departamento de Química, São Cristóvão, Brazil
| | - Johannes Beck
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Anorganische Chemie, Bonn, Germany
| | - Christian Landvogt
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Anorganische Chemie, Bonn, Germany
| | - Antônio E Mauro
- UNESP - Univ Estadual Paulista, Instituto de Química, Departamento de Química Geral e Inorgânica, Araraquara, Brazil
| | - Adelino V G Netto
- UNESP - Univ Estadual Paulista, Instituto de Química, Departamento de Química Geral e Inorgânica, Araraquara, Brazil
| |
Collapse
|
22
|
Yang L, Gong NR, Zhang Q, Ma YB, Zhou H. Apparent Correlations Between AMPK Expression and Brain Inflammatory Response and Neurological Function Factors in Rats with Chronic Renal Failure. J Mol Neurosci 2019; 68:204-213. [PMID: 30919248 DOI: 10.1007/s12031-019-01299-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023]
Abstract
To explore the correlations between AMP-activated protein kinase (AMPK) expression and brain inflammatory response and neurological function factors in rats with chronic renal failure. Chronic renal failure models in rats were established, and the healthy control group (normal group) was set. Chronic renal failure model rats were divided into model group (without any treatment), control group (intraperitoneal injection of normal saline), A-769662 group (intraperitoneal injection of AMPK specific activator), and compound C group (intraperitoneal injection of AMPK specific inhibitor). The results of HE staining showed renal tissue enlargement, and significant pathological changes. Compared with the normal group, AMPK level in peripheral blood and AMPK mRNA and protein expressions in brain tissue were significantly reduced, and AMPK pathway activation was significantly inhibited in other groups. Compared with the model group, rats in the A-769662 group had significantly decreased serum creatinine (Scr) and blood urea nitrogen (BUN) levels and γ-aminobutyric acid (γ-GABA) content, significantly increased brain-derived neurotrophic factor (BDNF) positive expressions and 5-hydroxytryptamine (5-HT) content, and decreased interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule 1 (ICAM-1) expressions (all P < 0.05), while it was just the opposite in compound C group (all P < 0.05). There is an apparent correlation between AMPK expression and brain inflammatory response in chronic renal failure rats. AMPK is expected to be an important pathway in the treatment of uremic encephalopathy.
Collapse
Affiliation(s)
- Li Yang
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ni-Rong Gong
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Qin Zhang
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ya-Bin Ma
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglin Xia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China
| | - Hui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglin Xia Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, China.
| |
Collapse
|
23
|
Butoxy Mansonone G Inhibits STAT3 and Akt Signaling Pathways in Non-Small Cell Lung Cancers: Combined Experimental and Theoretical Investigations. Cancers (Basel) 2019; 11:cancers11040437. [PMID: 30925736 PMCID: PMC6521096 DOI: 10.3390/cancers11040437] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/20/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is the key molecular target for non-small cell lung cancer (NSCLC) due to its major contribution to complex signaling cascades modulating the survival of cancer cells. Targeting EGFR-mediated signaling pathways has been proved as a potential strategy for NSCLC treatment. In the present study, mansonone G (MG), a naturally occurring quinone-containing compound, and its semi-synthetic ether derivatives were subjected to investigate the anticancer effects on human NSCLC cell lines expressing wild-type EGFR (A549) and mutant EGFR (H1975). In vitro cytotoxicity screening results demonstrated that butoxy MG (MG3) exhibits the potent cytotoxic effect on both A549 (IC50 of 8.54 μM) and H1975 (IC50 of 4.21 μM) NSCLC cell lines with low toxicity against PCS201-010 normal fibroblast cells (IC50 of 21.16 μM). Western blotting and flow cytometric analyses revealed that MG3 induces a caspase-dependent apoptosis mechanism through: (i) inhibition of p-STAT3 and p-Akt without affecting upstream p-EGFR and (ii) activation of p-Erk. The 500-ns molecular dynamics simulations and the molecular mechanics combined with generalized Born surface area (MM/GBSA)-based binding free energy calculations suggested that MG3 could possibly interact with STAT3 SH2 domain and ATP-binding pocket of Akt. According to principal component analysis, the binding of MG3 toward STAT3 and Akt dramatically altered the conformation of proteins, especially the residues in the active site, stabilizing MG3 mainly through van der Waals interactions.
Collapse
|
24
|
Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers (Basel) 2019. [PMID: 30669514 DOI: 10.3390/cancers11010119]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. It is initially responsive to cisplatin and carboplatin, two DNA damaging agents used in first line therapy. However, almost invariably, patients relapse with a tumor resistant to subsequent treatment with platinum containing drugs. Several mechanisms associated with the development of acquired drug resistance have been reported. Here we focused our attention on DNA repair mechanisms, which are fundamental for recognition and removal of platinum adducts and hence for the ability of these drugs to exert their activity. We analyzed the major DNA repair pathways potentially involved in drug resistance, detailing gene mutation, duplication or deletion as well as polymorphisms as potential biomarkers for drug resistance development. We dissected potential ways to overcome DNA repair-associated drug resistance thanks to the development of new combinations and/or drugs directly targeting DNA repair proteins or taking advantage of the vulnerability arising from DNA repair defects in EOCs.
Collapse
|
25
|
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. It is initially responsive to cisplatin and carboplatin, two DNA damaging agents used in first line therapy. However, almost invariably, patients relapse with a tumor resistant to subsequent treatment with platinum containing drugs. Several mechanisms associated with the development of acquired drug resistance have been reported. Here we focused our attention on DNA repair mechanisms, which are fundamental for recognition and removal of platinum adducts and hence for the ability of these drugs to exert their activity. We analyzed the major DNA repair pathways potentially involved in drug resistance, detailing gene mutation, duplication or deletion as well as polymorphisms as potential biomarkers for drug resistance development. We dissected potential ways to overcome DNA repair-associated drug resistance thanks to the development of new combinations and/or drugs directly targeting DNA repair proteins or taking advantage of the vulnerability arising from DNA repair defects in EOCs.
Collapse
|
26
|
Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers (Basel) 2019; 11:cancers11010119. [PMID: 30669514 PMCID: PMC6357127 DOI: 10.3390/cancers11010119] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. It is initially responsive to cisplatin and carboplatin, two DNA damaging agents used in first line therapy. However, almost invariably, patients relapse with a tumor resistant to subsequent treatment with platinum containing drugs. Several mechanisms associated with the development of acquired drug resistance have been reported. Here we focused our attention on DNA repair mechanisms, which are fundamental for recognition and removal of platinum adducts and hence for the ability of these drugs to exert their activity. We analyzed the major DNA repair pathways potentially involved in drug resistance, detailing gene mutation, duplication or deletion as well as polymorphisms as potential biomarkers for drug resistance development. We dissected potential ways to overcome DNA repair-associated drug resistance thanks to the development of new combinations and/or drugs directly targeting DNA repair proteins or taking advantage of the vulnerability arising from DNA repair defects in EOCs.
Collapse
|
27
|
Wan Q, Shen Y, Zhao H, Wang B, Zhao L, Zhang Y, Bu X, Wan M, Shen C. Impaired DNA double‐strand breaks repair by kinesin family member 4A inhibition renders human H1299 non‐small‐cell lung cancer cells sensitive to cisplatin. J Cell Physiol 2018; 234:10360-10371. [DOI: 10.1002/jcp.27703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Qing Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University Nanjing China
| | - Yong Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Huzi Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Bei Wang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Lei Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Yongchen Zhang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Xiaodong Bu
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Meiling Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Chuanlu Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| |
Collapse
|
28
|
Dai CH, Shu Y, Chen P, Wu JN, Zhu LH, Yuan RX, Long WG, Zhu YM, Li J. YM155 sensitizes non-small cell lung cancer cells to EGFR-tyrosine kinase inhibitors through the mechanism of autophagy induction. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3786-3798. [PMID: 30315932 DOI: 10.1016/j.bbadis.2018.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
Resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib and gefitinib, is a major clinical problem in the treatment of patients with non-small cell lung cancer (NSCLC). YM155 is a survivin small molecule inhibitor and has been demonstrated to induce cancer cell apoptosis and autophagy. EGFR-TKIs have been known to induce cancer cell autophagy. In this study, we showed that YM155 markedly enhanced the sensitivity of erlotinib to EGFR-TKI resistant NSCLC cell lines H1650 (EGFR exon 19 deletion and PTEN loss) and A549 (EGFR wild type and KRAS mutation) through inducing autophagy-dependent apoptosis and autophagic cell death. The effects of YM155 combined with erlotinib on apoptosis and autophagy inductions were more obvious than those of YM155 in combination with survivin knockdown by siRNA transfection, suggesting that YM155 induced autophagy and apoptosis in the NSCLC cells partially depend on survivin downregulation. Meanwhile, we found that the AKT/mTOR pathway is involved in modulation of survivin downregulation and autophagy induction caused by YM155. In addition, YM155 can induce DNA damage in H1650 and A549 cell lines. Moreover, combining erlotinib further augmented DNA damage by YM155, which were retarded by autophagy inhibitor 3MA, or knockdown of autophagy-related protein Beclin 1, revealing that YM155 induced DNA damage is autophagy-dependent. Similar results were also observed in vivo xenograft experiments. Therefore, combination of YM155 and erlotinib offers a promising therapeutic strategy in NSCLC with EGFR-TKI resistant phenotype.
Collapse
Affiliation(s)
- Chun-Hua Dai
- Department of Radiation Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Shu
- Center of Medical Experiment, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ping Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian-Nong Wu
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li-Haun Zhu
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rong-Xia Yuan
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei-Guo Long
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yu-Min Zhu
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
29
|
Li XQ, Ren J, Chen P, Chen YJ, Wu M, Wu Y, Chen K, Li J. Co-inhibition of Pol η and ATR sensitizes cisplatin-resistant non-small cell lung cancer cells to cisplatin by impeding DNA damage repair. Acta Pharmacol Sin 2018; 39:1359-1372. [PMID: 29849128 DOI: 10.1038/aps.2017.187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/14/2017] [Indexed: 02/08/2023]
Abstract
For the majority of patients with advanced non-small cell lung cancer (NSCLC), the standard of care remains platinum-based chemotherapy. However, cisplatin resistance is a big obstacle to the treatment, and elucidation of its mechanism is warranted. In this study, we showed that there was no difference in intracellular uptake of cisplatin or the removal of platinum-DNA adducts between a cisplatin-resistant NSCLC cell line (A549/DR) and a cisplatin-sensitive NSCLC cell line (A549). However, the capacity to repair DNA interstrand crosslinks (ICLs) and double-strand breaks (DSBs) was significantly enhanced in the A549/DR cell line compared to 3 cisplatin-sensitive cell lines. We found that the protein and mRNA expression levels of Pol η, a Y-family translesion synthesis (TLS) polymerase, were markedly increased upon cisplatin exposure in A549/DR cells compared with A549 cells. Furthermore, intracellular co-localization of Pol η and proliferation cell nuclear antigen (PCNA) induced by cisplatin or cisplatin plus gemcitabine treatment was inhibited by depleting ataxia telangiectasia mutated and Rad-3-related (ATR). Pol η depletion by siRNA sensitized A549/DR cells to cisplatin; co-depletion of Pol η and ATR further increased A549/DR cell death induced by cisplatin or cisplatin plus gemcitabine compared to depletion of Pol η or ATR alone, concomitant with inhibition of DNA ICL and DSB repair and accumulation of DNA damage. No additional sensitization effect of co-depleting Pol η and ATR was observed in A549 cells. These results demonstrate that co-inhibition of Pol η and ATR reverses the drug resistance of cisplatin-resistant NSCLC cells by blocking the repair of DNA ICLs and DSBs induced by cisplatin or cisplatin plus gemcitabine.
Collapse
|
30
|
Jiang HG, Chen P, Su JY, Wu M, Qian H, Wang Y, Li J. Knockdown of REV3 synergizes with ATR inhibition to promote apoptosis induced by cisplatin in lung cancer cells. J Cell Physiol 2017; 232:3433-3443. [PMID: 28075014 DOI: 10.1002/jcp.25792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Abstract
It has been demonstrated that REV3, the catalytic subunit of the translesion synthesis (TLS) polymerase ζ, play an important role in DNA damage response (DDR) induced by cisplatin, and Ataxia-telangietasia mutated and Rad-3-related (ATR) knase is a central player in activating cell cycle checkpoint, stabilizing replication forks, regulating DDR, and promoting repair of DNA damage caused by cisplatin. Cancer cells deficient in either one of REV3 and ATR are more sensitive to cisplatin. However, whether co-inhibition of REV3 and ATR can further increase sensitivity of non-small cell lung cancer (NSCLC) cells to cisplatin is not clear. In this study, we show that REV3 knockdown combined with ATR inhibition further enhance cytotoxicity of cisplatin in NSCLC cells, including cisplatin-sensitive and -resistant cell lines, compared to individual knockdown of REV3 or ATR, which are accompanied by markedly caspase-dependent apoptosis response, pronounced DNA damage accumulation and severe impediment of interstrand crosslink (ICL), and double strand break (DSB) repair. Our results suggest that REV3 knockdown synergize strongly with ATR inhibition to significantly increase sensitivity of cisplatin in NSCLC cells by inhibiting ICL and DSB repair. Thus simultaneously targeting REV3 and ATR may represent one approach to overcome cisplatin resistance and improve chemotherapeutic efficacy in NSCLC treatment.
Collapse
Affiliation(s)
- He-Guo Jiang
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ping Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jin-Yu Su
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ming Wu
- Institute of Medical Science, Jiangsu University, Zhenjiang, China
| | - Hai Qian
- Institute of Medical Science, Jiangsu University, Zhenjiang, China
| | - Yi Wang
- Center of Experimental Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Dai CH, Wang Y, Chen P, Jiang Q, Lan T, Li MY, Su JY, Wu Y, Li J. Suppression of the FA pathway combined with CHK1 inhibitor hypersensitize lung cancer cells to gemcitabine. Sci Rep 2017; 7:15031. [PMID: 29118324 PMCID: PMC5678185 DOI: 10.1038/s41598-017-15172-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/23/2017] [Indexed: 01/15/2023] Open
Abstract
The combination of platinum and gemcitabine is one of the standard regimens in the treatment of advanced lung squamous carcinoma (LSC). Resistance to gemcitabine is main barrier to the successful treatment of LSC. In this study, we showed that suppression of the Fanconi anemia (FA) pathway increased the sensitivity of two LSC cell lines SK-MES-1 and KLN205 to gemcitabine. Moreover, we found that the CHK1 pathway and the FA pathway are functionally compensatory in the repair of DNA damage in the LSC cell lines. Inactivation of one of the two pathways led to DNA damage, triggering compensatory activation of other pathway. Furthermore, we demonstrated that FANCD2 depletion combined with CHK1 inhibitor MK-8776 significantly potentiated the cytotoxicity of gemcitabine to the two LSC cell lines, compared to individual FANCD2 depletion or MK-8776 treatment. The enhanced effect of gemcitabine-chemosensitization was accompanied by loss of DNA repair function and accumulation of DNA single strand breaks and double strand breaks, in parallel with obvious increase of caspase-3 dependent apoptosis. Our results indicate that the enhancement effect of FANCD2 depletion combined with CHK1 inhibitor in sensitizing the LCS cells to gemcitabine supports the FA pathway and CHK1 as two therapeutic targets for improvement of anti-tumor regimens in treatment of LSC.
Collapse
Affiliation(s)
- Chun-Hua Dai
- Department of Radiation Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Wang
- Center of Experimental Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ping Chen
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China
| | - Qian Jiang
- Center of Experimental Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ting Lan
- Institute of Medical Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei-Yu Li
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China
| | - Jin-Yu Su
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Wu
- Institute of Medical Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jian Li
- Department of Pulmonary Medicine, Affitialed Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
32
|
Zheng Y, Deng Z, Yin J, Wang S, Lu D, Wen X, Li X, Xiao D, Hu C, Chen X, Zhang W, Zhou H, Liu Z. The association of genetic variations in DNA repair pathways with severe toxicities in NSCLC patients undergoing platinum‐based chemotherapy. Int J Cancer 2017; 141:2336-2347. [PMID: 28791697 DOI: 10.1002/ijc.30921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/25/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Yi Zheng
- Department of Clinical PharmacologyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
- Hunan Key Laboratory of PharmacogeneticsInstitute of Clinical Pharmacology, Central South UniversityChangsha410078 People's Republic of China
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care HospitalChangsha410008 People's Republic of China
| | - Zheng Deng
- Department of Respiratory MedicineXiangya Hospital, Central South UniversityChangsha Hunan410008 People's Republic of China
| | - Jiye Yin
- Department of Clinical PharmacologyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
- Hunan Key Laboratory of PharmacogeneticsInstitute of Clinical Pharmacology, Central South UniversityChangsha410078 People's Republic of China
| | - Shiming Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary AnthropologyInstitute of Genetics, School of Life Sciences, Fudan UniversityShanghai20000 People's Republic of China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary AnthropologyInstitute of Genetics, School of Life Sciences, Fudan UniversityShanghai20000 People's Republic of China
| | - Xiaoke Wen
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care HospitalChangsha410008 People's Republic of China
| | - Xiangping Li
- Department of PharmacyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
| | - Di Xiao
- Department of PharmacyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
| | - Chengping Hu
- Department of Respiratory MedicineXiangya Hospital, Central South UniversityChangsha Hunan410008 People's Republic of China
| | - Xiang Chen
- Department of DermatologyXiangya Hospital, Central South UniversityChangsha Hunan410008 People's Republic of China
| | - Wei Zhang
- Department of Clinical PharmacologyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
- Hunan Key Laboratory of PharmacogeneticsInstitute of Clinical Pharmacology, Central South UniversityChangsha410078 People's Republic of China
| | - Honghao Zhou
- Department of Clinical PharmacologyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
- Hunan Key Laboratory of PharmacogeneticsInstitute of Clinical Pharmacology, Central South UniversityChangsha410078 People's Republic of China
| | - Zhaoqian Liu
- Department of Clinical PharmacologyXiangya Hospital, Central South UniversityChangsha410008 People's Republic of China
- Hunan Key Laboratory of PharmacogeneticsInstitute of Clinical Pharmacology, Central South UniversityChangsha410078 People's Republic of China
| |
Collapse
|
33
|
Dai CH, Chen P, Li J, Lan T, Chen YC, Qian H, Chen K, Li MY. Co-inhibition of pol θ and HR genes efficiently synergize with cisplatin to suppress cisplatin-resistant lung cancer cells survival. Oncotarget 2016; 7:65157-65170. [PMID: 27533083 PMCID: PMC5323145 DOI: 10.18632/oncotarget.11214] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022] Open
Abstract
Cisplatin exert its anticancer effect by creating intrastrand and interstrand DNA cross-links which block DNA replication and is a major drug used to treat lung cancer. However, the main obstacle of the efficacy of treatment is drug resistance. Here, we show that expression of translesion synthesis (TLS) polymerase Q (POLQ) was significantly elevated by exposure of lung cancer cells A549/DR (a cisplatin-resistant A549 cell line) to cisplatin. POLQ expression correlated inversely with homologous recombination (HR) activity. Co-depletion of BRCA2 and POLQ by siRNA markedly increased sensitivity of A549/DR cells to cisplatin, which was accompanied with impairment of double strand breaks (DSBs) repair reflected by prominent cell cycle checkpoint response, increased chromosomal aberrations and persistent colocalization of p-ATM and 53BP1 foci induced by cisplatin. Thus, co-knockdown of POLQ and HR can efficiently synergize with cisplatin to inhibit A549/DR cell survival by inhibiting DNA DSBs repair. Similar results were observed in A549/DR cells co-depleted of BRCA2 and POLQ following BMN673 (a PARP inhibitor) treatment. Importantly, the sensitization effects to cisplatin and BMN673 in A549/DR cells by co-depleting BRCA2 and POLQ was stronger than those by co-depleting BRCA2 and other TLS factors including POLH, REV3, or REV1. Our results indicate that there is a synthetic lethal relationship between pol θ-mediated DNA repair and HR pathways. Pol θ may be considered as a novel target for lung cancer therapy.
Collapse
Affiliation(s)
- Chun-Hua Dai
- Department of Radiation Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ping Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tin Lan
- Institute of Medical Science, Jiangsu University, Zhenjiang, China
| | - Yong-Chang Chen
- Institute of Medical Science, Jiangsu University, Zhenjiang, China
| | - Hai Qian
- Institute of Medical Science, Jiangsu University, Zhenjiang, China
| | - Kang Chen
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mei-Yu Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
The functional status of DNA repair pathways determines the sensitization effect to cisplatin in non-small cell lung cancer cells. Cell Oncol (Dordr) 2016; 39:511-522. [PMID: 27473273 DOI: 10.1007/s13402-016-0291-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Cisplatin can cause a variety of DNA crosslink lesions including intra-strand and inter-strand crosslinks (ICLs), which are associated with the sensitivity of cancer cells to cisplatin. Here, we aimed to assess the contribution of the Fanconi anemia (FA), homologous recombination (HR) and nucleotide excision repair (NER) pathways to cisplatin resistance in non-small cell lung cancer (NSCLC)-derived cells. METHODS The expression of FA, HR and NER pathway-associated genes was assessed by RT-qPCR and Western blotting. siRNAs were used to knock down the expression of these genes. CCK-8 and flow cytometry assays were used to assess the viability and apoptotic rate of NSCLC-derived cells, respectively. Immunofluorescence and alkaline comet assays were used to assess the repair of ICLs. RESULTS We found that acquired cisplatin-resistant NSCLC-derived A549/DR cells exhibited markedly enhanced FA and HR repair pathway capacities compared to its parental A549 cells and another independent NSCLC-derived cell line, Calu-1, which possesses a moderate innate resistance to cisplatin. siRNA-mediated silencing of the FA-associated genes FANCL and RAD18 and the HR-associated genes BRCA1 and BRCA2 significantly potentiated the sensitivity of A549/DR cells to cisplatin compared to A549 and Calu-1 cells, suggesting that the acquired cisplatin resistance in A549/DR cells may be attributed to enhanced FA and HR pathway capacities responsible for ICL repair. Although we found that expression knockdown of the NER-associated genes XPA and ERCC1 sensitized the three NSCLC-derived cell lines to cisplatin, the sensitization effect was more significant in Calu-1 cells than in A549 and A549/DR cells, implying that the innate cisplatin resistance in Calu-1 cells may result from an increased NER activity. CONCLUSIONS Our results indicate that the functional status of DNA repair pathways determine the sensitivity of NSCLC cells to cisplatin. Direct targeting of the pathway that is involved in cisplatin resistance may be an effective strategy to surmount cisplatin resistance in NSCLC.
Collapse
|
35
|
DNA repair gene polymorphisms in non-small-cell lung cancer patients treated with first-line platinum-containing chemotherapy. TUMORI JOURNAL 2016; 102:367-75. [PMID: 27396427 DOI: 10.5301/tj.5000526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Single nucleotide polymorphisms (SNPs) in the DNA repair genes are believed to contribute to the clinical outcome of patients receiving platinum-based chemotherapy. We investigated the impact of 2 SNPs of excision repair cross-complementation group 1 and 2 of xeroderma pigmentosum complementation group G on the outcome in patients with non-small-cell lung cancer (NSCLC) treated with platinum-based chemotherapy. METHODS Between October 2007 and March 2012, we collected 374 blood samples from consecutive patients registered in the TAILOR trial. Four SNPs (rs11615, rs3212986, rs17655, rs1047768) were genotyped using real-time polymerase chain reaction. RESULTS The rs11615 polymorphism was associated with histotype (p = 0.0123). No other correlations were found with clinical variables or with EGFR or KRAS mutational status. None of the SNPs had any impact on overall survival or progression-free survival. CONCLUSIONS The findings suggest that the investigated SNPs do not make any significant contribution to the outcome of NSCLC.
Collapse
|
36
|
Can the response to a platinum-based therapy be predicted by the DNA repair status in non-small cell lung cancer? Cancer Treat Rev 2016; 48:8-19. [DOI: 10.1016/j.ctrv.2016.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/04/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022]
|