1
|
Zima K, Bogucka A, Wojtas M, Zabielska-Kaczorowska M. Immunological Effects of Electronic Cigarette Use: A Review of Current Evidence. Clin Rev Allergy Immunol 2025; 68:9. [PMID: 39891861 DOI: 10.1007/s12016-025-09026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Electronic cigarettes (EC) have emerged as a popular alternative to traditional tobacco products, but their impact on immune function has raised significant health concerns. This review explores the immunological effects of EC exposure, focusing on innate and adaptive immune responses. Electronic cigarette aerosol (ECA) induces widespread inflammation. These changes compromise immune cell function, impairing neutrophil chemotaxis, phagocytosis, and oxidative burst while increasing macrophage and dendritic cell recruitment and activation. ECA also disrupts epithelial barriers, increasing susceptibility to bacterial and viral infections. Studies show enhanced biofilm formation in bacteria such as Staphylococcus aureus and Streptococcus pneumoniae and impaired antiviral responses against pathogens like influenza A and SARS-CoV-2. Additionally, EC exposure modulates adaptive immunity, affecting T and B cell function and increasing systemic inflammatory markers. The long-term consequences of these immunological disruptions include heightened risks for chronic inflammatory diseases, respiratory infections, and potentially autoimmune conditions. The widespread adoption of EC, particularly among younger users, poses a growing public health challenge. As the popularity of vaping continues to rise, these immunological disruptions could result in increased healthcare burdens in the future, with higher rates of infections, chronic inflammatory diseases, and immune system-related disorders among those who begin using e-cigarettes at a young age. Understanding the full scope of EC-related health risks is essential for informing public health policies and protecting future generations from the potential long-term effects of vaping.
Collapse
Affiliation(s)
- Katarzyna Zima
- Department of Physiology, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| | - Aleksandra Bogucka
- Department of Physiology, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Miłosz Wojtas
- Department of Physiology, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | | |
Collapse
|
2
|
Donovan C, Thorpe AE, Yarak R, Coward-Smith M, Pillar AL, Gomez HM, Feng M, Bai X, Wang M, Xenaki D, Horvat JC, Chen H, Oliver BGG, Kim RY. Maternal thirdhand exposure to e-cigarette vapor alters lung and bone marrow immune cell responses in offspring in the absence or presence of influenza infection. Am J Physiol Lung Cell Mol Physiol 2024; 327:L796-L806. [PMID: 39316673 DOI: 10.1152/ajplung.00078.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
There is increasing evidence that thirdhand exposure to e-cigarette vapor (e-vapor) can have detrimental effects on the lungs. However, whether maternal exposure during pregnancy results in harmful changes to the offspring is unknown. Using two different e-cigarette settings (low vs. high power), BALB/c mice were subjected to thirdhand e-vapor (e-vapor deposited onto towels, towels changed daily) in the absence or presence of nicotine, before, during, and after pregnancy. Male adult offspring were then infected with mouse-adapted influenza A virus (A/PR/8/34 H1N1; Flu) and lung and bone marrow immune cell responses were assessed 7 days postinfection. Maternal thirdhand exposure to low-power (MLP) or high-power (MHP) e-vapor with nicotine (MLP + NIC and MHP + NIC, respectively) increased the percentage of lung immune cells and neutrophils in the bone marrow. Interestingly, Flu-infected offspring from MLP + NIC and MHP + NIC groups had lower percentages of lung alveolar macrophages and more pronounced increases in neutrophils in the bone marrow, when compared with offspring from MSham Flu controls. Flu infection also decreased the percentage of lung CD4+ T cells and increased the percentage of lung CD8+ T cells, irrespective of maternal exposure (MLP -/+ NIC and MHP -/+ NIC). Significantly, both MLP + NIC and MHP + NIC resulted in blunted activation of lung CD4+ T cells, but only MLP + NIC caused blunted activation of lung CD8+ T cells. Together, we show for the first time that maternal thirdhand exposure to e-vapor results in significant, long-lived effects on lung and bone marrow immune cell responses in offspring at baseline and response to Flu infection.NEW & NOTEWORTHY Maternal exposure to environmental residues of e-cigarette use has significant effects on immune cell responses in the lungs and bone marrow of offspring at both baseline and in response to influenza A virus (Flu) infection.
Collapse
Affiliation(s)
- Chantal Donovan
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew E Thorpe
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Rochelle Yarak
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Madison Coward-Smith
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Amber L Pillar
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Henry M Gomez
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Min Feng
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Xu Bai
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Meng Wang
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Dia Xenaki
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jay C Horvat
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Hui Chen
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Brian G G Oliver
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Richard Y Kim
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
3
|
Anwar F, Mosley MT, Jasbi P, Chi J, Gu H, Jadavji NM. Maternal Dietary Deficiencies in Folic Acid and Choline Change Metabolites Levels in Offspring after Ischemic Stroke. Metabolites 2024; 14:552. [PMID: 39452933 PMCID: PMC11509810 DOI: 10.3390/metabo14100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background/objectives: Ischemic stroke is a major health concern, and nutrition is a modifiable risk factor that can influence recovery outcomes. This study investigated the impact of maternal dietary deficiencies in folic acid (FADD) or choline (ChDD) on the metabolite profiles of offspring after ischemic stroke. Methods: A total of 32 mice (17 males and 15 females) were used to analyze sex-specific differences in response to these deficiencies. Results: At 1-week post-stroke, female offspring from the FADD group showed the greatest number of altered metabolites, including pathways involved in cholesterol metabolism and neuroprotection. At 4 weeks post-stroke, both FADD and ChDD groups exhibited significant disruptions in metabolites linked to inflammation, oxidative stress, and neurotransmission. Conclusions: These alterations were more pronounced in females compared to males, suggesting sex-dependent responses to maternal dietary deficiencies. The practical implications of these findings suggest that ensuring adequate maternal nutrition during pregnancy may be crucial for reducing stroke susceptibility and improving post-stroke recovery in offspring. Nutritional supplementation strategies targeting folic acid and choline intake could potentially mitigate the long-term adverse effects on metabolic pathways and promote better neurological outcomes. Future research should explore these dietary interventions in clinical settings to develop comprehensive guidelines for maternal nutrition and stroke prevention.
Collapse
Affiliation(s)
- Faizan Anwar
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (F.A.); (M.-T.M.)
| | - Mary-Tyler Mosley
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (F.A.); (M.-T.M.)
- Department of Human Biology, Stanford University, Stanford, CA 94305, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA
| | - Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
| | - Nafisa M. Jadavji
- Department of Biomedical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Child Health, University of Arizona, Phoenix, AZ 85004, USA
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Dabdoub S, Greenlee A, Abboud G, Brengartner L, Zuiker E, Gorr MW, Wold LE, Kumar PS, Cray J. Acute exposure to electronic cigarette components alters mRNA expression of pre-osteoblasts. FASEB J 2024; 38:e70017. [PMID: 39213037 PMCID: PMC11371384 DOI: 10.1096/fj.202302014rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The use of traditional nicotine delivery products such as tobacco has long been linked to detrimental health effects. However, little work to date has focused on the emerging market of aerosolized nicotine delivery known as electronic nicotine delivery systems (ENDS) or electronic cigarettes, and their potential for new effects on human health. Challenges studying these devices include heterogeneity in the formulation of the common components of most available ENDS, including nicotine and a carrier (commonly composed of propylene glycol and vegetable glycerin, or PG/VG). In the present study, we report on experiments interrogating the effects of major identified components in e-cigarettes. Specifically, the potential concomitant effects of nicotine and common carrier ingredients in commercial "vape" products are explored in vitro to inform the potential health effects on the craniofacial skeleton through novel vectors as compared to traditional tobacco products. MC3T3-E1 murine pre-osteoblast cells were cultured in vitro with clinically relevant liquid concentrations of nicotine, propylene glycol (PG), vegetable glycerin (VG), Nicotine+PG/VG, and the vape liquid of a commercial product (Juul). Cells were treated acutely for 24 h and RNA-Seq was utilized to determine segregating alteration in mRNA signaling. Influential gene targets identified with sparse partial least squares discriminant analysis (sPLS-DA) implemented in mixOmics were assessed using the PANTHER Classification system for molecular functions, biological processes, cellular components, and pathways of effect. Additional endpoint functional analyses were used to confirm cell cycle changes. The initial excitatory concentration (EC50) studied defined a target concentration of carrier PG/VG liquid that altered the cell cycle of the calvarial cells. Initial sPLS-DA analysis demonstrated the segregation of nicotine and non-nicotine exposures utilized in our in vitro modeling. Pathway analysis suggests a strong influence of nicotine exposures on cellular processes including metabolic processes and response to stimuli including autophagic flux. Further interrogation of the individual treatment conditions demonstrated segregation by treatment modality (Control, Nicotine, Carrier (PG+VG), Nicotine+PG/VG) along three dimensions best characterized by: latent variable 1 (PLSDA-1) showing strong segregation based on nicotine influence on cellular processes associated with cellular adhesion to collagen, osteoblast differentiation, and calcium binding and metabolism; latent variable 2 (PLSDA-2) showing strong segregation of influence based on PG+VG and Control influence on cell migration, survival, and cycle regulation; and latent variable 3 (PLSDA-3) showing strong segregation based on Nicotine and Control exposure influence on cell activity and growth and developmental processes. Further, gene co-expression network analysis implicates targets of the major pathway genes associated with bone growth and development, particularly craniofacial (FGF, Notch, TGFβ, WNT) and analysis of active subnetwork pathways found these additionally overrepresented in the Juul exposure relative to Nicotine+PG/VG. Finally, experimentation confirmed alterations in cell count, and increased evidence of cell stress (markers of autophagy), but no alteration in apoptosis. These data suggest concomitant treatment with Nicotine+PG/VG drives alterations in pre-osteoblast cell cycle signaling, specifically transcriptomic targets related to cell cycle and potentially cell stress. Although we suspected cell stress and well as cytotoxic effects of Nicotine+PG/VG, no great influence on apoptotic factors was observed. Further RNA-Seq analysis allowed for the direct interrogation of molecular targets of major pathways involved in bone and craniofacial development, each demonstrating segregation (altered signaling) due to e-cigarette-type exposure. These data have implications directed toward ENDS formulation as synergistic effects of Nicotine+PG/VG are evidenced here. Thus, future research will continue to interrogate how varied formulation of Nicotine+PG/VG affects overall cell functions in multiple vital systems.
Collapse
Affiliation(s)
- Shareef Dabdoub
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ashley Greenlee
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - George Abboud
- Undergraduate Biomedical Sciences Major, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Lexie Brengartner
- Undergraduate Biomedical Sciences Major, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Eryn Zuiker
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Matthew W. Gorr
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Purnima S. Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
- Divisions of Biosciences and Orthodontics, College of Dentistry, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
5
|
Lewis F, Shoieb D, Azmoun S, Colicino E, Jin Y, Chi J, Gu H, Placidi D, Padovani A, Pilotto A, Pepe F, Turla M, Crippa P, Wang X, Lucchini RG. Metabolomic and Lipidomic Analysis of Manganese-Associated Parkinsonism: a Case-Control Study in Brescia, Italy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313002. [PMID: 39281765 PMCID: PMC11398432 DOI: 10.1101/2024.09.04.24313002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background and Objectives Excessive Manganese (Mn) exposure is neurotoxic and can cause Mn-Induced Parkinsonism (MnIP), marked by cognitive and motor dysfunction. Although metabolomic and lipidomic research in Parkinsonism (PD) patients exists, it remains limited. This study hypothesizes distinct metabolomic and lipidomic profiles based on exposure status, disease diagnosis, and their interaction. Methods We used a case-control design with a 2×2 factorial framework to investigate the metabolomic and lipidomic alterations associated with Mn exposure and their link to PD. The study population of 97 individuals was divided into four groups: non-exposed controls (n=23), exposed controls (n=25), non-exposed with PD (n=26) and exposed with PD (n=23). Cases, defined by at least two cardinal PD features (excluding vascular, iatrogenic, and traumatic origins), were recruited from movement disorder clinics in four hospitals in Brescia, Northern Italy. Controls, free from neurological or psychiatric conditions, were selected from the same hospitals. Exposed subjects resided in metallurgic regions (Val Camonica and Bagnolo Mella) for at least 8 continuous years, while non-exposed subjects lived in low-exposure areas around Lake Garda and Brescia city. We conducted untargeted analyses of metabolites and lipids in whole blood samples using ultra-high-performance liquid chromatography (UHPLC) and mass spectrometry (MS), followed by statistical analyses including Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), and Two-Way Analysis of Covariance (ANCOVA). Results Metabolomic analysis revealed modulation of alanine, aspartate, and glutamate metabolism (Impact=0.05, p=0.001) associated with disease effect; butanoate metabolism (Impact=0.03, p=0.004) with the exposure effect; and vitamin B6 metabolism (Impact=0.08, p=0.03) with the interaction effect. Differential relative abundances in 3-sulfoxy-L-Tyrosine (β=1.12, FDR p<0.001), glycocholic acid (β=0.48, FDR p=0.03), and palmitelaidic acid (β=0.30, FDR p<0.001) were linked to disease, exposure, and interaction effects, respectively. In the lipidome, ferroptosis (Pathway Lipids=11, FDR p=0.03) associated with the disease effect and sphingolipid signaling (Pathway Lipids=9, FDR p=0.04) associated with the interaction effect were significantly altered. Lipid classes triacylglycerols, ceramides, and phosphatidylethanolamines showed differential relative abundances associated with disease, exposure, and interaction effects, respectively. Discussion These findings suggest that PD and Mn exposure induce unique metabolomic and lipidomic changes, potentially serving as biomarkers for MnIP and warranting further study.
Collapse
Affiliation(s)
- Freeman Lewis
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Daniel Shoieb
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Somaiyeh Azmoun
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Elena Colicino
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, New York, 10029, New York, USA
| | - Yan Jin
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Jinhua Chi
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Haiwei Gu
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy and Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy and Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Fulvio Pepe
- Clinic of Neurology, Poliambulanza Foundation, Brescia, Italy
| | - Marinella Turla
- Clinic of Neurology, Esine Hospital of Valcamonica, Brescia, Italy
| | | | - Xuexia Wang
- Department of Biostatistics, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Roberto G Lucchini
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Via Universitá, 4, Modena, 610101, Italy
| |
Collapse
|
6
|
Arias-Badia M, Pai CCS, Chen P, Chang A, Lwin YM, Srinath A, Gotts JE, Glantz SA, Fong L. E-cigarette exposure disrupts antitumor immunity and promotes metastasis. Front Immunol 2024; 15:1444020. [PMID: 39221247 PMCID: PMC11365074 DOI: 10.3389/fimmu.2024.1444020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Electronic cigarettes (e-cigarettes) are thought to pose low risk of cancer because the components of e-cigarette liquid are not carcinogens. We analyzed the effects of the two major components, PG/VG and nicotine, on tumor development in preclinical models. We found that PG/VG promoted tumor cell migration in migration assays and contributed to more aggressive, metastatic, and immunosuppressive tumors in vivo, aggravated by the presence of nicotine. Whole body exposure of mice to PG/VG and nicotine rendered animals more susceptible to developing tumors with high frequencies of infiltrating proinflammatory macrophages expressing IL-6 and TNFα. Moreover, tumor-infiltrating and circulating T cells in e-cigarette exposed mice showed increased levels of immune checkpoints including CTLA4 and PD-1. Treatment with anti-CTLA4 antibody was able to abrogate metastasis with no detrimental effects on its ability to induce tumor regression in exposed mice. These findings suggest that the major components used in e-cigarette fluid can impact tumor development through induced immunosuppression.
Collapse
Affiliation(s)
- Marcel Arias-Badia
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Chien-Chun Steven Pai
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - PeiXi Chen
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Anthony Chang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Yee May Lwin
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Aahir Srinath
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey E. Gotts
- Kaiser Permanente San Francisco Medical Center, San Francisco, CA, United States
| | - Stanton A. Glantz
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
7
|
Li Z, Li X, Feng B, Zhao J, Liu K, Xie F, Xie J. Investigation of the in vitro toxic effects induced by real-time aerosol of electronic cigarette solvents using microfluidic chips. Food Chem Toxicol 2024; 188:114668. [PMID: 38641044 DOI: 10.1016/j.fct.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The safety of propylene glycol (PG) and vegetable glycerin (VG) as solvents in electronic cigarette liquid has received increasing attention and discussion. However, the conclusions derived from toxicity assessments conducted through animal experiments and traditional in vitro methodologies have consistently been contentious. This study constructed an original real-time aerosol exposure system, centered around a self-designed microfluidic bionic-lung chip, to assess the biological effects following exposure to aerosols from different solvents (PG, PG/VG mixture alone and PG/VG mixture in combination with nicotine) on BEAS-2B cells. The study aimed to investigate the impact of aerosols from different solvents on gene expression profiles, intracellular biomarkers (i.e., reactive oxygen species content, nitric oxide content, and caspase-3/7 activity), and extracellular biomarkers (i.e., IL-6, IL-8, TNF-α, and malondialdehyde) of BEAS-2B cells on-chip. Transcriptome analyses suggest that ribosomal function could serve as a potential target for the impact of aerosols derived from various solvents on the biological responses of BEAS-2B cells on-chip. And the results showed that aerosols of PG/VG mixtures had significantly less effect on intracellular and extracellular biomarkers in BEAS-2B cells than aerosols of PG, whereas increasing nicotine levels might elevate these effects of aerosol from PG/VG mixture.
Collapse
Affiliation(s)
- Zezhi Li
- Beijing Life Science Academy, Beijing 102209, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China; Beijing Technology and Business University, Beijing 100048, PR China
| | - Xiang Li
- Beijing Life Science Academy, Beijing 102209, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China.
| | - Boyang Feng
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Junwei Zhao
- Beijing Life Science Academy, Beijing 102209, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Jianping Xie
- Beijing Life Science Academy, Beijing 102209, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China.
| |
Collapse
|
8
|
Buettner-Schmidt K, Steward K, Goniewicz ML, Schaeffer Fraase K, Orr M, Miller DR. Development of a Flavor Ingredient Wheel Linking E-Liquid Additives to the Labeled Flavor of Vaping Products. TOXICS 2024; 12:372. [PMID: 38787151 PMCID: PMC11125894 DOI: 10.3390/toxics12050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
E-liquids contain combinations of chemicals, with many enhancing the sensory attractiveness of the product. Studies are needed to understand and characterize e-liquid ingredients, particularly flavorings, to inform future research and regulations of these products. We identified common flavor ingredients in a convenience sample of commercial e-liquids using gas chromatography-mass spectrometry. E-liquid flavors were categorized by flavor descriptors provided on the product packaging. A Flavor Ingredient Wheel was developed to link e-liquid flavor ingredients with flavor categories. An analysis of 109 samples identified 48 flavor ingredients. Consistency between the labeled flavor and ingredients used to produce such flavor was found. Our novel Flavor Ingredient Wheel organizes e-liquids by flavor and ingredients, enabling efficient analysis of the link between ingredients and their flavor profiles and allowing for quick assessment of an e-liquid ingredient's flavor profile. Investigating ingredient profiles and identifying and classifying commonly used chemicals in e-liquids may assist with future studies and improve the ability to regulate these products.
Collapse
Affiliation(s)
- Kelly Buettner-Schmidt
- School of Nursing, North Dakota State University, Fargo, ND 58108, USA; (K.S.F.); (M.O.); (D.R.M.)
| | - Katherine Steward
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA;
| | - Maciej L. Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Kolby Schaeffer Fraase
- School of Nursing, North Dakota State University, Fargo, ND 58108, USA; (K.S.F.); (M.O.); (D.R.M.)
| | - Megan Orr
- School of Nursing, North Dakota State University, Fargo, ND 58108, USA; (K.S.F.); (M.O.); (D.R.M.)
| | - Donald R. Miller
- School of Nursing, North Dakota State University, Fargo, ND 58108, USA; (K.S.F.); (M.O.); (D.R.M.)
| |
Collapse
|
9
|
Shruti T, Sharma P, Budukh A, Khanna D. Electronic nicotine delivery system: a narrative review on growing threat to tobacco control and health of the young Indian population. Int J Adolesc Med Health 2024; 36:17-24. [PMID: 38369380 DOI: 10.1515/ijamh-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
The electronic cigarette (EC) was developed as an alternative to cigarette smoking. In less than a decade, the prevalence of past-month EC usage increased from 1.5 to 27.5 % among US high-school students. In the coming years, Asia-Pacific countries will have the highest sales of electronic nicotine/non-nicotine delivery systems (ENDS/ENNDS) after Western Europe. Based on the World Health Organization and Indian Council of Medical Research recommendations, India approved a complete ban on EC in 2019. Even though it has been three years since the ban, EC is still being sold in India's grey markets, where marketing is not regulated. In this narrative review, we discuss that vaping is not just a harm reduction strategy for tobacco smoking cessation but poses a serious threat to India's existing tobacco control efforts as well as the health of the country's young people.
Collapse
Affiliation(s)
- Tulika Shruti
- Department of Preventive Oncology, Mahamana Pandit Madan Mohan Malaviya Cancer Centre (MPMMCC) and Homi Bhabha Cancer Hospital (HBCH), Tata Memorial Centres, Varanasi, India
| | - Priyanka Sharma
- Department of Preventive Oncology, Mahamana Pandit Madan Mohan Malaviya Cancer Centre (MPMMCC) and Homi Bhabha Cancer Hospital (HBCH), Tata Memorial Centres, Varanasi, India
| | - Atul Budukh
- Centre for Cancer Epidemiology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Divya Khanna
- Department of Preventive Oncology, Mahamana Pandit Madan Mohan Malaviya Cancer Centre (MPMMCC) and Homi Bhabha Cancer Hospital (HBCH), Tata Memorial Centres, Varanasi, India
| |
Collapse
|