1
|
Wu X, Zhang W, Chen H, Weng J. Multifaceted paternal exposures before conception and their epigenetic impact on offspring. J Assist Reprod Genet 2024; 41:2931-2951. [PMID: 39230664 PMCID: PMC11621294 DOI: 10.1007/s10815-024-03243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
As scientific research progresses, there is an increasing understanding of the importance of paternal epigenetics in influencing the health and developmental path of offspring. Prior to conception, the environmental exposures and lifestyle choices of fathers can significantly influence the epigenetic state of sperm, including DNA methylation and histone changes, among other factors. These alterations in epigenetic patterns have the potential for transgenerational transmission potential and may exert profound effects on the biological characteristics of descendants. Paternal epigenetic changes not only affect the regulation of gene expression patterns in offspring but also increase the risk to certain diseases. It is crucial to comprehend the conditions that fathers are exposed to before conception and the potential outcomes of these conditions. This understanding is essential for assessing personal reproductive decisions and anticipating health risks for future generations. This review article systematically summarizes and analyzes current research findings regarding how paternal pre-pregnancy exposures influence offspring as well as elucidates underlying mechanisms, aiming to provide a comprehensive perspective for an enhanced understanding of the impact that paternal factors have on offspring health.
Collapse
Affiliation(s)
- Xiaojing Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weiping Zhang
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huijun Chen
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianfei Weng
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Chang-Chien J, Kuo ML, Tseng YL, Huang HY, Tsai HJ, Yao TC. Differential effects of long- and short-term exposure to PM 2.5 on accelerating telomere shortening: from in vitro to epidemiological studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116650. [PMID: 38964064 DOI: 10.1016/j.ecoenv.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Exposure to air pollutants has been associated with DNA damage and increases the risks of respiratory diseases, such as asthma and COPD; however short- and long-term effects of air pollutants on telomere dysfunction remain unclear. We investigated the impact of short- and long-term exposure to fine particulate matter with an aerodynamic diameter below 2.5 μm (PM2.5) on telomere length in human bronchial epithelial BEAS-2B cells, and assessed the potential correlation between PM2.5 exposure and telomere length in the LIGHTS childhood cohort study. We observed that long-term, but not short-term, PM2.5 exposure was significantly associated with telomere shortening, along with the downregulation of human telomerase reverse transcriptase (hTERT) mRNA and protein levels. Moreover, long-term exposure to PM2.5 induced proinflammatory cytokine secretion, notably interleukin 6 (IL-6) and IL-8, triggered subG1 cell cycle arrest, and ultimately caused cell death. Long-term exposure to PM2.5 upregulated the LC3-II/ LC3-I ratio but led to p62 protein accumulation in BEAS-2B cells, suggesting a blockade of autophagic flux. Moreover, consistent with our in vitro findings, our epidemiological study found significant association between annual average exposure to higher PM2.5 and shortening of leukocyte telomere length in children. However, no significant association between 7-day short-term exposure to PM2.5 and leukocyte telomere length was observed in children. By combining in vitro experimental and epidemiological studies, our findings provide supportive evidence linking potential regulatory mechanisms to population level with respect to long-term PM2.5 exposure to telomere shortening in humans.
Collapse
Affiliation(s)
- Ju Chang-Chien
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
| | - Yu-Lung Tseng
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsin-Yi Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan; College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| |
Collapse
|
3
|
Hung CY, Lee HJ, Tsai ZT, Huang SJ, Huang HY, Tsai HJ, Yao TC. Maternal folic acid supplementation during pregnancy in association with childhood overweight or obesity. Obesity (Silver Spring) 2024; 32:1179-1186. [PMID: 38572577 DOI: 10.1002/oby.24012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This study aimed to examine associations of maternal folic acid supplementation (FAS) during pregnancy with childhood overweight or obesity (OWO) or adiposity. METHODS In a population-based cohort of 1479 children, maternal FAS during pregnancy was assessed retrospectively by questionnaires. BMI and body fat percentages were measured at a mean age of 6.4 years. Pertinent factors were accounted for in data analyses. RESULTS Maternal FAS during pregnancy was negatively associated with OWO (adjusted odds ratio: 0.70; 95% CI: 0.50 to 0.99). There were inverse associations of maternal FAS during pregnancy with BMI z score (β: -0.22; 95% CI: -0.39 to -0.05), whole body fat percentage (β: -1.28; 95% CI: -2.27 to -0.30), trunk fat percentage (β: -1.41; 95% CI: -2.78 to -0.04), and limb fat percentage (β: -1.31; 95% CI: -2.32 to -0.30). Stratified analyses found inverse associations of FAS during pregnancy with OWO, BMI z score, and body fat percentages predominantly among children without breastfeeding and whose parents had a below-tertiary educational level. CONCLUSIONS This study provides novel evidence that maternal FAS during pregnancy was significantly associated with a decreased risk of childhood OWO and adiposity, particularly among children with no breastfeeding and lower parental educational level.
Collapse
Affiliation(s)
- Chi-Yen Hung
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsin-Ju Lee
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Zhao-Ting Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Jung Huang
- Department of Pediatrics, Jen-Ai Hospital, Taichung, Taiwan
| | - Hsin-Yi Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
4
|
Feuz MB, Nelson DC, Miller LB, Zwerdling AE, Meyer RG, Meyer-Ficca ML. Reproductive Ageing: Current insights and a potential role of NAD in the reproductive health of aging fathers and their children. Reproduction 2024; 167:e230486. [PMID: 38471307 PMCID: PMC11075800 DOI: 10.1530/rep-23-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
In brief In light of the increasing age of first-time fathers, this article summarizes the current scientific knowledge base on reproductive aging in the male, including sperm quality and health impacts for the offspring. The emerging role of NAD decline in reproductive aging is highlighted. Abstract Over the past decades, the age of first-time fathers has been steadily increasing due to socio-economic pressures. While general mechanisms of aging are subject to intensive research, male reproductive aging has remained an understudied area, and the effects of increased age on the male reproductive system are still only poorly understood, despite new insights into the potential dire consequences of advanced paternal age for the health of their progeny. There is also growing evidence that reproductive aging is linked to overall health in men, but this review mainly focuses on pathophysiological consequences of old age in men, such as low sperm count and diminished sperm genetic integrity, with an emphasis on mechanisms underlying reproductive aging. The steady decline of NAD levels observed in aging men represents one of the emerging concepts in that regard. Because it offers some mechanistic rationale explaining the effects of old age on the male reproductive system, some of the NAD-dependent functions in male reproduction are briefly outlined in this review. The overview also provides many questions that remain open about the basic science of male reproductive aging.
Collapse
Affiliation(s)
- Morgan B. Feuz
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
- These authors contributed equally
| | - D. Colton Nelson
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
- These authors contributed equally
| | - Laura B. Miller
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
- These authors contributed equally
| | - Alexie E Zwerdling
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
- These authors contributed equally
| | - Ralph G. Meyer
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Mirella L. Meyer-Ficca
- Department of Veterinary, Clinical and Life Sciences, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| |
Collapse
|