1
|
Pallavi R, Soni BL, Jha GK, Sanyal S, Fatima A, Kaliki S. Tumor heterogeneity in retinoblastoma: a literature review. Cancer Metastasis Rev 2025; 44:46. [PMID: 40259075 PMCID: PMC12011974 DOI: 10.1007/s10555-025-10263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/06/2025] [Indexed: 04/23/2025]
Abstract
Tumor heterogeneity, characterized by the presence of diverse cell populations within a tumor, is a key feature of the complex nature of cancer. This diversity arises from the emergence of cells with varying genomic, epigenetic, transcriptomic, and phenotypic profiles over the course of the disease. Host factors and the tumor microenvironment play crucial roles in driving both inter-patient and intra-patient heterogeneity. These diverse cell populations can exhibit different behaviors, such as varying rates of proliferation, responses to treatment, and potential for metastasis. Both inter-patient heterogeneity and intra-patient heterogeneity pose significant challenges to cancer therapeutics and management. In retinoblastoma, while heterogeneity at the clinical presentation level has been recognized for some time, recent attention has shifted towards understanding the underlying cellular heterogeneity. This review primarily focuses on retinoblastoma heterogeneity and its implications for therapeutic strategies and disease management, emphasizing the need for further research and exploration in this complex and challenging area.
Collapse
Affiliation(s)
- Rani Pallavi
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Bihari Lal Soni
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Gaurab Kumar Jha
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Shalini Sanyal
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Azima Fatima
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Xi Y, Wang R, Qu M, Pan Q, Wang M, Ai X, Sun Z, Zhang C, Tang P, Jiang J, Hu Y. Super-enhancer-hijacking RBBP7 potentiates metastasis and stemness of breast cancer via recruiting NuRD complex subunit LSD1. J Transl Med 2025; 23:266. [PMID: 40038738 DOI: 10.1186/s12967-025-06270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Aberrant epigenetic and transcriptional events that drive cancer progression could be precisely targeted. We aimed to uncover the epigenetic roles of RBBP7 on breast cancer (BCa) stemness and metastasis. METHODS The bioinformatic analysis was used to assess the clinical significance of RBBP7 in BCa. CCK8, colony formation, and Transwell assays were utilized to estimate the oncogenic functions of RBBP7. The ChIP-qPCR and dual-luciferase reporter assays were used to investigate the epigenetic mechanisms of RBBP7. Tumor sphere formation assays were conducted to assess the self-renewal abilities of BCa cells. Tail vein injection models were constructed to assess the in vivo metastatic efficiency of BCa cells. The PDOs and PDX models were used to assess the clinical significance of ORY-1001 in suppressing BCa. RESULTS Here, we found that RBBP7 is upregulated in BCa and associated with poor prognosis. Functional experiments demonstrated that RBBP7 enhanced BCa proliferation and distal metastasis. Mechanistically, a novel RBBP7-super-enhancer (SE) was identified using multiple databases in BCa. RBBP7-SE sustained high levels of RBBP7 and CRISPR/Cas9-mediated deletion of SE decreased RBBP7 levels and suppressed BCa malignant features. Further, our data showed that RBBP7 may correlate with stemness pathway and significantly potentiated BCa cancer stem-like properties. Additionally, RBBP7 interacts with LSD1 and relies on LSD1 to erase suppressive H3K9me3 markers in promoters of downstream stemness targets (SOX9/SOX2/OCT4/CCND1). Thus, RBBP7 recruits LSD1 to transcriptionally upregulate the expressions of key stemness genes, and promote tumor stemness capacity. Pharmacological inhibition of LSD1 by ORY-1001 effectively repressed RBBP7-high BCa tumor growth, stemness properties, and distant metastasis. CONCLUSIONS Together, our results establish that the SE-RBBP7-LSD1 axis represents a potential therapeutic target for BCa treatment.
Collapse
Affiliation(s)
- Yuanyin Xi
- Department of Thyroid and Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ruoding Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Man Qu
- Department of Thyroid and Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qinwen Pan
- Department of Thyroid and Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Minghao Wang
- Department of Thyroid and Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiang Ai
- Department of Thyroid and Breast Surgery, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Zihan Sun
- Breast Disease Center, Guiqian International General Hospital, Guiyang, China
| | - Chao Zhang
- Department of Breast, Thyroid and Vascular Surgery, Chongqing University FuLing Hospital, Chongqing University, Chongqing, 402774, China
| | - Peng Tang
- Department of Thyroid and Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Jun Jiang
- Department of Thyroid and Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Ying Hu
- Department of Thyroid and Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
3
|
Liao YY, Tsai CL, Huang HP. Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics. Cancers (Basel) 2025; 17:459. [PMID: 39941826 PMCID: PMC11815769 DOI: 10.3390/cancers17030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with epidermal growth factor receptor (EGFR) mutations present in a substantial proportion of patients. Third-generation EGFR tyrosine kinase inhibitors (EGFR TKI), exemplified by osimertinib, have dramatically improved outcomes by effectively targeting the T790M mutation-a primary driver of acquired resistance to earlier-generation EGFR TKI. Despite these successes, resistance to third-generation EGFR TKIs inevitably emerges. Mechanisms include on-target mutations such as C797S, activation of alternative pathways like MET amplification, histologic transformations, and intricate tumor microenvironment (TME) alterations. These resistance pathways are compounded by challenges in tolerability, adverse events, and tumor heterogeneity. In light of these hurdles, this review examines the evolving landscape of combination therapies designed to enhance or prolong the effectiveness of third-generation EGFR TKIs. We explore key strategies that pair osimertinib with radiotherapy, anti-angiogenic agents, immune checkpoint inhibitors, and other molecularly targeted drugs, and we discuss the biological rationale, preclinical evidence, and clinical trial data supporting these approaches. Emphasis is placed on how these combinations may circumvent diverse resistance mechanisms, improve survival, and maintain a favorable safety profile. By integrating the latest findings, this review aims to guide clinicians and researchers toward more individualized and durable treatment options, ultimately enhancing both survival and quality of life for patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Yan-You Liao
- Department of Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Chia-Luen Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| |
Collapse
|
4
|
Khoury Damaa M, Serizay J, Balagué R, Boudjema AR, Faucourt M, Delgehyr N, Goh KJ, Lu H, Tan EK, James CT, Faucon C, Mitri R, Bracht DC, Bingle CD, Dunn NR, Arnold SJ, Zaragosi LE, Barbry P, Koszul R, Omran H, Gil-Gómez G, Escudier E, Legendre M, Roy S, Spassky N, Meunier A. Cyclin O controls entry into the cell-cycle variant required for multiciliated cell differentiation. Cell Rep 2025; 44:115117. [PMID: 39740663 DOI: 10.1016/j.celrep.2024.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Multiciliated cells (MCCs) ensure fluid circulation in various organs. Their differentiation is marked by the amplification of cilia-nucleating centrioles, driven by a genuine cell-cycle variant, which is characterized by wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of primary ciliary dyskinesia called reduced generation of motile cilia (RGMC). Here, we show that Ccno is activated at the crossroads of the onset of MCC differentiation, the entry into the MCC cell-cycle variant, and the activation of the centriole biogenesis program. Its absence blocks the G1/S-like transition of the cell-cycle variant, interrupts the centriologenesis transcription program, and compromises the production of centrioles and cilia in mouse brain and human respiratory MCCs. Altogether, our study identifies CCNO as a core regulator of entry into the MCC cell-cycle variant and the interruption of this variant as one etiology of RGMC.
Collapse
Affiliation(s)
- Michella Khoury Damaa
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Jacques Serizay
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France; Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Rémi Balagué
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Amélie-Rose Boudjema
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Kim Jee Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Cameron T James
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK; Singapore-MIT Association for Research and Technology, Critical Analytics for Manufacturing Personalised-Medicine (SMART CAMP), 1 CREATE Way, Singapore 138602, Singapore
| | - Catherine Faucon
- Centre Hospitalier Intercommunal de Créteil, Laboratoire de Microscopie Électronique, Service d'Anatomopathologie, 94010 Créteil, France
| | - Rana Mitri
- Centre Hospitalier Intercommunal de Créteil, Laboratoire de Microscopie Électronique, Service d'Anatomopathologie, 94010 Créteil, France
| | - Diana Carolin Bracht
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Colin D Bingle
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Norris Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore; Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, 79104 Freiburg, Germany
| | - Laure-Emmanuelle Zaragosi
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France; 3IA Côte d'Azur, 06560 Sophia Antipolis, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Gabriel Gil-Gómez
- Hospital del Mar Research Institute, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Estelle Escudier
- Sorbonne Université, Inserm, Childhood genetic diseases UMR_S933, Hôpital Armand-Trousseau, 75012 Paris, France; AP-HP, Sorbonne Université, Hôpital Armand-Trousseau, 75012 Paris, France
| | - Marie Legendre
- Sorbonne Université, Inserm, Childhood genetic diseases UMR_S933, Hôpital Armand-Trousseau, 75012 Paris, France; AP-HP, Sorbonne Université, Hôpital Armand-Trousseau, 75012 Paris, France
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore
| | - Nathalie Spassky
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France.
| |
Collapse
|
5
|
Zhang Y, Qiu K, Ren J, Zhao Y, Cheng P. Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use. Signal Transduct Target Ther 2025; 10:44. [PMID: 39856040 PMCID: PMC11760352 DOI: 10.1038/s41392-024-02083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/19/2024] [Accepted: 11/24/2024] [Indexed: 01/27/2025] Open
Abstract
Human papillomaviruses, particularly high-risk human papillomaviruses, have been universally considered to be associated with the oncogenesis and progression of various cancers. The genome of human papillomaviruses is circular, double-stranded DNA that encodes early and late proteins. Each of the proteins is of crucial significance in infecting the epithelium of host cells persistently and supporting viral genome integrating into host cells. Notably, E6 and E7 proteins, classified as oncoproteins, trigger the incidence of cancers by fostering cell proliferation, hindering apoptosis, evading immune surveillance, promoting cell invasion, and disrupting the balance of cellular metabolism. Therefore, targeting human papillomaviruses and decoding molecular mechanisms by which human papillomaviruses drive carcinogenesis are of great necessity to better treat human papillomaviruses-related cancers. Human papillomaviruses have been applied clinically to different facets of human papillomavirus-related cancers, including prevention, screening, diagnosis, treatment, and prognosis. Several types of prophylactic vaccines have been publicly utilized worldwide and have greatly decreased the occurrence of human papillomavirus-related cancers, which have benefited numerous people. Although various therapeutic vaccines have been developed and tested clinically, none of them have been officially approved to date. Enhancing the efficacy of vaccines and searching for innovative technologies targeting human papillomaviruses remain critical challenges that warrant continuous research and attention in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ping Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Yang Q, Xu S, Jiang W, Meng F, Wang S, Sun Z, Chen N, Peng D, Liu J, Xing S. Systematic qualitative proteome-wide analysis of lysine malonylation profiling in Platycodon grandiflorus. Amino Acids 2025; 57:9. [PMID: 39812870 PMCID: PMC11735498 DOI: 10.1007/s00726-024-03432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. Platycodon grandiflorus, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in P. grandiflorus. A total of 888 lysine malonylation-modified proteins in P. grandiflorus were identified, with a total of 1755 modification sites. According to the functional annotation, malonylated proteins were closely related to catalysis, binding, and other reactions. Subcellular localization showed that related proteins were enriched in chloroplasts, cytoplasm, and nuclei, indicating that this modification could regulate various metabolic processes. Motif analysis showed the enrichment of Alanine (A), Cysteine (C), Glycine (G), and Valine (V) amino acids surrounding malonylated lysine residues. Metabolic pathway and protein-protein interaction network analyses suggested these modifications are mainly involved in plant photosynthesis. Moreover, malonylated proteins are also involved in stress and defense responses. This study shows that lysine malonylation can affect a variety of biological processes and metabolic pathways, and the contents are reported for the first time in P. grandiflorus, which can provide important information for further research on P. grandiflorus and lysine malonylation's role in environment stress, photosynthesis, and secondary metabolites enrichment.
Collapse
Affiliation(s)
- Qingshan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shaowei Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, Hunan, China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Shuting Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zongping Sun
- Engineering Technology Research Center of Anti-Aging, Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037, China
| | - Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Hefei Comprehensive National Science Center, Bozhou, 236814, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038, China
| | - Juan Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Hefei Comprehensive National Science Center, Bozhou, 236814, China.
| |
Collapse
|
7
|
Wang G, Chen L, Lian J, Gong L, Tian F, Wang Y, Lin X, Liu Y. Proteomic Insights into the Regulatory Role of CobQ Deacetylase in Aeromonas hydrophila. J Proteome Res 2025; 24:333-343. [PMID: 39659247 DOI: 10.1021/acs.jproteome.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Post-translational modifications are crucial in regulating biological functions across both prokaryotes and eukaryotes. In Aeromonas hydrophila, CobQ, a recently identified novel deacetylase, plays a significant role in lysine deacetylation, influencing bacterial metabolism and stress responses. The present study utilized quantitative proteomics to investigate the impact of cobQ deletion on the global protein expression profile in A. hydrophila. Through data-independent acquisition mass spectrometry, we identified 233 upregulated and 41 downregulated proteins in the cobQ deletion mutant (ΔahcobQ) strain compared to the wild-type (WT) strain. Key differentially expressed proteins were involved in oxidative phosphorylation, bacterial secretion, and ribosomal function. Additionally, phenotypic assays demonstrated that the ΔahcobQ strain exhibited an increased resistance to oxidative phosphorylation inhibitors, suggesting a pivotal role for AhCobQ in energy metabolism. Outer membrane proteins and efflux pumps also showed altered expression, indicating potential implications for membrane permeability and antibiotic resistance. These results suggested that AhCobQ plays a vital regulatory role in maintaining metabolic homeostasis and responding to environmental stress, highlighting its potential as a target for therapeutic interventions against A. hydrophila infections.
Collapse
Affiliation(s)
- Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Linxin Chen
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juanqi Lian
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanqing Gong
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Tian
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Liu
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Takeuchi R, Nomura T, Yaguchi M, Kuwahara N, Amino Y, Taguchi C, Suzuki I, Suzuki H, Nagashima T, Arikawa K, Okada Y, Nomoto T, Hiratsuka K. Cyclosporine A causes gingival overgrowth via reduced G1 cell cycle arrest in gingival fibroblasts. PLoS One 2024; 19:e0309189. [PMID: 39705288 DOI: 10.1371/journal.pone.0309189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024] Open
Abstract
Gingival overgrowth caused by cyclosporine A is due to increased fibroblast proliferation in gingival tissues. Cell cycle system balances proliferation and anti-proliferation of gingival fibroblasts and plays a role in the maintenance of its population in gingival tissues. When cells detect and respond to abnormalities (e.g. DNA damage), cell cycle progression is arrested in the G1 phase until the completion of damage restoration. In this study, we investigated the effects of cyclosporine A on G1 cell cycle arrest and on its regulators in gingival fibroblasts to clarify the mechanism of cyclosporine A-induced gingival overgrowth. Human gingival fibroblasts from healthy donors were cultured to semi-confluence and were then treated with or without 200 ng/mL (166 nM) cyclosporine A in D-MEM with 2% fetal bovine serum. Cell proliferation was assessed by counting total cell numbers. The distribution of cell cycle phases was assessed using flow cytometric analysis. The levels of mRNA and protein expression for cell cycle regulators were quantified using reverse transcription-quantitative PCR and western blot analysis, respectively. Treatment with cyclosporine A markedly increased cell proliferation, inhibited G1 cell cycle arrest, significantly increased CDC25A and CYCLIN E1 mRNA expression levels, significantly decreased P21, SMAD3 and SMAD4 mRNA expression levels, significantly upregulated the protein expression levels of CDC25A, CYCLIN E1, pCDK2 and pRB1 and significantly downregulated the protein expression levels of P21, SMAD3 and SMAD4. Treatment with cyclosporine A also increased MYC and ATM mRNA expression levels and decreased CDK2, ATR, P27, P53 and RB1 mRNA expression levels but not significantly. These results demonstrate that cyclosporine A causes gingival overgrowth due to the following mechanism in gingival fibroblasts: cyclosporine A increases levels of phospho-CDK2 and CYCLIN E1 by upregulating CDC25A and downregulating P21 with the downregulation of SMAD3 and SMAD4, which results in the inhibition of G1 cell cycle arrest.
Collapse
Affiliation(s)
- Reiri Takeuchi
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Takatoshi Nomura
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Manabu Yaguchi
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Noriko Kuwahara
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuta Amino
- Department of Oral Implantology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Chieko Taguchi
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Itaru Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Haruka Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Teruaki Nagashima
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Department of Community Oral Health, Nihon University Graduate School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Kazumune Arikawa
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuichiro Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Takato Nomoto
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
9
|
Huang JZ, Qiao BN, Li DC, Wei QR, Zhang ZJ. Arginine methylation modification in the malignant progression of benign and malignant liver diseases. ILIVER 2024; 3:100124. [DOI: 10.1016/j.iliver.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
D’Esposito F, Zeppieri M, Cordeiro MF, Capobianco M, Avitabile A, Gagliano G, Musa M, Barboni P, Gagliano C. Insights on the Genetic and Phenotypic Complexities of Optic Neuropathies. Genes (Basel) 2024; 15:1559. [PMID: 39766826 PMCID: PMC11675667 DOI: 10.3390/genes15121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Optic neuropathies are a category of illnesses that ultimately cause damage to the optic nerve, leading to vision impairment and possible blindness. Disorders such as dominant optic atrophy (DOA), Leber hereditary optic neuropathy (LHON), and glaucoma demonstrate intricate genetic foundations and varied phenotypic manifestations. This narrative review study seeks to consolidate existing knowledge on the genetic and molecular mechanisms underlying ocular neuropathies, examine genotype-phenotype correlations, and assess novel therapeutic options to improve diagnostic and treatment methodologies. Methods: A systematic literature review was performed in October 2024, utilizing PubMed, Medline, the Cochrane Library, and ClinicalTrials.gov. Search terms encompassed "optic neuropathy", "genetic variants", "LHON", "DOA", "glaucoma", and "molecular therapies". Studies were chosen according to established inclusion criteria, concentrating on the genetic and molecular dimensions of optic neuropathies and their therapeutic ramifications. Results: The results indicate that DOA and LHON are mostly associated with the mitochondrial dysfunction resulting from pathogenic variants in nuclear genes, mainly OPA1, and mitochondrial DNA (mtDNA) genes, respectively. Glaucoma, especially its intricate variants, is linked to variants in genes like MYOC, OPTN, and TBK1. Molecular mechanisms, such as oxidative stress and inflammatory modulation, are pivotal in disease progression. Innovative therapeutics, including gene therapy, RNA-based treatments, and antioxidants such as idebenone, exhibit promise for alleviating optic nerve damage and safeguarding vision. Conclusions: Genetic and molecular investigations have markedly enhanced our comprehension of ocular neuropathies. The amalgamation of genetic and phenotypic data is essential for customized medical strategies. Additional research is required to enhance therapeutic strategies and fill the gaps in our understanding of the underlying pathophysiology. This interdisciplinary approach shows potential for enhancing patient outcomes in ocular neuropathies.
Collapse
MESH Headings
- Humans
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Atrophy, Hereditary, Leber/pathology
- Phenotype
- Glaucoma/genetics
- Glaucoma/therapy
- Glaucoma/pathology
- Optic Nerve Diseases/genetics
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Autosomal Dominant/pathology
- DNA, Mitochondrial/genetics
- Genetic Association Studies
Collapse
Affiliation(s)
- Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK; (F.D.)
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Maria Francesca Cordeiro
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK; (F.D.)
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London NW1 5QH, UK
| | - Matteo Capobianco
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Alessandro Avitabile
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Giuseppe Gagliano
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Piero Barboni
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Studio Oculistico d’Azeglio, 40123 Bologna, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| |
Collapse
|
11
|
Weng W, Zhang B, Deng D. P16 INK4A drives RB1 degradation by UTP14A-catalyzed K810 ubiquitination. iScience 2024; 27:110882. [PMID: 39351198 PMCID: PMC11440251 DOI: 10.1016/j.isci.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
P16INK4A expression is inversely associated with RB1 expression in cancer cells, and P16INK4A inhibits CDK4-catalyzed RB1 phosphorylation. How P16INK4A and RB1 coordinately express and regulate the cell cycle remains to be studied. In the present study, we found that P16INK4A upregulated the E3 ligase UTP14A, which led to the ubiquitination of RB1 at K810 and RB1 degradation. P16INK4A loss consistently disrupted the UTP14A-mediated degradation of RB1 and caused RB1 accumulation. Functionally, P16INK4A loss inhibited RB1 ubiquitination in a cell cycle progression-independent fashion and inhibited proteome-scale ubiquitination in a cell cycle progression-dependent manner. Our findings indicate that there is a negative feedback loop between P16INK4A and RB1 expression and that disruption of this loop may partially rescue the biological outcomes of P16INK4A loss. We also revealed a hitherto unknown function for P16 INK4A in regulating proteome-scale ubiquitination by inhibiting cell proliferation, which may be useful for the development of anticancer drugs.
Collapse
Affiliation(s)
- Wenjie Weng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
12
|
Zhou L, Ng DSC, Yam JC, Chen LJ, Tham CC, Pang CP, Chu WK. Correction: Post-translational modifications on the retinoblastoma protein. J Biomed Sci 2024; 31:98. [PMID: 39380057 PMCID: PMC11459848 DOI: 10.1186/s12929-024-01079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Danny Siu-Chun Ng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Cao D, Sun W, Li X, Jian L, Zhou X, Bode AM, Luo X. The role of novel protein acylations in cancer. Eur J Pharmacol 2024; 979:176841. [PMID: 39033839 DOI: 10.1016/j.ejphar.2024.176841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Novel protein acylations are a class of protein post-translational modifications, such as lactylation, succinylation, crotonylation, palmitoylation, and β-hydroxybutyrylation. These acylation modifications are common in prokaryotes and eukaryotes and play pivotal roles in various key cellular processes by regulating gene transcription, protein subcellular localization, stability and activity, protein-protein interactions, and protein-DNA interactions. The diversified acylations are closely associated with various human diseases, especially cancer. In this review, we provide an overview of the distinctive characteristics, effects, and regulatory factors of novel protein acylations. We also explore the various mechanisms through which novel protein acylations are involved in the occurrence and progression of cancer. Furthermore, we discuss the development of anti-cancer drugs targeting novel acylations, offering promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Dan Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Sun
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xinyi Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lian Jian
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xinran Zhou
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
14
|
Sarwar S, Morozov VM, Newcomb MA, Yan B, Brant JO, Opavsky R, Guryanova OA, Ishov AM. Overcoming ABCB1 mediated multidrug resistance in castration resistant prostate cancer. Cell Death Dis 2024; 15:558. [PMID: 39090086 PMCID: PMC11294535 DOI: 10.1038/s41419-024-06949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. PCa that relapses after hormonal therapies, referred to as castration resistant PCa (CRPC), often presents with metastases (mCRPC) that are the major cause of mortality. The few available therapies for mCRPC patients include taxanes docetaxel (DTX) and cabazitaxel (CBZ). However, development of resistance limits their clinical use. Mechanistically, resistance arises through upregulation of multidrug resistance (MDR) proteins such as MDR1/ABCB1, making ABCB1 an attractive therapeutic target. Yet, ABCB1 inhibitors failed to be clinically useful due to low specificity and toxicity issues. To study taxanes resistance, we produced CBZ resistant C4-2B cells (RC4-2B) and documented resistance to both CBZ and DTX in cell culture and in 3D prostaspheres settings. RNAseq identified increased expression of ABCB1 in RC4-2B, that was confirmed by immunoblotting and immunofluorescent analysis. ABCB1-specific inhibitor elacridar reversed CBZ and DTX resistance in RC4-2B cells, confirming ABCB1-mediated resistance mechanism. In a cell-based screen using a curated library of cytotoxic drugs, we found that DNA damaging compounds Camptothecin (CPT) and Cytarabine (Ara-C) overcame resistance as seen by similar cytotoxicity in parental C4-2B and resistant RC4-2B. Further, these compounds were cytotoxic to multiple PC cells resistant to taxanes with high ABCB1 expression and, therefore, can be used to conquer the acquired resistance to taxanes in PCa. Finally, inhibition of cyclin-dependent kinases 4/6 (CDK4/6) with small molecule inhibitors (CDK4/6i) potentiated cytotoxic effect of CPT or Ara-C in both parental and resistant cells. Overall, our findings indicate that DNA damaging agents CPT and Ara-C alone or in combination with CDK4/6i can be suggested as a new treatment regimen in CRPC patients, including those that are resistant to taxanes.
Collapse
Affiliation(s)
- Sadia Sarwar
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Viacheslav M Morozov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mallory A Newcomb
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jason O Brant
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Olga A Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.
- University of Florida Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|
15
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
16
|
Javadi K, Ferdosi-Shahandashti E, Rajabnia M, Khaledi M. Vaginal microbiota and gynecological cancers: a complex and evolving relationship. Infect Agent Cancer 2024; 19:27. [PMID: 38877504 PMCID: PMC11179293 DOI: 10.1186/s13027-024-00590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The vagina hosts a community of microorganisms known as the vaginal microbiota. This community is relatively stable and straightforward, with Lactobacillus species being the most dominant members. The vaginal microbiota has various functions that are essential for maintaining human health and balance. For example, it can metabolise dietary nutrients, produce growth factors, communicate with other bacteria, modulate the immune system, and prevent the invasion of harmful pathogens. When the vaginal microbiota is disrupted, it can lead to diseases and infections. The observed disturbance is distinguished by a reduction in the prevalence of Lactobacillus and a concurrent rise in the number of other bacterial species that exhibit a higher tolerance to low oxygen levels. Gynecologic cancers are a group of cancers that affect the female reproductive organs and tissues, such as the ovaries, uterus, cervix, vagina, vulva, and endometrium. These cancers are a major global health problem for women. Understanding the complex interactions between the host and the vaginal microorganisms may provide new insights into the prevention and treatment of gynecologic cancers. This could improve the quality of life and health outcomes for women.
Collapse
Affiliation(s)
- Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
17
|
Pandya DV, Parikh RV, Gena RM, Kothari NR, Parekh PS, Chorawala MR, Jani MA, Yadav MR, Shah PA. The scaffold protein disabled 2 (DAB2) and its role in tumor development and progression. Mol Biol Rep 2024; 51:701. [PMID: 38822973 DOI: 10.1007/s11033-024-09653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Disha V Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rajsi V Parikh
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ruhanahmed M Gena
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari R Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- Pharmacy Practice Division, AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Maharsh A Jani
- Pharmacy Practice Division, Anand Niketan, Shilaj, Ahmedabad, Gujarat, 380059, India
| | - Mayur R Yadav
- Department of Pharmacy Practice and Administration, Western University of Health Science, 309 E Second St, Pomona, CA, 91766, USA
| | - Palak A Shah
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, 382023, India
| |
Collapse
|
18
|
Zhou L, Tong Y, Ho BM, Li J, Chan HYE, Zhang T, Du L, He JN, Chen LJ, Tham CC, Yam JC, Pang CP, Chu WK. Etiology including epigenetic defects of retinoblastoma. Asia Pac J Ophthalmol (Phila) 2024; 13:100072. [PMID: 38789041 DOI: 10.1016/j.apjo.2024.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Retinoblastoma (RB), originating from the developing retina, is an aggressive intraocular malignant neoplasm in childhood. Biallelic loss of RB1 is conventionally considered a prerequisite for initiating RB development in most RB cases. Additional genetic mutations arising from genome instability following RB1 mutations are proposed to be required to promote RB development. Recent advancements in high throughput sequencing technologies allow a deeper and more comprehensive understanding of the etiology of RB that additional genetic alterations following RB1 biallelic loss are rare, yet epigenetic changes driven by RB1 loss emerge as a critical contributor promoting RB tumorigenesis. Multiple epigenetic regulators have been found to be dysregulated and to contribute to RB development, including noncoding RNAs, DNA methylations, RNA modifications, chromatin conformations, and histone modifications. A full understanding of the roles of genetic and epigenetic alterations in RB formation is crucial in facilitating the translation of these findings into effective treatment strategies for RB. In this review, we summarize current knowledge concerning genetic defects and epigenetic dysregulations in RB, aiming to help understand their links and roles in RB tumorigenesis.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yan Tong
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bo Man Ho
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jiahui Li
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hoi Ying Emily Chan
- Medicine Programme Global Physician-Leadership Stream, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tian Zhang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Lin Du
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jing Na He
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
19
|
Zhou M, Tang J, Fan J, Wen X, Shen J, Jia R, Chai P, Fan X. Recent progress in retinoblastoma: Pathogenesis, presentation, diagnosis and management. Asia Pac J Ophthalmol (Phila) 2024; 13:100058. [PMID: 38615905 DOI: 10.1016/j.apjo.2024.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024] Open
Abstract
Retinoblastoma, the primary ocular malignancy in pediatric patients, poses a substantial threat to mortality without prompt and effective management. The prognosis for survival and preservation of visual acuity hinges upon the disease severity at the time of initial diagnosis. Notably, retinoblastoma has played a crucial role in unraveling the genetic foundations of oncogenesis. The process of tumorigenesis commonly begins with the occurrence of biallelic mutation in the RB1 tumor suppressor gene, which is then followed by a cascade of genetic and epigenetic alterations that correspond to the clinical stage and pathological features of the tumor. The RB1 gene, recognized as a tumor suppressor, encodes the retinoblastoma protein, which plays a vital role in governing cellular replication through interactions with E2F transcription factors and chromatin remodeling proteins. The diagnosis and treatment of retinoblastoma necessitate consideration of numerous factors, including disease staging, germline mutation status, family psychosocial factors, and the resources available within the institution. This review has systematically compiled and categorized the latest developments in the diagnosis and treatment of retinoblastoma which enhanced the quality of care for this pediatric malignancy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jieling Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Xuyang Wen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Jianfeng Shen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, People's Republic of China.
| |
Collapse
|
20
|
Ouh YT, Kim HY, Yi KW, Lee NW, Kim HJ, Min KJ. Enhancing Cervical Cancer Screening: Review of p16/Ki-67 Dual Staining as a Promising Triage Strategy. Diagnostics (Basel) 2024; 14:451. [PMID: 38396493 PMCID: PMC10888225 DOI: 10.3390/diagnostics14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Cervical cancer, primarily caused by high-risk human papillomavirus (HR-HPV) types 16 and 18, is a major global health concern. Persistent HR-HPV infection can progress from reversible precancerous lesions to invasive cervical cancer, which is driven by the oncogenic activity of human papillomavirus (HPV) genes, particularly E6 and E7. Traditional screening methods, including cytology and HPV testing, have limited sensitivity and specificity. This review explores the application of p16/Ki-67 dual-staining cytology for cervical cancer screening. This advanced immunocytochemical method allows for simultaneously detecting p16 and Ki-67 proteins within cervical epithelial cells, offering a more specific approach for triaging HPV-positive women. Dual staining and traditional methods are compared, demonstrating their high sensitivity and negative predictive value but low specificity. The increased sensitivity of dual staining results in higher detection rates of CIN2+ lesions, which is crucial for preventing cervical cancer progression. However, its low specificity may lead to increased false-positive results and unnecessary biopsies. The implications of integrating dual staining into contemporary screening strategies, particularly considering the evolving landscape of HPV vaccination and changes in HPV genotype prevalence, are also discussed. New guidelines and further research are necessary to elucidate the long-term effects of integrating dual staining into screening protocols.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyung-Jin Min
- Department of Obstetrics and Gynecology, Korea University Ansan Hospital, Ansan-si 15355, Gyeonggi-do, Republic of Korea; (Y.-T.O.); (H.Y.K.); (K.W.Y.); (N.-W.L.); (H.-J.K.)
| |
Collapse
|
21
|
Rani N, Sahu M, Ambasta RK, Kumar P. Triaging between post-translational modification of cell cycle regulators and their therapeutics in neurodegenerative diseases. Ageing Res Rev 2024; 94:102174. [PMID: 38135008 DOI: 10.1016/j.arr.2023.102174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, present challenges in healthcare because of their complicated etiologies and absence of healing remedies. Lately, the emerging role of post-translational modifications (PTMs), in the context of cell cycle regulators, has garnered big interest as a potential avenue for therapeutic intervention. The review explores the problematic panorama of PTMs on cell cycle regulators and their implications in neurodegenerative diseases. We delve into the dynamic phosphorylation, acetylation, ubiquitination, SUMOylation, Glycation, and Neddylation that modulate the key cell cycle regulators, consisting of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors. The dysregulation of these PTMs is related to aberrant cell cycle in neurons, which is one of the factors involved in neurodegenerative pathologies. Moreover, the effect of exogenous activation of CDKs and CDK inhibitors through PTMs on the signaling cascade was studied in postmitotic conditions of NDDs. Furthermore, the therapeutic implications of CDK inhibitors and associated alteration in PTMs were discussed. Lastly, we explored the putative mechanism of PTMs to restore normal neuronal function that might reverse NDDs.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042.
| |
Collapse
|
22
|
Jun JH, Kim JS, Palomera LF, Jo DG. Dysregulation of histone deacetylases in ocular diseases. Arch Pharm Res 2024; 47:20-39. [PMID: 38151648 DOI: 10.1007/s12272-023-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.
Collapse
Affiliation(s)
- Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin, 16995, Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Leon F Palomera
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
23
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
24
|
Čižmáriková M, Michalková R, Mirossay L, Mojžišová G, Zigová M, Bardelčíková A, Mojžiš J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023; 13:1653. [PMID: 38002335 PMCID: PMC10669545 DOI: 10.3390/biom13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a complex and multifaceted disease with a high global incidence and mortality rate. Although cancer therapy has evolved significantly over the years, numerous challenges persist on the path to effectively combating this multifaceted disease. Natural compounds derived from plants, fungi, or marine organisms have garnered considerable attention as potential therapeutic agents in the field of cancer research. Ellagic acid (EA), a natural polyphenolic compound found in various fruits and nuts, has emerged as a potential cancer prevention and treatment agent. This review summarizes the experimental evidence supporting the role of EA in targeting key hallmarks of cancer, including proliferation, angiogenesis, apoptosis evasion, immune evasion, inflammation, genomic instability, and more. We discuss the molecular mechanisms by which EA modulates signaling pathways and molecular targets involved in these cancer hallmarks, based on in vitro and in vivo studies. The multifaceted actions of EA make it a promising candidate for cancer prevention and therapy. Understanding its impact on cancer biology can pave the way for developing novel strategies to combat this complex disease.
Collapse
Affiliation(s)
- Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Annamária Bardelčíková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| |
Collapse
|
25
|
Cai L, Liu B, Cao Y, Sun T, Li Y. Unveiling the molecular structure and role of RBBP4/7: implications for epigenetic regulation and cancer research. Front Mol Biosci 2023; 10:1276612. [PMID: 38028543 PMCID: PMC10679446 DOI: 10.3389/fmolb.2023.1276612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Retinoblastoma-binding protein (RBBP) family is a class of proteins that can interact with tumor suppressor retinoblastoma protein (pRb). RBBP4 and RBBP7 are the only pair of homologous proteins in this family, serving as scaffold proteins whose main function is to offer a platform to indirectly connect two proteins. This characteristic allows them to extensively participate in the binding of various proteins and epigenetic complexes, indirectly influencing the function of effector proteins. As a result, they are often highlighted in organism activities involving active epigenetic modifications, such as embryonic development and cancer activation. In this review, we summarize the structural characteristics of RBBP4/7, the complexes they are involved in, their roles in embryonic development and cancer, as well as potential future research directions, which we hope to inspire the field of epigenetic research in the future.
Collapse
Affiliation(s)
- Lize Cai
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Bin Liu
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, China
| | - Yufei Cao
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Ting Sun
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Yanyan Li
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| |
Collapse
|
26
|
Zhang B, Chang B, Wang L, Xu Y. Three E2F target-related genes signature for predicting prognosis, immune features, and drug sensitivity in hepatocellular carcinoma. Front Mol Biosci 2023; 10:1266515. [PMID: 37854038 PMCID: PMC10579819 DOI: 10.3389/fmolb.2023.1266515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is extremely malignant and difficult to treat. The adenoviral early region 2 binding factors (E2Fs) target pathway is thought to have a major role in tumor growth. This study aimed to identify a predictive E2F target signature and facilitate individualized treatment for HCC patients. Methods: We constructed an E2F target-related gene profile using univariate COX and LASSO regression models and proved its predictive efficacy in external cohorts. Furthermore, we characterized the role of the E2F target pathway in pathway enrichment, immune cell infiltration, and drug sensitivity of HCC. Results: Lasso Cox regression created an E2F target-related gene signature of GHR, TRIP13, and CDCA8. HCC patients with high risk were correlated with shorter survival time, immune evasion, tumor stem cell characteristics and high sensitivity to Tipifarnib and Camptothecin drugs. Conclusion: Hepatocellular carcinoma prognosis was predicted by an E2F target signature. This finding establishes the theoretical usefulness of the E2F target route in customized identification and treatment for future research.
Collapse
Affiliation(s)
- Baozhu Zhang
- Department of Radiation Oncology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Boyang Chang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lu Wang
- Department of Clinical Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
27
|
Wang YW, Zuo JC, Chen C, Li XH. Post-translational modifications and immune responses in liver cancer. Front Immunol 2023; 14:1230465. [PMID: 37609076 PMCID: PMC10441662 DOI: 10.3389/fimmu.2023.1230465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 08/24/2023] Open
Abstract
Post-translational modification (PTM) refers to the covalent attachment of functional groups to protein substrates, resulting in structural and functional changes. PTMs not only regulate the development and progression of liver cancer, but also play a crucial role in the immune response against cancer. Cancer immunity encompasses the combined efforts of innate and adaptive immune surveillance against tumor antigens, tumor cells, and tumorigenic microenvironments. Increasing evidence suggests that immunotherapies, which harness the immune system's potential to combat cancer, can effectively improve cancer patient prognosis and prolong the survival. This review presents a comprehensive summary of the current understanding of key PTMs such as phosphorylation, ubiquitination, SUMOylation, and glycosylation in the context of immune cancer surveillance against liver cancer. Additionally, it highlights potential targets associated with these modifications to enhance the response to immunotherapies in the treatment of liver cancer.
Collapse
Affiliation(s)
| | | | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1182848. [PMID: 37383398 PMCID: PMC10296190 DOI: 10.3389/fendo.2023.1182848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
29
|
Abu-Khalaf MM, Alex Hodge K, Hatzis C, Baldelli E, El Gazzah E, Valdes F, Sikov WM, Mita MM, Denduluri N, Murphy R, Zelterman D, Liotta L, Dunetz B, Dunetz R, Petricoin EF, Pierobon M. AKT/mTOR signaling modulates resistance to endocrine therapy and CDK4/6 inhibition in metastatic breast cancers. NPJ Precis Oncol 2023; 7:18. [PMID: 36797347 PMCID: PMC9935518 DOI: 10.1038/s41698-023-00360-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Endocrine therapy (ET) in combination with CDK4/6 inhibition is routinely used as first-line treatment for HR+/HER2- metastatic breast cancer (MBC) patients. However, 30-40% of patients quickly develop disease progression. In this open-label multicenter clinical trial, we utilized a hypothesis-driven protein/phosphoprotein-based approach to identify predictive markers of response to ET plus CDK4/6 inhibition in pre-treatment tissue biopsies. Pathway-centered signaling profiles were generated from microdissected tumor epithelia and surrounding stroma/immune cells using the reverse phase protein microarray. Phosphorylation levels of the CDK4/6 downstream substrates Rb (S780) and FoxM1 (T600) were higher in patients with progressive disease (PD) compared to responders (p = 0.02). Systemic PI3K/AKT/mTOR activation in tumor epithelia and stroma/immune cells was detected in patients with PD. This activation was not explained by underpinning genomic alterations alone. As the number of FDA-approved targeted compounds increases, functional protein-based signaling analyses may become a critical component of response prediction and treatment selection for MBC patients.
Collapse
Affiliation(s)
- Maysa M. Abu-Khalaf
- grid.415231.00000 0004 0577 7855Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA USA
| | - K. Alex Hodge
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | | | - Elisa Baldelli
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | - Emna El Gazzah
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | - Frances Valdes
- grid.419791.30000 0000 9902 6374Sylvester Comprehensive Cancer Center (UM SCCC), University of Miami, Miami, FL USA
| | - William M. Sikov
- grid.241223.4Women and Infants Hospital of Rhode Island, Providence, RI USA
| | - Monica M. Mita
- grid.50956.3f0000 0001 2152 9905Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Neelima Denduluri
- grid.492966.60000 0004 0481 8256Virginia Cancer Specialists, Fairfax, VA USA
| | - Rita Murphy
- grid.415231.00000 0004 0577 7855Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA USA
| | | | - Lance Liotta
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | | | - Rick Dunetz
- grid.490989.5Side Out Foundation, Fairfax, VA USA
| | - Emanuel F. Petricoin
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | - Mariaelena Pierobon
- School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA.
| |
Collapse
|