1
|
Xie D, Xu H, Wang F, Wen W, Dong B. Diagnostic accuracy of rapid shallow breathing index based on diaphragm ultrasound predicting successful weaning from mechanical ventilation: A systematic review and meta-analysis. Intensive Crit Care Nurs 2025; 90:104038. [PMID: 40228394 DOI: 10.1016/j.iccn.2025.104038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
OBJECTIVES This meta-analysis aimed to evaluate the effectiveness of the rapid shallow breathing index based on diaphragm ultrasound, specifically the diaphragmatic excursion-rapid shallow breathing index (DE-RSBI) and the diaphragmatic thickness fraction- rapid shallow breathing index (DTF-RSBI), in predicting successful weaning from mechanical ventilation. METHOD Two researchers independently searched four databases, PubMed, Embase, Cochrane Library and Web of Science, from their inception until 2 November 2024, and conducted literature screening and data extraction. The QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) was employed to evaluate the methodological quality of the included studies. Data analyses were performed using Stata 15 and Meta-Disc 1.4 software. RESULTS Fifteen studies (1,519 patients) were included in the meta-analysis. For the DE-RSBI, the pooled sensitivity was 0.89 (95% CI [0.84-0.93]), the pooled specificity was 0.85 (95% CI [0.79-0.90]), and the area under the curve (AUC) for the summary receiver operator characteristic (SROC) curve was 0.93 (95% CI [0.90-0.95]). For the DTF-RSBI, the pooled sensitivity was 0.85 (95% CI [0.56-0.96]), the pooled specificity was 0.81 (95% CI [0.66-0.90]), and the AUC was 0.88 (95% CI [0.85-0.90]). CONCLUSION Both DE-RSBI and DTF-RSBI demonstrate strong diagnostic accuracy in predicting successful weaning from mechanical ventilation. Given the apparent heterogeneity among the studies, we anticipate more large-sample, multi-center, and high-quality clinical studies in the future. IMPLICATIONS FOR CLINICAL PRACTICE DE-RSBI and DTF-RSBI are simple, non-invasive and objective evaluation indicators, and both can be utilized to predict a patient's capacity to successfully withdraw from mechanical ventilation. This meta-analysis comprehensively evaluated the value of these two tools in predicting successful extubation, aiming to provide clinicians with a strong decision-making basis to improve the success rate of extubation.
Collapse
Affiliation(s)
- Dan Xie
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Hongchun Xu
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fangjun Wang
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wen Wen
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Biqiang Dong
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Li L, Jiang F, Hao W, Wang Y, Li Y, Zhang D. Single-nucleus transcriptomic profiling of the diaphragm during mechanical ventilation. Sci Rep 2024; 14:31181. [PMID: 39732791 DOI: 10.1038/s41598-024-82530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model. The rabbits were anaesthetized and randomly divided into two groups (n = 3 each group): a control group and an experimental group. Diaphragm nuclei for sequencing were prepared by dissociating and filtering muscle tissue. 10X Genomics Platform for single-nucleus RNA sequencing (snRNA-seq) was used to profile the cells. Normalization and clustering were performed by Seurat, and clusters were manually annotated as different cell types. In this study, we performed differentially expressed genes (DEGs) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, pseudotime analysis and high dimensional weighted gene coexpression network analysis (hdWGCNA) to identify the key genes and signaling pathways related to the pathogenesis of VIDD. We further performed quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting to verify the results of snRNA-seq. The snRNA-seq results showed that acute postmechanical ventilation diaphragm cell changes included an increase in the proportion of fibroblasts and a decrease in the proportion of myofibres. The DEGs, KEGG, hdWGCNA and pseudotime analyses demonstrated that fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT) and immune cell infiltration are the three main processes involved in early stage of fibrosis development, among which Pdgfd, Sema3a, Cxcr2, are the corresponding regulatory genes. Glycolysis and the gene Pfkfb3 are also important metabolic factors for fibrosis formation. Negr1 and Mef2c are involved in phrenic nerve ending loss and diaphragm fibre atrophy. The qRT-PCR data showed that the mRNA levels of the genes Pdgfd, Cxcr2, Pfkfb3 and Negr1 were significantly greater in the experimental group than in the control group (P < 0.01), and the expression levels of Sema3a and Mef2c were significantly lower (P < 0.01). Despite limitations, including the lack of functional evaluations to confirm ventilator-induced diaphragm dysfunction (VIDD) and the absence of data validating diaphragm unloading during ventilation, our findings suggest that FAP proliferation and immune cell infiltration may play a role in the early stage of driving diaphragm fibrosis during mechanical ventilation. However, future studies are needed to confirm these findings and investigate the potential mechanisms underlying them.
Collapse
Affiliation(s)
- Lei Li
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Feng Jiang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Wenyan Hao
- Department of Biomedical Engineering, Changzhi Medical College, Changzhi, 046012, China
| | - Yu Wang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Yaqian Li
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Dong Zhang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.
| |
Collapse
|
3
|
Liu R, Liang L, Huang H, Zeng Z, Sun J. Rehabilitation effects of acupuncture on the diaphragmatic dysfunction in respiratory insufficiency: A systematic review and meta-analysis. Complement Ther Med 2024; 87:103105. [PMID: 39490936 DOI: 10.1016/j.ctim.2024.103105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Mechanical ventilation after respiratory insufficiency can induce diaphragm dysfunction through various hypothesized mechanisms. In this study, we evaluated the rehabilitative effect of acupuncture on diaphragm function in patients with respiratory insufficiency using meta-analysis and summarised the rules of acupoints through association rules analysis. METHODS Articles (published from January 2000 to February 2024) were retrieved from the following databases: PubMed, Cochrane Library, Embase, Web of Science, CNKI, VIP, SinoMed, and Wanfang. Two researchers conducted literature selection, data extraction, and statistical analysis independently. The risk of bias was assessed utilizing the Physical Therapy Evidence Database (PEDro) scale. The meta-analysis was performed with RevMan 5.4 software, and the quality of each outcome evidence was assessed via the online software GRADEpro GDT. The regularity of acupoint selection was summarized using association rules analysis. This study is registered on PROSPERO, number CRD42024526705. RESULTS Eleven articles were eventually included, all of which were of low to moderate quality. Results of the meta-analysis showed a significant increase in diaphragmatic thickening fraction (MD 3.40 [1.52, 5.27]) and diaphragmatic excursion (MD 0.95 [0.58, 1.31]) in patients with respiratory insufficiency after acupuncture treatment. Also, OI (MD 28.52 [15.93, 41.11]) and PaO2 (MD 7.18 [2.22, 12.13]) were significantly elevated and PaCO2 (MD -6.94 [-12.30, -1.59]) was decreased. Mechanical ventilation time (MD-1.86 [-2.28, -1.45]) was also significantly improved. The overall quality of the outcome evidence is deemed moderate. Association rules analysis showed that ST36, RN4, RN6, and others are core acupoints for the treatment of diaphragmatic dysfunction in patients with respiratory insufficiency by acupuncture. CONCLUSION Acupuncture shows potential in the rehabilitation of patients with respiratory insufficiency and may serve as a complementary and alternative therapy for related conditions. We suggest the use of ST36 as a core acupoint, in combination with other acupoints. Due to the potential publication bias and high heterogeneity of the current data, further high-quality RCTs are needed to confirm these findings.
Collapse
Affiliation(s)
- Ruixuan Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510405, China.
| | - Lei Liang
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong, Shenzhen 518033, China.
| | - Hai Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510405, China.
| | - Zhongyi Zeng
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong, Shenzhen 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Guangdong, Shenzhen 518033, China.
| | - Jian Sun
- Clinical Medical College of Acupuncture & Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou 510405, China.
| |
Collapse
|
4
|
Castellví-Font A, Goligher EC, Dianti J. Lung and Diaphragm Protection During Mechanical Ventilation in Patients with Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:863-875. [PMID: 39443003 DOI: 10.1016/j.ccm.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Patients with acute respiratory distress syndrome often require mechanical ventilation to maintain adequate gas exchange and to reduce the workload of the respiratory muscles. Although lifesaving, positive pressure mechanical ventilation can potentially injure the lungs and diaphragm, further worsening patient outcomes. While the effect of mechanical ventilation on the risk of developing lung injury is widely appreciated, its potentially deleterious effects on the diaphragm have only recently come to be considered by the broader intensive care unit community. Importantly, both ventilator-induced lung injury and ventilator-induced diaphragm dysfunction are associated with worse patient-centered outcomes.
Collapse
Affiliation(s)
- Andrea Castellví-Font
- Critical Care Department, Hospital del Mar de Barcelona, Critical Illness Research Group (GREPAC), Hospital del Mar Research Institute (IMIM), Passeig Marítim de la Barceloneta 25-29, Ciutat Vella, 08003, Barcelona, Spain; Interdepartmental Division of Critical Care Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada; University Health Network/Sinai Health System, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Toronto General Hospital Research Institute, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada; Department of Physiology, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| | - Jose Dianti
- Critical Care Medicine Department, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Av. E. Galván 4102, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
5
|
Yao Y, Guo X, Liu Y, Lu K, Chen W, Yin H, Lu G, Wang S, Tao J. Association of diaphragmatic dysfunction with duration of mechanical ventilation in patients in the pediatric intensive care unit: a prospective cohort study. BMC Pediatr 2024; 24:607. [PMID: 39342241 PMCID: PMC11438377 DOI: 10.1186/s12887-024-05092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Mechanical ventilation (MV) can cause diaphragmatic injury and ventilator induced diaphragmatic dysfunction (VIDD). Diaphragm ultrasonography (DU) is increasingly used to assess diaphragmatic anatomy, function and pathology of patients receiving MV in the pediatric intensive care unit (PICU). We report the poor contractile ability of diaphragm during ventilation of critically ill patients in our PICU and the association to prolonged length of MV and PICU stay. METHODS Patients who received MV within 24 h of admission to the PICU, expected to undergo continuous MV for more than 48 h and succeeded to extubate were included in the study. DU monitoring was performed daily after the initiation of MV until extubation. Diaphragm thickening fraction (DTF) measured by DU was used as an indicator of diaphragmatic contractile activity. Patients with bilateral DTF = 0% during DU assessment were allocated into the severe VIDD group (n = 26) and the rest were into non-severe VIDD group (n = 29). The association of severe VIDD with individual length of MV, hospitalization and PICU stay were analyzed. RESULTS With daily DU assessment, severe VIDD occurred on 2.9 ± 1.2 days after the initiation of MV, and lasted for 1.9 ± 1.7 days. Values of DTF of all patients recovered to > 10% before extubation. The severe VIDD group had a significantly longer duration (days) of MV [12.0 (8.0-19.3) vs. 5.0 (3.5-7.5), p < 0.001] and PICU stay (days) [30.5 (14.9-44.5) vs. 13.0 (7.0-24.5), p < 0.001]. The occurrence of severe VIDD, first day of severe VIDD and length of severe VIDD were significantly positively associated with the duration of MV and PICU stay. The occurrence of severe VIDD on the second and third days after initiation of MV significantly associated to longer PICU stay (days) [43.0 (9.0-70.0) vs. 13.0 (3.0-40.0), p = 0.009; 36.0 (17.0-208.0) vs. 13.0 (3.0-40.0), p = 0.005, respectively], and the length of MV (days) was significantly longer in those with severe VIDD on the third day after initiation of MV [16.5 (7.0-29.0) vs. 5.0 (2.0-22.0), p = 0.003]. CONCLUSIONS Daily monitoring of diaphragmatic function with bedside ultrasonography after initiation of MV is necessary in critically ill patients in PICU and the influences and risk factors of severe VIDD need to be further studied. (355 words).
Collapse
Affiliation(s)
- Yelin Yao
- Department of Rehabilitation, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojing Guo
- NHC Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Yuxin Liu
- Pediatric Emergency Critical Care Center, Children's Hospital of Fudan University, Shanghai, China
| | - Kai Lu
- Department of Rehabilitation, Children's Hospital of Fudan University, Shanghai, China
| | - Weiming Chen
- Pediatric Emergency Critical Care Center, Children's Hospital of Fudan University, Shanghai, China
| | - Huanhuan Yin
- Department of Rehabilitation, Children's Hospital of Fudan University, Shanghai, China
| | - Guoping Lu
- Pediatric Emergency Critical Care Center, Children's Hospital of Fudan University, Shanghai, China
| | - SuJuan Wang
- Department of Rehabilitation, Children's Hospital of Fudan University, Shanghai, China.
| | - Jinhao Tao
- Pediatric Emergency Critical Care Center, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Li LF, Yu CC, Huang CY, Wu HP, Chu CM, Liu PC, Liu YY. Suppression of Ventilation-Induced Diaphragm Fibrosis through the Phosphoinositide 3-Kinase-γ in a Murine Bleomycin-Induced Acute Lung Injury Model. Int J Mol Sci 2024; 25:6370. [PMID: 38928077 PMCID: PMC11203512 DOI: 10.3390/ijms25126370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Mechanical ventilation (MV), used in patients with acute lung injury (ALI), induces diaphragmatic myofiber atrophy and contractile inactivity, termed ventilator-induced diaphragm dysfunction. Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating fibrogenesis during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, myofiber fibrosis, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase diaphragm muscle fibrosis through the PI3K-γ pathway. Five days after receiving a single bolus of 0.075 units of bleomycin intratracheally, C57BL/6 mice were exposed to 6 or 10 mL/kg of MV for 8 h after receiving 5 mg/kg of AS605240 intraperitoneally. In wild-type mice, bleomycin exposure followed by MV 10 mL/kg prompted significant increases in disruptions of diaphragmatic myofibrillar organization, transforming growth factor-β1, oxidative loads, Masson's trichrome staining, extracellular collagen levels, positive staining of α-smooth muscle actin, PI3K-γ expression, and myonuclear apoptosis (p < 0.05). Decreased diaphragm contractility and peroxisome proliferator-activated receptor-γ coactivator-1α levels were also observed (p < 0.05). MV-augmented bleomycin-induced diaphragm fibrosis and myonuclear apoptosis were attenuated in PI3K-γ-deficient mice and through AS605240-induced inhibition of PI3K-γ activity (p < 0.05). MV-augmented diaphragm fibrosis after bleomycin-induced ALI is partially mediated by PI3K-γ. Therapy targeting PI3K-γ may ameliorate MV-associated diaphragm fibrosis.
Collapse
Affiliation(s)
- Li-Fu Li
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chung-Chieh Yu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chih-Yu Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Huang-Pin Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chien-Ming Chu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Ping-Chi Liu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (C.-Y.H.); (H.-P.W.); (C.-M.C.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
7
|
Fritsch SJ, Siemer AG, Dreher M, Simon TP, Marx G, Bickenbach J. Diaphragm ultrasound in patients with prolonged weaning from mechanical ventilation. Quant Imaging Med Surg 2024; 14:3248-3263. [PMID: 38720844 PMCID: PMC11074767 DOI: 10.21037/qims-23-1712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024]
Abstract
Background Several publications have examined diaphragmatic ultrasound using two-dimensional (2D) parameters in the context of weaning from mechanical ventilation (MV) and extubation. However, the studied cohorts had rather short duration of ventilation. Examinations on patients with prolonged weaning after long-term ventilation were missing. It was the aim of this study to assess of the diaphragm and peripheral musculature of patients undergoing prolonged weaning creating a chronological sequence of ultrasonic parameters during the course of weaning. Methods This study was carried out as a monocentric, prospective observational cross-sectional study. Patients in prolonged weaning who were transferred to a specialized weaning unit were eligible for inclusion if they were ventilated invasively by means of an endotracheal tube or tracheal cannula and if their expected treatment period was at least 5 days. Diaphragmatic function and one representative peripheral muscle were examined in 50 patients between March 2020 and April 2021. The 2D sonographic parameters of diaphragm and diaphragmatic function consisted of diaphragmatic thickness (Tdi) at the end of inspiration and expiration, the fractional thickening (FT) and the diaphragmatic excursion. Additionally, the M. quadriceps femoris was sonographically assessed at two locations. The difference of measurements between the first and the last measuring timepoint were examined using the Wilcoxon signed-rank test. For a longer chronological sequence, the Friedman's rank sum test with subsequent Wilcoxon-Nemenyi-McDonald-Thompson test for multiple comparisons was carried out. Results Fifty patients with prolonged weaning were included. The median duration of MV before transfer to the weaning unit was 11.5 [interquartile range (IQR) 10] days. Forty-one patients could be assessed over the full course of weaning, with 38 successfully weaned. Within these 41 patients, the sonographic parameters of the diaphragm slightly increased over the course of weaning indicating an increase in thickness and mobility. Especially parameters which represented an active movement reached statistical significance, i.e., inspiratory Tdi when assessed under spontaneous breathing [begin 3.41 (0.99) vs. end 3.43 (1.31) mm; P=0.01] and diaphragmatic excursion [begin 0.7 (0.8) vs. end 0.9 (0.6) cm; P=0.01]. The presence of positive end-expiratory pressure (PEEP) and pressure support did not influence the sonographic parameters significantly. The M. quadriceps femoris, in contrast, decreased slightly but constantly over the time [lower third: begin 1.36 (0.48) vs. end 1.28 (0.36) cm; P=0.054]. Conclusions The present study is the first one to longitudinally analyse diaphragmatic ultrasound in patients with prolonged weaning. Sonographic assessment showed that Tdi and excursion increased over the course of prolonged weaning, while the diameter of a representative peripheral muscle decreased. However, the changes are rather small, and data show a wide dispersion. To allow a potential, standardized use of diaphragm ultrasound for diagnostic decision support in prolonged weaning, further studies in this specific patient group are required.
Collapse
Affiliation(s)
- Sebastian Johannes Fritsch
- Department of Intensive Care Medicine, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
- Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
| | - Anna Große Siemer
- Department of Intensive Care Medicine, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
- Department of Neurology, Protestant Hospital Oldenburg, Oldenburg, Germany
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Tim-Philipp Simon
- Department of Intensive Care Medicine, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Johannes Bickenbach
- Department of Intensive Care Medicine, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
8
|
Le Stang V, Latronico N, Dres M, Bertoni M. Critical illness-associated limb and diaphragmatic weakness. Curr Opin Crit Care 2024; 30:121-130. [PMID: 38441088 PMCID: PMC10919276 DOI: 10.1097/mcc.0000000000001135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW In the current review, we aim to highlight the evolving evidence on the diagnosis, prevention and treatment of critical illness weakness (CIW) and critical illness associated diaphragmatic weakness (CIDW). RECENT FINDINGS In the ICU, several risk factors can lead to CIW and CIDW. Recent evidence suggests that they have different pathophysiological mechanisms and impact on outcomes, although they share common risk factors and may overlap in several patients. Their diagnosis is challenging, because CIW diagnosis is primarily clinical and, therefore, difficult to obtain in the ICU population, and CIDW diagnosis is complex and not easily performed at the bedside. All of these issues lead to underdiagnosis of CIW and CIDW, which significantly increases the risk of complications and the impact on both short and long term outcomes. Moreover, recent studies have explored promising diagnostic techniques that are may be easily implemented in daily clinical practice. In addition, this review summarizes the latest research aimed at improving how to prevent and treat CIW and CIDW. SUMMARY This review aims to clarify some uncertain aspects and provide helpful information on developing monitoring techniques and therapeutic interventions for managing CIW and CIDW.
Collapse
Affiliation(s)
- Valentine Le Stang
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Médecine Intensive –Réanimation (Département ‘R3S’), Paris, France
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia
- Department of Emergency, ASST Spedali Civili University Hospital, Piazzale Ospedali Civili, 1, 25123 Brescia, Italy
- ‘Alessandra BONO’ Interdepartmental University Research Center on LOng Term Outcome (LOTO) in Critical Illness Survivors, University of Brescia, Brescia, Italy
| | - Martin Dres
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Médecine Intensive –Réanimation (Département ‘R3S’), Paris, France
| | - Michele Bertoni
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia
- Department of Emergency, ASST Spedali Civili University Hospital, Piazzale Ospedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
9
|
Wennen M, Claassen W, Heunks L. Setting positive end-expiratory pressure: role in diaphragm-protective ventilation. Curr Opin Crit Care 2024; 30:61-68. [PMID: 38085880 DOI: 10.1097/mcc.0000000000001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW With mechanical ventilation, positive end-expiratory pressure (PEEP) is applied to improve oxygenation and lung homogeneity. However, PEEP setting has been hypothesized to contribute to critical illness associated diaphragm dysfunction via several mechanisms. Here, we discuss the impact of PEEP on diaphragm function, activity and geometry. RECENT FINDINGS PEEP affects diaphragm geometry: it induces a caudal movement of the diaphragm dome and shortening of the zone of apposition. This results in reduced diaphragm neuromechanical efficiency. After prolonged PEEP application, the zone of apposition adapts by reducing muscle fiber length, so-called longitudinal muscle atrophy. When PEEP is withdrawn, for instance during a spontaneous breathing trial, the shortened diaphragm muscle fibers may over-stretch which may lead to (additional) diaphragm myotrauma. Furthermore, PEEP may either increase or decrease respiratory drive and resulting respiratory effort, probably depending on lung recruitability. Finally, the level of PEEP can also influence diaphragm activity in the expiratory phase, which may be an additional mechanism for diaphragm myotrauma. SUMMARY Setting PEEP could play an important role in both lung and diaphragm protective ventilation. Both high and low PEEP levels could potentially introduce or exacerbate diaphragm myotrauma. Today, the impact of PEEP setting on diaphragm structure and function is in its infancy, and clinical implications are largely unknown.
Collapse
Affiliation(s)
- Myrte Wennen
- Department of Intensive Care, Erasmus Medical Center, Rotterdam
| | - Wout Claassen
- Department of Physiology, Amsterdam UMC, location VUmc, Amsterdam
| | - Leo Heunks
- Department of Intensive Care, Erasmus Medical Center, Rotterdam
- Department of intensive care medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|