1
|
Chen F, Xu K, Han Y, Ding J, Ren J, Wang Y, Ma Z, Cao F. Mitochondrial dysfunction in pancreatic acinar cells: mechanisms and therapeutic strategies in acute pancreatitis. Front Immunol 2024; 15:1503087. [PMID: 39776917 PMCID: PMC11703726 DOI: 10.3389/fimmu.2024.1503087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations. Under stress conditions, mitochondrial dynamics and mitochondrial ROS production increase, leading to decreased mitochondrial membrane potential, imbalanced calcium homeostasis, and activation of the mitochondrial permeability transition pore. The release of mitochondrial DNA (mtDNA), recognized as damage-associated molecular patterns, can activate the cGAS-STING1 and NF-κB pathway and induce pro-inflammatory factor expression. Additionally, mtDNA can activate inflammasomes, leading to interleukin release and subsequent tissue damage and inflammation. This review summarizes the relationship between mitochondria and AP and explores mitochondrial protective strategies in the diagnosis and treatment of this disease. Future research on the treatment of acute pancreatitis can benefit from exploring promising avenues such as antioxidants, mitochondrial inhibitors, and new therapies that target mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kedong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Yimin Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiachun Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaqiang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Solodilova M, Drozdova E, Azarova I, Klyosova E, Bykanova M, Bushueva O, Polonikova A, Churnosov M, Polonikov A. The discovery of GGT1 as a novel gene for ischemic stroke conferring protection against disease risk in non-smokers and non-abusers of alcohol. J Stroke Cerebrovasc Dis 2024; 33:107685. [PMID: 38522756 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVES Increased plasma gamma-glutamyl transferase (GGT1) has been identified as a robust and independent risk factor for ischemic stroke (IS), but the molecular mechanisms of the enzyme-disease association are unclear. The present study investigated whether polymorphisms in the GGT1 gene contribute to IS susceptibility. MATERIALS AND METHODS DNA samples obtained from 1288 unrelated individuals (600 IS patients and 688 controls) were genotyped for common single nucleotide polymorphisms of GGT1 using the MassArray-4 platform. RESULTS The rs5751909 polymorphism was significantly associated with decreased risk of ischemic stroke regardless sex and age (Pperm ≤ 0.01, dominant genetic model). The haplotype rs4820599A-rs5760489A-rs5751909A showed strong protection against ischemic stroke (OR 0.53, 95 %CI 0.36 - 0.77, Pperm ≤ 0.0001). The protective effect of SNP rs5751909 in the stroke phenotype was successfully replicated in the UK Biobank, SiGN, and ISGC cohorts (P ≤ 0.01). GGT1 polymorphisms showed joint (epistatic) effects on the risk of ischemic stroke, with some known IS-associated GWAS loci (e.g., rs4322086 and rs12646447) investigated in our population. In addition, SNP rs5751909 was found to be strongly associated with a decreased risk of ischemic stroke in non-smokers (OR 0.54 95 %CI 0.39-0.75, Pperm = 0.0002) and non-alcohol abusers (OR 0.43 95 %CI 0.30-0.61, Pperm = 2.0 × 10-6), whereas no protective effects of this SNP against disease risk were observed in smokers and alcohol abusers (Pperm < 0.05). CONCLUSIONS We propose mechanisms underlying the observed associations between GGT1 polymorphisms and ischemic stroke risk. This pilot study is the first to demonstrate that GGT1 is a novel susceptibility gene for ischemic stroke and provides additional evidence of the genetic contribution to impaired redox homeostasis underlying disease pathogenesis.
Collapse
Affiliation(s)
- Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation
| | - Elena Drozdova
- Department of General Hygiene, 3 Karl Marx Street, Kursk 305041, Russian Federation
| | - Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Elena Klyosova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Marina Bykanova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Olga Bushueva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Anna Polonikova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, Belgorod 308015, Russian Federation
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| |
Collapse
|
3
|
Chen N, Hu H, Tang J, Zheng F, Guo Z, Lin X, Aschner M, Shao W, Yu G, Cai P, Chou WC, Wu S, Li H. LncRNA NR_030777 promotes mitophagy by targeting CDK1-related mitochondrial fission and ATG12 to attenuate paraquat-induced Parkinson's disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123875. [PMID: 38548152 DOI: 10.1016/j.envpol.2024.123875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
With the evidence emerging that abnormal expression of long noncoding RNAs (lncRNAs) are involved in onset of Parkinson's disease (PD), the role of NR_030777 contributing to this disease is of great interest. We recently found that a novel lncRNA "NR_030777" demonstrates protective effects on PQ-induced neurodegeneration. However, the underlying molecular mechanisms of NR_030777 in the regulation of mitochondrial fission and mitophagy involved in PQ-induced neuronal damage remain to be explored. NR_030777 brain conditional overexpressing mice as well as in vitro primary neuronal cells from cerebral cortex and Neuro2a cells were adopted. Immunofluorescence, Immunohistochemistry, qRT-PCR and Western blotting were used to evaluate the expression levels of RNA and proteins. RNA immunoprecipitation and RNA pulldown experiment were used to evaluate the interaction of NR_030777 with its target proteins. NR_030777 and mitophagy were increased, and tyrosine hydroxylase (TH) levels recovered after NR_030777 overexpression upon PQ treatment. The overexpression and knockdown of NR_030777 unveiled that NR_030777 positively regulated mitophagy such as the upregulation of LC3B-II:I, ATG12-ATG5, p62 and NBR1. Moreover, the application of mdivi-1, a DRP-1 inhibitor, in combination with NR_030777 genetic modified cells unveiled that NR_030777 promoted DRP1-mediated mitochondrial fission and mitophagy. Furthermore, NR_030777 were directly bound to CDK1 to increase p-DRP1 levels at the Ser616 site, leading to mitochondrial fission and mitophagy. On the other hand, NR_030777 acted directly on ATG12 within the ATG12-ATG5 complex in the 800-1400 nt region to modulate the membrane formation. Accordingly, NR_030777 deficiency in neuron cells compromised cell mitophagy. Finally, the above findings were confirmed using NR_030777-overexpressing mice. NR_030777 exerted a protective effect on PQ-exposed mice by enhancing mitophagy. Our data provide the first scientific evidence for the precise invention of PQ-induced PD. Our findings further propose a breakthrough for understanding the regulatory relationship between NR_030777, CDK1, ATG12 and mitophagy in PQ-induced PD.
Collapse
Affiliation(s)
- Nengzhou Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jianping Tang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Ping Cai
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wei-Chun Chou
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
4
|
Yang X, Xiong S, Zhao X, Jin J, Yang X, Du Y, Zhao L, He Z, Gong C, Guo L, Liang T. Orchestrating Cellular Balance: ncRNAs and RNA Interactions at the Dominant of Autophagy Regulation in Cancer. Int J Mol Sci 2024; 25:1561. [PMID: 38338839 PMCID: PMC10855840 DOI: 10.3390/ijms25031561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Autophagy, a complex and highly regulated cellular process, is critical for the maintenance of cellular homeostasis by lysosomal degradation of cellular debris, intracellular pathogens, and dysfunctional organelles. It has become an interesting and attractive topic in cancer because of its dual role as a tumor suppressor and cell survival mechanism. As a highly conserved pathway, autophagy is strictly regulated by diverse non-coding RNAs (ncRNAs), ranging from short and flexible miRNAs to lncRNAs and even circRNAs, which largely contribute to autophagy regulatory networks via complex RNA interactions. The potential roles of RNA interactions during autophagy, especially in cancer procession and further anticancer treatment, will aid our understanding of related RNAs in autophagy in tumorigenesis and cancer treatment. Herein, we mainly summarized autophagy-related mRNAs and ncRNAs, also providing RNA-RNA interactions and their potential roles in cancer prognosis, which may deepen our understanding of the relationships between various RNAs during autophagy and provide new insights into autophagy-related therapeutic strategies in personalized medicine.
Collapse
Affiliation(s)
- Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Chengjun Gong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.); (X.Z.); (J.J.); (L.Z.); (Z.H.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.)
| |
Collapse
|
5
|
Csabai L, Bohár B, Türei D, Prabhu S, Földvári-Nagy L, Madgwick M, Fazekas D, Módos D, Ölbei M, Halka T, Poletti M, Kornilova P, Kadlecsik T, Demeter A, Szalay-Bekő M, Kapuy O, Lenti K, Vellai T, Gul L, Korcsmáros T. AutophagyNet: high-resolution data source for the analysis of autophagy and its regulation. Autophagy 2024; 20:188-201. [PMID: 37589496 PMCID: PMC10761021 DOI: 10.1080/15548627.2023.2247737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023] Open
Abstract
Macroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades. We previously provided an integrated database for autophagy research, the Autophagy Regulatory Network (ARN). For the last eight years, this resource has been used by thousands of users. Here, we present a new and upgraded resource, AutophagyNet. It builds on the previous database but contains major improvements to address user feedback and novel needs due to the advancement in omics data availability. AutophagyNet contains updated interaction curation and integration of over 280,000 experimentally verified interactions between core autophagy proteins and their protein, transcriptional and post-transcriptional regulators as well as their potential upstream pathway connections. AutophagyNet provides annotations for each core protein about their role: 1) in different types of autophagy (mitophagy, xenophagy, etc.); 2) in distinct stages of autophagy (initiation, expansion, termination, etc.); 3) with subcellular and tissue-specific localization. These annotations can be used to filter the dataset, providing customizable download options tailored to the user's needs. The resource is available in various file formats (e.g. CSV, BioPAX and PSI-MI), and data can be analyzed and visualized directly in Cytoscape. The multi-layered regulation of autophagy can be analyzed by combining AutophagyNet with tissue- or cell type-specific (multi-)omics datasets (e.g. transcriptomic or proteomic data). The resource is publicly accessible at http://autophagynet.org.Abbreviations: ARN: Autophagy Regulatory Network; ATG: autophagy related; BCR: B cell receptor pathway; BECN1: beclin 1; GABARAP: GABA type A receptor-associated protein; IIP: innate immune pathway; LIR: LC3-interacting region; lncRNA: long non-coding RNA; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; NHR: nuclear hormone receptor; PTM: post-translational modification; RTK: receptor tyrosine kinase; TCR: T cell receptor; TLR: toll like receptor.
Collapse
Affiliation(s)
- Luca Csabai
- Earlham Institute, Norwich, UK
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Bohár
- Earlham Institute, Norwich, UK
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dénes Türei
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | | | - László Földvári-Nagy
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Matthew Madgwick
- Earlham Institute, Norwich, UK
- Quadram Institute, Norwich Research Park, Norwich, UK
| | - Dávid Fazekas
- Earlham Institute, Norwich, UK
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dezső Módos
- Earlham Institute, Norwich, UK
- Quadram Institute, Norwich Research Park, Norwich, UK
| | - Márton Ölbei
- Earlham Institute, Norwich, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Themis Halka
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Martina Poletti
- Earlham Institute, Norwich, UK
- Quadram Institute, Norwich Research Park, Norwich, UK
| | | | - Tamás Kadlecsik
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | | | - Orsolya Kapuy
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Katalin Lenti
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- ELKH/MTA-ELTE Genetics Research Group, Budapest, Hungary
| | - Lejla Gul
- Earlham Institute, Norwich, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tamás Korcsmáros
- Earlham Institute, Norwich, UK
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Quadram Institute, Norwich Research Park, Norwich, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
6
|
Wang Y, Fu Y, Lu Y, Chen S, Zhang J, Liu B, Yuan Y. Unravelling the complexity of lncRNAs in autophagy to improve potential cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188932. [PMID: 37329993 DOI: 10.1016/j.bbcan.2023.188932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Autophagy is well-known as an internal catabolic process that is evolutionarily conserved and performs the key biological function in maintaining cellular homeostasis. It is tightly controlled by several autophagy-related (ATG) proteins, which are closely associated with many types of human cancers. However, what has remained controversial is the janus roles of autophagy in cancer progression. Interestingly, the biological function of long non-coding RNAs (lncRNAs) in autophagy has been gradually understood in different types of human cancers. More recently, numerous studies have demonstrated that several lncRNAs may regulate some ATG proteins and autophagy-related signaling pathways to either activate or inhibit the autophagic process in cancer. Thus, in this review, we summarize the latest advance in the knowledge of the complicated relationships between lncRNAs and autophagy in cancer. Also, the in-depth dissection of the lncRNAs-autophagy-cancers axis involved in this review would shed new light on discovery of more potential cancer biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqi Fu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingying Lu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siwei Chen
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Bo Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Yuan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Liu Y, Yang Q, Chen S, Li Z, Fu L. Targeting VPS34 in autophagy: An update on pharmacological small-molecule compounds. Eur J Med Chem 2023; 256:115467. [PMID: 37178482 DOI: 10.1016/j.ejmech.2023.115467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
VPS34 is well-known to be the unique member of the class III phosphoinositide 3-kinase (PI3K) family, forming VPS34 complex 1 and complex 2, which are involved in several key physiological processes. Of note, VPS34 complex 1 is an important node of autophagosome generation, which controls T cell metabolism and maintains cellular homeostasis through the autophagic pathway. And, VPS34 complex 2 is involved in endocytosis as well as vesicular transport, and is closely related to neurotransmission, antigen presentation and brain development. Due to the two important biological functions of VPS34, its dysregulation can lead to the development of cardiovascular disease, cancer, neurological disorders, and many types of human diseases by altering normal human physiology. Thus, in this review, we not only summarize the molecular structure and function of VPS34, but demonstrate the relationships between VPS34 and human diseases. Moreover, we further discuss the current small molecule inhibitors targeting VPS34 based upon the structure and function of VPS34, which may provide an insight into the future targeted drug development.
Collapse
Affiliation(s)
- Yuan Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qilin Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
8
|
Wu PR, Chiang SY, Midence R, Kao WC, Lai CL, Cheng IC, Chou SJ, Chen CC, Huang CY, Chen RH. Wdr4 promotes cerebellar development and locomotion through Arhgap17-mediated Rac1 activation. Cell Death Dis 2023; 14:52. [PMID: 36681682 PMCID: PMC9867761 DOI: 10.1038/s41419-022-05442-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/22/2023]
Abstract
Patients with mutations of WDR4, a substrate adaptor of the CUL4 E3 ligase complex, develop cerebellar atrophy and gait phenotypes. However, the underlying mechanisms remain unexplored. Here, we identify a crucial role of Wdr4 in cerebellar development. Wdr4 deficiency in granule neuron progenitors (GNPs) not only reduces foliation and the sizes of external and internal granular layers but also compromises Purkinje neuron organization and the size of the molecular layer, leading to locomotion defects. Mechanistically, Wdr4 supports the proliferation of GNPs by preventing their cell cycle exit. This effect is mediated by Wdr4-induced ubiquitination and degradation of Arhgap17, thereby activating Rac1 to facilitate cell cycle progression. Disease-associated Wdr4 variants, however, cannot provide GNP cell cycle maintenance. Our study identifies Wdr4 as a previously unappreciated participant in cerebellar development and locomotion, providing potential insights into treatment strategies for diseases with WDR4 mutations, such as primordial dwarfism and Galloway-Mowat syndrome.
Collapse
Affiliation(s)
- Pei-Rung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan.
| | - Shang-Yin Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Robert Midence
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Chao Kao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Lun Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - I-Cheng Cheng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
9
|
Huang X, Chi H, Gou S, Guo X, Li L, Peng G, Zhang J, Xu J, Nian S, Yuan Q. An Aggrephagy-Related LncRNA Signature for the Prognosis of Pancreatic Adenocarcinoma. Genes (Basel) 2023; 14:124. [PMID: 36672865 PMCID: PMC9859148 DOI: 10.3390/genes14010124] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common, highly malignant, and aggressive gastrointestinal tumor. The conventional treatment of PAAD shows poor results, and patients have poor prognosis. The synthesis and degradation of proteins are essential for the occurrence and development of tumors. Aggrephagy is a type of autophagy that selectively degrades aggregated proteins. It decreases the formation of aggregates by degrading proteins, thus reducing the harm to cells. By breaking down proteins, it decreases the formation of aggregates; thus, minimizing damage to cells. For evaluating the response to immunotherapy and prognosis in PAAD patients, in this study, we developed a reliable signature based on aggrephagy-related genes (ARGs). We obtained 298 AGGLncRNAs. Based on the results of one-way Cox and LASSO analyses, the lncRNA signature was constructed. In the risk model, the prognosis of patients in the low-risk group was noticeably better than that of the patients in the high-risk group. Additionally, the ROC curves and nomograms validated the capacity of the risk model to predict the prognosis of PAAD. The patients in the low-risk and high-risk groups showed considerable variations in functional enrichment and immunological analysis. Regarding drug sensitivity, the low-risk and high-risk groups had different half-maximal inhibitory concentrations (IC50).
Collapse
Affiliation(s)
- Xueyuan Huang
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Siqi Gou
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Xiyuan Guo
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lin Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Jiayu Xu
- Statistics Department, School of Science, Minzu University of China, Beijing 100081, China
| | - Siji Nian
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Qing Yuan
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
10
|
Yan RL, Luan CL, Liao CC, Liu LH, Chen FY, Chen HY, Chen RH. Correction to: Long noncoding RNA BCRP3 stimulates VPS34 and autophagy activities to promote protein homeostasis and cell survival. J Biomed Sci 2022; 29:59. [PMID: 35965309 PMCID: PMC9375947 DOI: 10.1186/s12929-022-00842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|