1
|
Zhang D, Zhang YH, Liu B, Yang HX, Li GT, Zhou HL, Wang YS. Role of peroxisomes in the pathogenesis and therapy of renal fibrosis. Metabolism 2025; 166:156173. [PMID: 39993498 DOI: 10.1016/j.metabol.2025.156173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Renal fibrosis is a pathological consequence of end-stage chronic kidney disease, driven by factors such as oxidative stress, dysregulated fatty acid metabolism, extracellular matrix (ECM) imbalance, and epithelial-to-mesenchymal transition. Peroxisomes play a critical role in fatty acid β-oxidation and the scavenging of reactive oxygen species, interacting closely with mitochondrial functions. Nonetheless, current research often prioritizes the mitochondrial influence on renal fibrosis, often overlooking the contribution of peroxisomes. This comprehensive review systematically elucidates the fundamental biological functions of peroxisomes and delineates the molecular mechanisms underlying peroxisomal dysfunction in renal fibrosis pathogenesis. Here, we discuss the impact of peroxisome dysfunction and pexophagy on oxidative stress, ECM deposition, and renal fibrosis in various cell types including mesangial cells, endothelial cells, podocytes, epithelial cells, and macrophages. Furthermore, this review highlights the recent advancements in peroxisome-targeted therapeutic strategies to alleviate renal fibrosis.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Yang-He Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hong-Xia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Guang-Tao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Nandula SR, Brichacek B, Sen S. Podocyte-Specific Protein Expression in Urine Exosome Acts as a Marker for Renal Injury in Post-COVID State. Metab Syndr Relat Disord 2025. [PMID: 40100769 DOI: 10.1089/met.2024.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Introduction: Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) has been associated with the development of COVID-19. COVID-19 may cause endothelial cell dysfunction (ECD), which can lead to cardiometabolic diseases and podocytopathy. In this study, we explored whether presence of hyperglycemia predisposes to SARS-CoV-2 infection, in vitro, and whether COVID-19 can put an individual at a higher risk of persistent renal damage in the long-term following acute COVID infection. To estimate renal damage, we evaluated albuminuria and podocytopathy. Podocytopathy was estimated by measuring podocyte-specific protein levels in urine-derived exosomes from patients who were admitted with acute COVID-19 at 10 days, 6 months, and 12 months post-acute SARS-CoV-2 infection. Methods: Blood and urine samples from patients with SARS-CoV-2 post-infection were procured from the George Washington University COVID repository. Peripheral blood mononuclear cells and urine exosomes were isolated. Podocyte-specific proteins Podocalyxin (PODXL) and Nephrin (NEPH) were identified from urine exosomes. Results: Urine exosomal podocalyxin levels were significantly high at 10 week (n = 18; P = 0.001), 6 month (n = 25; P = 0.003) and 12 month (n = 14; P = 0.0001) time points. Nephrin levels were also noted to be high at 10 week (n = 18; P = 0.001) and 12 month (n = 14; P = 0.007) time points, compared with urine samples obtained from type 2 diabetes subjects who never had COVID-19. Though urinary podocyte-specific proteins were high, compared to control, there were no significant differences noted on urine albumin:creatinine ratios (UACR) between the groups. Conclusion: Persistent high levels of podocyte-specific proteins noted in urinary exosomes even at 12 months post-Covid may lead to the development of chronic kidney disease.
Collapse
Affiliation(s)
- Seshagiri Rao Nandula
- Department of Medicine and Biochemistry, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Beda Brichacek
- Department of Medicine and Biochemistry, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Sabyasachi Sen
- Department of Medicine and Biochemistry, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Nandula SR, Jain A, Sen S. Cardio-renal effect of dapagliflozin and dapagliflozin- saxagliptin combination on CD34 + ve hematopoietic stem cells (HSCs) and podocyte specific markers in type 2 diabetes (T2DM) subjects: a randomized trial. Stem Cell Res Ther 2025; 16:28. [PMID: 39865301 PMCID: PMC11770927 DOI: 10.1186/s13287-025-04130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/05/2025] [Indexed: 01/28/2025] Open
Abstract
INTRODUCTION Effects of Dapagliflozin (Dapa) and Dapagliflozin-Saxagliptin combination (Combo) was examined on peripheral blood derived CD34 + Hematopoetic Stem Cells (HSCs) as a cellular CVD biomarker. Both Dapa (a sodium-glucose co-transporter 2 or SGLT2, receptor inhibitor) and Saxagliptin (a Di-peptydl-peptidase-4 or DPP4 enzyme inhibitor) are commonly used type 2 diabetes mellitus or T2DM medications, however the benefit of using the combination has not been evaluated for cardio-renal risk assessment, in a real-life practice setting, compared to a placebo. HYPOTHESIS We hypothesized that Dapa will improve the outcomes when compared to placebo and the Combo maybe even more beneficial. METHODS This is a pilot study evaluating low dose Dapagliflozin 10 mg or low dose Dapa + low dose Saxagliptin combination. 15 subjects were enrolled in 16 weeks, double-blind, three-arm, randomized placebo matched trial, with 10mg Dapa + Saxa placebo (n = 4), 10 mg Dapa + 5 mg Saxa (n = 5) Combo, And Dapa placebo + Saxa placebo (n = 6), Placebo groups. T2DM subjects (age 30-70 yrs) with HbA1c of 7-10%, were included. CD34 + HSC number, migration, mRNA expression along with biochemistry and urine exosomes were measured. Data were collected at week 0, 8, and 16. For statistics, a mixed model regression analysis was used. RESULTS Significant HbA1c (p = 0.0357) reduction was noted in Combo group versus Dapa alone and Placebo. hsCRP levels (P = 0.0317) and IL-6, two important inflammatory molecules, were significantly reduced in both Dapa and Combo vs. Placebo. Leptin levels decreased significantly in both Dapa alone (p = 0.035) and Combo group(p = 0.015), vs. Placebo, however the Adiponectin levels were higher in Dapa alone group. Dapagliflozin alone reduced lipid parameters significantly particularly triglyceride (TG) when compared to placebo, with resultant visit 3 values at 99.5 ± 7.2 vs. 129 ± 12.3 and LDL/HDL ratio values were similar at 2.18 ± 0.08 vs. 2.13 ± 0.15. CD34 + cell migration improved significantly in both Dapa alone (p = 0.05) and Combo group (p = 0.05) vs. Placebo. CONCLUSIONS Several parameters showed significant improvement with both Dapa alone and Combo compared to placebo. However, when all outcome measures were taken into account, other than glycemic control the Combo didn't seem to offer any further benefit, over Dapa alone. Therefore, contrary to our initial hypothesis we do not believe the more expensive Dapa + Saxa combination offers any specific cardiovascular benefit compared to Dapagliflozin alone. However it is noteworthy that both Dapa and its combination with Saxagliptin showed significant improvement compared to placebo in T2DM, particularly when progenitor cell based numbers and function were analyzed and taken into account. TRIAL REGISTRATION The trial was registered with Clinical Trials.gov number NCT03660683, last updated 06052023.
Collapse
Affiliation(s)
- Seshagiri Rao Nandula
- Department of Medicine, Veterans Affairs Medical Center, Washington, DC, USA
- Department of Medicine, George Washington University, Washington, DC, USA
- Department of Biochemistry, George Washington University, Washington, DC, USA
| | - Arad Jain
- Department of Medicine, Veterans Affairs Medical Center, Washington, DC, USA
- Department of Medicine, George Washington University, Washington, DC, USA
- Department of Biochemistry, George Washington University, Washington, DC, USA
| | - Sabyasachi Sen
- Department of Medicine, Veterans Affairs Medical Center, Washington, DC, USA.
- Department of Medicine, George Washington University, Washington, DC, USA.
- Department of Biochemistry, George Washington University, Washington, DC, USA.
| |
Collapse
|
4
|
Zhang JJ, Ye XR, Liu XS, Zhang HL, Qiao Q. Impact of sodium-glucose cotransporter-2 inhibitors on pulmonary vascular cell function and arterial remodeling. World J Cardiol 2025; 17:101491. [PMID: 39866213 PMCID: PMC11755123 DOI: 10.4330/wjc.v17.i1.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 12/17/2024] [Indexed: 01/21/2025] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling. Specifically, these inhibitors exhibit promising potential in enhancing pulmonary vascular endothelial cell function, suppressing pulmonary smooth muscle cell proliferation and migration, reversing pulmonary arterial remodeling, and maintaining hemodynamic equilibrium. This comprehensive review synthesizes current literature to delineate the mechanisms by which SGLT-2 inhibitors enhance pulmonary vascular cell function and reverse pulmonary remodeling, thereby offering novel therapeutic perspectives for pulmonary vascular diseases.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Rui Ye
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Song Liu
- Department of Biochemistry, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Qian Qiao
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China.
| |
Collapse
|
5
|
Duan F, Wu J, Chang J, Peng H, Liu Z, Liu P, Han X, Sun T, Shang D, Yang Y, Li Z, Li P, Liu Y, Zhu Y, Lv Y, Guo X, Zhao Y, An Y. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2025; 141:100832. [PMID: 39709882 DOI: 10.1016/j.diff.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints. An in-depth summary of the roles of adipokines in the regulation of other tissues and organs can help to provide more effective therapeutic strategies for obesity-related diseases and explore potential therapeutic targets. Therefore, this review has retrospected the endocrine function of adipose tissue under obesity and the role of dysregulated adipokine secretion in related diseases and the underlying mechanisms, in order to provide a theoretical basis for targeting adipokine-mediated systemic dysregulation.
Collapse
Affiliation(s)
- Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yunzhi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xiumei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Li L, Mang XY, Jiang KW, Zhao Y, Chen YR. Swimming training promotes angiogenesis of endothelial progenitor cells by upregulating IGF1 expression and activating the PI3K/AKT pathway in type 2 diabetic rats. Mol Med Rep 2024; 30:237. [PMID: 39422032 PMCID: PMC11529167 DOI: 10.3892/mmr.2024.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/15/2024] [Indexed: 10/19/2024] Open
Abstract
The present study aimed to investigate the effect of swimming training on the angiogenesis of endothelial progenitor cells (EPCs) in type 2 diabetes mellitus (T2DM) rats by upregulating the insulin‑like growth factor 1 (IGF1) expression and to reveal its potential mechanism of action. Male Sprague‑Dawley rats were divided into the Control, Model, Model train, Model train + short interfering (si)‑NC and Model train + si‑IGF1 groups. Serum glucose levels were measured using the oral glucose tolerance test. EPCs were isolated from the bone marrow cavity and identified through morphological observation and immunofluorescence staining. The expression of IGF‑1 mRNA in rat serum and EPCs was analyzed by reverse transcription‑quantitative PCR. The fasting insulin levels in serum were assessed by ELISA. Cell Counting Kit‑8, scratch assay and tube formation assay were used to determine the cell viability, migration and tube formation of rat EPCs, and western blotting was employed to measure the expression levels of IGF1, phosphoinositide 3‑kinase (PI3K), phosphorylated‑PI3K, protein kinase B (AKT) and phosphorylated‑AKT. The present study demonstrated that swimming training significantly decreased the glucose levels and homeostatic model assessment of insulin resistance scores, but increased the fasting insulin levels and IGF1 mRNA expression. Microscopic observation and immunofluorescence identification suggested that EPCs were successfully isolated. In addition, swimming training markedly elevated the levels of IGF1 and promoted cell viability, migration and tube formation in rat EPCs. Furthermore, IGF1 knockdown experiments indicated that swimming training might play a regulatory role by elevating the IGF1 expression to activate the PI3K/AKT pathway. Overall, swimming training promoted the angiogenesis of EPCs in T2DM rats and its potential mechanism may be related to the upregulation of IGF1 expression and the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lan Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xiao-Ying Mang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ke-Wei Jiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ying Zhao
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yu-Rong Chen
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
7
|
Hershenson R, Nardi-Agmon I, Leshem-Lev D, Kornowski R, Eisen A. The effect of empagliflozin on circulating endothelial progenitor cells in patients with diabetes and stable coronary artery disease. Cardiovasc Diabetol 2024; 23:386. [PMID: 39468546 PMCID: PMC11520434 DOI: 10.1186/s12933-024-02466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with premature atherosclerotic disease, coronary artery disease (CAD) and chronic heart failure (HF), leading to increased morbidity and mortality. Sodium-Glucose Co-transporter 2 Inhibitors (SGLT2i) exhibit cardioprotective benefits beyond glucose lowering, reducing the risk of major cardiovascular events (MACE) and HF hospitalizations in patients with DM and CAD. Endothelial progenitor cells (EPCs) are bone marrow-derived cells involved in vascular repair, mobilized in response to vascular injury. The number and function of circulating EPCs (cEPCs) are negatively affected by cardiovascular risk factors, including DM. This study aimed to examine the response of cEPCs to SGLT2i treatment in DM patients with stable CAD. METHODS A prospective single-center study included patients with DM and stable CAD who were started on an SGLT2i (empagliflozin). Peripheral blood samples were collected at baseline, 1 month, and 3 months to evaluate cEPC levels and function by flow cytometry, immunohistochemistry and MTT assays. RESULTS Eighteen patients were included in the study (median age 73, (IQR 69, 77) years, 67% male). After 1 month of treatment with empagliflozin, there was no significant change in cEPCs level or function. However, following 3 months of treatment, a significant increase was observed both in cell levels (CD34(+)/VEGFR-2(+): from 0.49% (IQR 0.32, 0.64) to 1.58% (IQR 0.93, 1.82), p = 0.0006; CD133(+)/VEGFR-2(+): from 0.38% (IQR 0.27, 0.6) to 0.82% (IQR 0.7, 1.95), p = 0.0001) and in cell function (from 0.25 CFUs (IQR 0, 0.5) at baseline, to 2 CFUs (IQR 1, 2) at 3 months, p = 0.0012). CONCLUSIONS Empagliflozin treatment in patients with DM and stable CAD increases cEPC levels and function, implying a cardioprotective mechanism. These findings highlight the potential of SGLT2i in treating cardiovascular diseases, warranting further research to explore these effects and their long-term implications.
Collapse
Affiliation(s)
- Roy Hershenson
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Inbar Nardi-Agmon
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Dorit Leshem-Lev
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Eisen
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Kakzanov Y, Sevilya Z, Goldman A, Cipok M, Hershkovitz V, Bryk G, Lev EI. The Effect of SGLT2 Inhibitor Therapy on Endothelial Progenitor Cell Function in Patients With Heart Failure. J Cardiovasc Pharmacol 2024; 84:220-226. [PMID: 38922584 DOI: 10.1097/fjc.0000000000001581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/03/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT Sodium-glucose cotransporter-2 (SGLT-2) inhibitors have been shown to reduce the risk of cardiovascular mortality and hospitalizations in patients with heart failure (HF) with preserved or reduced ejection fraction (HFpEF or HFrEF). The mechanism for this benefit is not clear. Endothelial progenitor cells (EPCs) are bone marrow-derived cells able to differentiate into functional endothelial cells and participate in endothelial repair. The aim of this study was to evaluate the effect of SGLT-2 inhibitors on the level and function of EPCs in patients with HF. We enrolled 20 patients with symptomatic HF, 12 with HFrEF and 8 with HFpEF (aged 73.3 ± 10.2 years, 95% men). Blood samples were drawn at 2 time points: baseline and ≥3 months after initiation of SGLT-2 inhibitor therapy. Circulating EPC levels were evaluated by expression of vascular endothelial growth factor receptor-2 (VEGFR-2), CD34, and CD133 by flow cytometry. EPC colony forming units (CFUs) were quantified after 7 days in culture. The proportion of cells that coexpressed VEGFR-2 and CD34 or VEGFR-2 and CD133 was higher following 3 months of SGLT-2 inhibitors [0.26% (interquartile range, IQR 0.10-0.33) versus 0.55% (IQR 0.28-0.91), P = 0.002; 0.12% (IQR 0.07-0.15) versus 0.24% (IQR 0.15-0.39), P = 0.001, respectively]. EPC CFUs were also increased following SGLT-2 inhibitor treatment [23 (IQR 3.7-37.8) versus 79.4 (IQR 25.1-110.25) colonies/10 6 cells, P = 0.0039]. In patients with symptomatic HF, both HFpEF and HFrEF, treatment with SGLT-2 inhibitors is associated with an increase in the level and function of circulating EPCs. This augmentation in EPCs may be a contributing mechanism to the clinical benefit of SGLT-2 inhibitors in patients with HF.
Collapse
Affiliation(s)
- Yana Kakzanov
- Cardiology Department, Assuta Ashdod Medical Center, Ashdod, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ziv Sevilya
- Cardiology Department, Assuta Ashdod Medical Center, Ashdod, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Alexander Goldman
- Cardiology Department, Assuta Ashdod Medical Center, Ashdod, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Michal Cipok
- Hematology Laboratory, Assuta Ashdod Medical Center, Ashdod, Israel; and
| | - Vera Hershkovitz
- Hematology Laboratory, Assuta Ashdod Medical Center, Ashdod, Israel; and
| | - Gabriel Bryk
- Biochemistry Laboratory, Assuta Ashdod Medical Center, Ashdod, Israel
| | - Eli I Lev
- Cardiology Department, Assuta Ashdod Medical Center, Ashdod, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
9
|
Rizos EC, Tagkas CF, Asimakopoulos AGI, Tsimihodimos V, Anastasiou G, Rizzo M, Agouridis AP, Ntzani EE. The effect of SGLT2 inhibitors and GLP1 receptor agonists on arterial stiffness: A meta-analysis of randomized controlled trials. J Diabetes Complications 2024; 38:108781. [PMID: 38833853 DOI: 10.1016/j.jdiacomp.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Pulse wave velocity (PWV) and augmentation index (AIx) are indices used to assess arterial stiffness. We evaluated the effect of sodium glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA) on arterial stiffness indices. METHODS We searched PubMed (up to January 2024) for RCTs assessing the effect of SGLT2i or GLP1-RA on arterial stiffness with reporting outcomes PWV and AIx. Effect sizes of the included studies were expressed as weighted mean difference (WMD) and 95 % confidence interval. Subgroup analyses were performed based on comparator (placebo vs. active comparator), design (RCT vs. crossover), population (diabetic vs. all) and blindness (yes vs. no). RESULTS A total of 19 studies (SGLT2i, 12 studies; GLP1-RA, 5 studies; SGLT2i/GLP1-RA combination, 2 studies) assessing 1212 participants were included. We did not find any statistically significant association between GLP1-RA or SGLT2i and PWV or AIx. None of the subgroup analyses showed any statistically significant result. CONCLUSION No evidence of a favorable change in arterial stiffness indices (PWV, AIx) was found following the administration of SGLT2i or GLP1-RA.
Collapse
Affiliation(s)
- Evangelos C Rizos
- School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Christos F Tagkas
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | | | - Georgia Anastasiou
- Department of Internal Medicine, University hospital of Ioannina, Ioannina, Greece
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy; College of Medicine, Mohammed Bin Rashid University (MBRU), Dubai, United Arab Emirates
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, Nicosia, Cyprus; Department of Internal Medicine, German Oncology Center, Limassol, Cyprus
| | - Evangelia E Ntzani
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Center for Evidence-Based Medicine, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Natale P, Tunnicliffe DJ, Toyama T, Palmer SC, Saglimbene VM, Ruospo M, Gargano L, Stallone G, Gesualdo L, Strippoli GF. Sodium-glucose co-transporter protein 2 (SGLT2) inhibitors for people with chronic kidney disease and diabetes. Cochrane Database Syst Rev 2024; 5:CD015588. [PMID: 38770818 PMCID: PMC11106805 DOI: 10.1002/14651858.cd015588.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Diabetes is associated with high risks of premature chronic kidney disease (CKD), cardiovascular diseases, cardiovascular death and impaired quality of life. People with diabetes are more likely to develop kidney impairment, and approximately one in three adults with diabetes have CKD. People with CKD and diabetes experience a substantially higher risk of cardiovascular outcomes. Sodium-glucose co-transporter protein 2 (SGLT2) inhibitors have shown potential effects in preventing kidney and cardiovascular outcomes in people with CKD and diabetes. However, new trials are emerging rapidly, and evidence synthesis is essential to summarising cumulative evidence. OBJECTIVES This review aimed to assess the benefits and harms of SGLT2 inhibitors for people with CKD and diabetes. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 17 November 2023 using a search strategy designed by an Information Specialist. Studies in the Register are continually identified through regular searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled studies were eligible if they evaluated SGLT2 inhibitors versus placebo, standard care or other glucose-lowering agents in people with CKD and diabetes. CKD includes all stages (from 1 to 5), including dialysis patients. DATA COLLECTION AND ANALYSIS Two authors independently extracted data and assessed the study risk of bias. Treatment estimates were summarised using random effects meta-analysis and expressed as a risk ratio (RR) or mean difference (MD), with a corresponding 95% confidence interval (CI). Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The primary review outcomes were all-cause death, 3-point and 4-point major adverse cardiovascular events (MACE), fatal or nonfatal myocardial infarction (MI), fatal or nonfatal stroke, and kidney failure. MAIN RESULTS Fifty-three studies randomising 65,241 people with CKD and diabetes were included. SGLT2 inhibitors with or without other background treatments were compared to placebo, standard care, sulfonylurea, dipeptidyl peptidase-4 (DPP-4) inhibitors, or insulin. In the majority of domains, the risks of bias in the included studies were low or unclear. No studies evaluated the treatment in children or in people treated with dialysis. No studies compared SGLT2 inhibitors with glucagon-like peptide-1 receptor agonists or tirzepatide. Compared to placebo, SGLT2 inhibitors decreased the risk of all-cause death (20 studies, 44,397 participants: RR 0.85, 95% CI 0.78 to 0.94; I2 = 0%; high certainty) and cardiovascular death (16 studies, 43,792 participants: RR 0.83, 95% CI 0.74 to 0.93; I2 = 29%; high certainty). Compared to placebo, SGLT2 inhibitors probably make little or no difference to the risk of fatal or nonfatal MI (2 studies, 13,726 participants: RR 0.95, 95% CI 0.80 to 1.14; I2 = 24%; moderate certainty), and fatal or nonfatal stroke (2 studies, 13,726 participants: RR 1.07, 95% CI 0.88 to 1.30; I2 = 0%; moderate certainty). Compared to placebo, SGLT2 inhibitors probably decrease 3-point MACE (7 studies, 38,320 participants: RR 0.89, 95% CI 0.81 to 0.98; I2 = 46%; moderate certainty), and 4-point MACE (4 studies, 23,539 participants: RR 0.82, 95% CI 0.70 to 0.96; I2 = 77%; moderate certainty), and decrease hospital admission due to heart failure (6 studies, 28,339 participants: RR 0.70, 95% CI 0.62 to 0.79; I2 = 17%; high certainty). Compared to placebo, SGLT2 inhibitors may decrease creatinine clearance (1 study, 132 participants: MD -2.63 mL/min, 95% CI -5.19 to -0.07; low certainty) and probably decrease the doubling of serum creatinine (2 studies, 12,647 participants: RR 0.70, 95% CI 0.56 to 0.89; I2 = 53%; moderate certainty). SGLT2 inhibitors decrease the risk of kidney failure (6 studies, 11,232 participants: RR 0.70, 95% CI 0.62 to 0.79; I2 = 0%; high certainty), and kidney composite outcomes (generally reported as kidney failure, kidney death with or without ≥ 40% decrease in estimated glomerular filtration rate (eGFR)) (7 studies, 36,380 participants: RR 0.68, 95% CI 0.59 to 0.78; I2 = 25%; high certainty) compared to placebo. Compared to placebo, SGLT2 inhibitors incur less hypoglycaemia (16 studies, 28,322 participants: RR 0.93, 95% CI 0.89 to 0.98; I2 = 0%; high certainty), and hypoglycaemia requiring third-party assistance (14 studies, 26,478 participants: RR 0.75, 95% CI 0.65 to 0.88; I2 = 0%; high certainty), and probably decrease the withdrawal from treatment due to adverse events (15 studies, 16,622 participants: RR 0.94, 95% CI 0.82 to 1.08; I2 = 16%; moderate certainty). The effects of SGLT2 inhibitors on eGFR, amputation and fracture were uncertain. No studies evaluated the effects of treatment on fatigue, life participation, or lactic acidosis. The effects of SGLT2 inhibitors compared to standard care alone, sulfonylurea, DPP-4 inhibitors, or insulin were uncertain. AUTHORS' CONCLUSIONS SGLT2 inhibitors alone or added to standard care decrease all-cause death, cardiovascular death, and kidney failure and probably decrease major cardiovascular events while incurring less hypoglycaemia compared to placebo in people with CKD and diabetes.
Collapse
Affiliation(s)
- Patrizia Natale
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - David J Tunnicliffe
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Tadashi Toyama
- Department of Nephrology, Kanazawa University, Kanazawa, Japan
- Innovative Clinical Research Center, Kanazawa University, Kanazawa, Japan
| | - Suetonia C Palmer
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Valeria M Saglimbene
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marinella Ruospo
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Letizia Gargano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Fm Strippoli
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
11
|
Canki E, Kho E, Hoenderop JGJ. Urinary biomarkers in kidney disease. Clin Chim Acta 2024; 555:117798. [PMID: 38280489 DOI: 10.1016/j.cca.2024.117798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) affects many people worldwide and early diagnosis is essential for successful treatment and improved outcome. Unfortunately, current methods are insufficient especially for early disease detection. However, advances in the analytical methods for urinary biomarkers may provide a unique opportunity for diagnosis and management of CKD. This review explores evolving technology and highlights the importance of early marker detection in these patients. APPROACH A search strategy was set up using the terms CKD, biomarkers, and urine. The search included 53 studies comprising 37 biomarkers. The value of these biomarkers for CKD are based on their ability to diagnose CKD, monitor progression, assess mortality and nephrotoxicity. RESULTS KIM-1 was the best marker for diagnosis as it increased with the development of incident CKD. DKK3 increased in patients with declining eGFR, whereas UMOD decreased in those with declining kidney function. Unfortunately, none fulfilled all criteria to adequately assess mortality and nephrotoxicity. CONCLUSION New developments in the field of urinalysis using smart toilets may open several possibilities for urinary biomarkers. This review explored which biomarkers could be used for CKD disease detection and management.
Collapse
Affiliation(s)
- Esra Canki
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Esther Kho
- imec within OnePlanet Research Center, Wageningen, The Netherlands
| | | |
Collapse
|
12
|
Liu Y, Liu Y, Wang X, Xiu C, Hu Y, Wang J, Lei Y, Yang J. Ginseng-Sanqi-Chuanxiong (GSC) extracts attenuate d-galactose-induced vascular aging in mice via inhibition of endothelial progenitor cells senescence. Heliyon 2024; 10:e25253. [PMID: 38404901 PMCID: PMC10884806 DOI: 10.1016/j.heliyon.2024.e25253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Vascular aging is an independent risk factor for age-related diseases and a specific type of organic aging. Endothelial progenitor cells (EPCs), a type of bone marrow stem cell, has been linked to vascular aging. The purpose of this study is to investigate if Ginseng-Sanqi-Chuanxiong (GSC) extract, a traditional Chinese medicine, can delay aortic aging in mice by enhancing the performance and aging of EPCs in vivo and to analyze the potential mechanisms through a d-Galactose (D-gal)-induced vascular aging model in mice. Our study revealed that GSC extracts not only enhanced the aortic structure, endothelial function, oxidative stress levels, and aging in mice, but also enhanced the proliferation, migration, adhesion, and secretion of EPCs in vivo, while reducing the expression of p53, p21, and p16. To conclude, GSC can delay vascular senescence by enhancing the function and aging of EPCs, which could be linked to a decrease in p16 and p53/p21 signaling. Consequently, utilizing GSC extracts to enhance the function and senescence of autologous EPCs may present a novel avenue for enhancing autologous stem cells in alleviating senescence.
Collapse
Affiliation(s)
- Yinan Liu
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqing Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengkui Xiu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanhong Hu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Wang
- Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Yan Lei
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Taha M, Elazab ST, Qutub A, Abdelbagi O, Baokbah TAS, Ahmed GS, Zaghloul RA, Albarakati AJA, Qusty NF, Babateen O, Al-Kushi AG. Novel Insights about Synergistic Effect of Zamzam Water with SGL2 Inhibitors on Wound Healing in STZ-Induced Diabetic Rats: The Role of anti-Inflammatory and Proangiogenic Effects. J INVEST SURG 2023; 36:2266736. [PMID: 37813392 DOI: 10.1080/08941939.2023.2266736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Background: Hyperglycemia usually impairs wound healing by dysregulating the inflammatory response and angiogenesis. This study aimed to examine the synergistic effect of dapagliflozin and Zamzam water (ZW) on the healing of diabetic wounds and to explore their anti-inflammatory and proangiogenic effects.Materials and methods: A full-thickness excisional wound was made on the backs of all groups after two weeks of diabetes induction. Forty rats were divided into five groups, with eight rats per group; Group 1: Control non-diabetic rats; Group II: Untreated diabetic rats; Group III: Diabetic rats drinking ZW; Group IV: Diabetic rats receiving an oral dose of 1 mg/kg dapagliflozin; and Group V: Received both dapagliflozin and ZW. The healing of diabetic wounds was assessed by measuring wound closure, oxidative stress markers, immunohistochemical staining of NF-βB, VEGF, CD34, CD45, Ki-67, and eNOS, gene expression of MMP-9, TGF-β1, EGF-b1, FGF, and Col1A1, protein levels of TNFα, IL-1β, IL6, Ang II, and HIF-1α by ELISA assay, and histological examination with H & E and Masson's trichrome. Combined treatment with dapagliflozin and ZW significantly (p < 0.05) enhanced the wound closure and antioxidant enzyme level, with apparent histological improvement, and shortened the inflammatory stage of the diabetic wound by decreasing the level of inflammatory markers NF-κB, TNF-α, IL-1β, IL6, and CD45. Therefore, it improved angiogenesis markers VEGF, CD34, eNOS, EGF-β1, FGF, Ang II, and HIF-1α, increasing Ki-67 cellular proliferation. Moreover, it enhanced the remodeling stage by increasing MMP-2, TGF-β1, and Col1A1 levels compared to diabetic rats.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ammar Qutub
- Department of Surgery, Faculty of Medicine, King abdulaziz University, Rabigh, Saudi Arabia
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Tourki A S Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Gomaa S Ahmed
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | | | - Naeem F Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Omar Babateen
- Department of physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah G Al-Kushi
- Department of Human Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
14
|
Han L, Wang S, Li J, Zhao L, Zhou H. Urinary exosomes from patients with diabetic kidney disease induced podocyte apoptosis via microRNA-145-5p/Srgap2 and the RhoA/ROCK pathway. Exp Mol Pathol 2023; 134:104877. [PMID: 37952894 DOI: 10.1016/j.yexmp.2023.104877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease without early diagnostic and specific therapeutic approaches. Podocyte apoptosis and loss play important roles in the pathological process of DKD. This study aimed to explore whether urinary exosomes from type 2 diabetes patients with DKD could induce podocyte apoptosis and the underlying pathological mechanisms. The exosomes were isolated from the urine samples of patients with DKD (DKD-Exo). Later, they were taken up and internalized by MPC5 cells. MPC5 cells were co-cultured with DKD-Exo (45 μg/ml) for 24 h in the presence or absence of microRNA-145-5p (miR-145-5p) inhibitor, fasudil and pcDNA-Srgap2 transfection. MiR-145-5p and Srgap2 expression was evaluated using real-time quantitative PCR. The protein levels of Srgap2, Bcl-2, Bax, and cleaved caspase-3, as well as ROCK activity were determined using Western blotting. Cell apoptosis was measured using flow cytometry and the TUNEL assay. miR-145-5p expression in MPC5 cells exposed to DKD-Exo was markedly upregulated. miR-145-5p negatively regulated Srgap2 levels. Exposure of MPC5 cells to DKD-Exo reduced Srgap2 expression and activated ROCK, which was partly reversed by the presence of the miR-145-5p inhibitor or Srgap2 overexpression. The apoptosis of MPC5 cells exposed to DKD-Exo increased significantly, which was counteracted by the addition of the miR-145-5p inhibitor and fasudil. The results showed that urinary exosomal miR-145-5p from patients with DKD induced podocyte apoptosis by inhibiting Srgap2 and activating the RhoA/ROCK pathway, suggesting that urinary exosomal miR-145-5p is involved in the pathological process of DKD and could become a noninvasive diagnostic biomarker for DKD.
Collapse
Affiliation(s)
- Lulu Han
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; Department of Endocrinology, the First Central Hospital of Baoding, Baoding 071000, China
| | - Shenghai Wang
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Juan Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lulu Zhao
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
15
|
Bonora BM, Morieri ML, Marassi M, Cappellari R, Avogaro A, Fadini GP. Improved prediction of long-term kidney outcomes in people with type 2 diabetes by levels of circulating haematopoietic stem/progenitor cells. Diabetologia 2023; 66:2346-2355. [PMID: 37712954 PMCID: PMC10627906 DOI: 10.1007/s00125-023-06002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
AIM/HYPOTHESIS We examined whether prediction of long-term kidney outcomes in individuals with type 2 diabetes can be improved by measuring circulating levels of haematopoietic stem/progenitor cells (HSPCs), which are reduced in diabetes and are associated with cardiovascular risk. METHODS We included individuals with type 2 diabetes who had a baseline determination of circulating HSPCs in 2004-2019 at the diabetes centre of the University Hospital of Padua and divided them into two groups based on their median value per ml of blood. We collected updated data on eGFR and albuminuria up to December 2022. The primary endpoint was a composite of new-onset macroalbuminuria, sustained ≥40% eGFR decline, end-stage kidney disease or death from any cause. The analyses were adjusted for known predictors of kidney disease in the population with diabetes. RESULTS We analysed 342 participants (67.8% men) with a mean age of 65.6 years. Those with low HSPC counts (n=171) were significantly older and had a greater prevalence of hypertension, heart failure and nephropathy (45.0% vs 33.9%; p=0.036), as evidenced by lower eGFR and higher albuminuria at baseline. During a median follow-up of 6.7 years, participants with high vs low HSPC counts had lower rates of the composite kidney outcome (adjusted HR 0.69 [95% CI 0.49, 0.97]), slower decline in eGFR and a similar increase in albuminuria. Adding the HSPC information to the risk score of the CKD Prognosis Consortium significantly improved discrimination of individuals with future adverse kidney outcomes. CONCLUSIONS/INTERPRETATION HSPC levels predict worsening of kidney function and improve the identification of individuals with type 2 diabetes and adverse kidney outcomes over and beyond a clinical risk score.
Collapse
Affiliation(s)
- Benedetta Maria Bonora
- Department of Medicine, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | | | | | | | - Angelo Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padua, Italy.
- Veneto Institute of Molecular Medicine, Padua, Italy.
| |
Collapse
|
16
|
Gohari S, Ismail-Beigi F, Mahjani M, Ghobadi S, Jafari A, Ahangar H, Gohari S. The effect of sodium-glucose co-transporter-2 (SGLT2) inhibitors on blood interleukin-6 concentration: a systematic review and meta-analysis of randomized controlled trials. BMC Endocr Disord 2023; 23:257. [PMID: 37996879 PMCID: PMC10668472 DOI: 10.1186/s12902-023-01512-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The low-grade chronic inflammation in diabetes plays an important role in development of cardiovascular and renal complications. Sodium-glucose co-transporter-2 (SGLT2) inhibitors are recognized as protective agents for cardio-renal complications. Interleukin-6 (IL-6) is positively associated with the pathophysiology of metabolic-related pathologies. The aim of this meta-analysis is to investigate the effect of SGLT2 inhibitors on blood IL-6 concentration in randomized controlled trials (RCTs). METHODS Embase, PubMed, and Scopus were systematically searched up to 1st of November 2023. The eligible studies were RCTs with adult population that had provided blood IL-6 for both control and intervention groups. Cochrane risk-of-bias tool were for study quality assessment. Data were analyzed using random effect model via Stata statistical software. RESULTS Eighteen studies with a total of 5311 patients were included. Of which 3222 and 2052 patients were in intervention and control arm, respectively. Of the total population, 49.7% were men. The study durations ranged from 8 to 52 weeks. The pooled analysis showed a significant association between the use of SGLT2 inhibitors and lower IL-6 levels (standardized mean difference (SMD) = -1.04, Confidence Interval (CI): -1.48; -0.60, I2 = 96.93%). Dapagliflozin was observed to have a higher IL-6-lowering effect (SMD = -1.30, CI: -1.89; -0.71, I2 = 92.52) than empagliflozin or canagliflozin. Sub-group analysis of control groups (SMD = -0.58 (-1.01, -0.15) and -1.35 (-2.00, -0.70 for the placebo and active control sub-groups, respectively) and duration of interventions (SMD = -0.78 (-1.28, -0.28) and -1.20 (-1.86, -0.55) for study duration of ≤ 12 and > 12 weeks, respectively) did not change the results. Meta-regression analysis showed a significant correlation between the level of HbA1c and IL-6-lowering efficacy of SGLT2 inhibitors. CONCLUSION IL-6 levels are significantly reduced with the use of SGLT2 inhibitors with HbA1c as the only marker influencing such reductions, and dapagliflozin had the highest potency. The anti-inflammatory effect of SGLT2 inhibitors supports their broader use to address diabetic complications related to inflammatory responses.
Collapse
Affiliation(s)
- Sepehr Gohari
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mahsa Mahjani
- Endocrine Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Ghobadi
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - Alireza Jafari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Ahangar
- Department of Cardiology, School of Medicine, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sheida Gohari
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
17
|
Altabas V, Marinković Radošević J, Špoljarec L, Uremović S, Bulum T. The Impact of Modern Anti-Diabetic Treatment on Endothelial Progenitor Cells. Biomedicines 2023; 11:3051. [PMID: 38002051 PMCID: PMC10669792 DOI: 10.3390/biomedicines11113051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes is one of the leading chronic diseases globally with a significant impact on mortality. This condition is associated with chronic microvascular and macrovascular complications caused by vascular damage. Recently, endothelial progenitor cells (EPCs) raised interest due to their regenerative properties. EPCs are mononuclear cells that are derived from different tissues. Circulating EPCs contribute to regenerating the vessel's intima and restoring vascular function. The ability of EPCs to repair vascular damage depends on their number and functionality. Diabetic patients have a decreased circulating EPC count and impaired EPC function. This may at least partially explain the increased risk of diabetic complications, including the increased cardiovascular risk in these patients. Recent studies have confirmed that many currently available drugs with proven cardiovascular benefits have beneficial effects on EPC count and function. Among these drugs are also medications used to treat different types of diabetes. This manuscript aims to critically review currently available evidence about the ways anti-diabetic treatment affects EPC biology and to provide a broader context considering cardiovascular complications. The therapies that will be discussed include lifestyle adjustments, metformin, sulphonylureas, gut glucosidase inhibitors, thiazolidinediones, dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor analogs, sodium-glucose transporter 2 inhibitors, and insulin.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Marinković Radošević
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | - Lucija Špoljarec
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | | | - Tomislav Bulum
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Benítez-Camacho J, Ballesteros A, Beltrán-Camacho L, Rojas-Torres M, Rosal-Vela A, Jimenez-Palomares M, Sanchez-Gomar I, Durán-Ruiz MC. Endothelial progenitor cells as biomarkers of diabetes-related cardiovascular complications. Stem Cell Res Ther 2023; 14:324. [PMID: 37950274 PMCID: PMC10636846 DOI: 10.1186/s13287-023-03537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetes mellitus (DM) constitutes a chronic metabolic disease characterized by elevated levels of blood glucose which can also lead to the so-called diabetic vascular complications (DVCs), responsible for most of the morbidity, hospitalizations and death registered in these patients. Currently, different approaches to prevent or reduce DM and its DVCs have focused on reducing blood sugar levels, cholesterol management or even changes in lifestyle habits. However, even the strictest glycaemic control strategies are not always sufficient to prevent the development of DVCs, which reflects the need to identify reliable biomarkers capable of predicting further vascular complications in diabetic patients. Endothelial progenitor cells (EPCs), widely known for their potential applications in cell therapy due to their regenerative properties, may be used as differential markers in DVCs, considering that the number and functionality of these cells are affected under the pathological environments related to DM. Besides, drugs commonly used with DM patients may influence the level or behaviour of EPCs as a pleiotropic effect that could finally be decisive in the prognosis of the disease. In the current review, we have analysed the relationship between diabetes and DVCs, focusing on the potential use of EPCs as biomarkers of diabetes progression towards the development of major vascular complications. Moreover, the effects of different drugs on the number and function of EPCs have been also addressed.
Collapse
Affiliation(s)
- Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Ballesteros
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Lucía Beltrán-Camacho
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
- Cell Biology, Physiology and Immunology Department, Córdoba University, Córdoba, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain.
| |
Collapse
|
19
|
Bakbak E, Krishnaraj A, Park B, Verma S, Hess DA. Vascular regenerative cells in cardiometabolic disease. Curr Opin Cardiol 2023; 38:546-551. [PMID: 37668181 DOI: 10.1097/hco.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
PURPOSE OF REVIEW This review will provide an overview of the recent literature linking the pathophysiology of cardiometabolic disease with the depletion and dysfunction of circulating vascular regenerative (VR) cell content. Moreover, we provide rationale for the use of VR cells as a biomarker for cardiovascular risk and the use of pharmacological agents to improve VR cell content. RECENT FINDINGS Recent studies demonstrate the potential of VR cells as a biomarker of cardiovascular risk and as a therapeutic target. Notably, lipid-lowering agents, antihyperglycemic therapies such as sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists, as well as exercise and weight loss, have all been found to improve VR cell content, providing mechanistic evidence supporting a role in mitigating adverse cardiovascular outcomes in people with cardiometabolic-based disease. SUMMARY The importance of VR cells as a biomarker in assessing cardiovascular risk is becoming increasingly apparent. This review highlights recent literature supporting the accurate use of VR cell characterization to monitor the capacity for vessel repair and novel strategies to improve vessel health. Future research is required to validate and optimize these emerging approaches.
Collapse
Affiliation(s)
- Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
| | - Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
- Department of Surgery, University of Toronto, Toronto
| | - David A Hess
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
- Department of Physiology and Pharmacology, Western University, London
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
20
|
Duisenbek A, Lopez-Armas GC, Pérez M, Avilés Pérez MD, Aguilar Benitez JM, Pereira Pérez VR, Gorts Ortega J, Yessenbekova A, Ablaikhanova N, Escames G, Acuña-Castroviejo D, Rusanova I. Insights into the Role of Plasmatic and Exosomal microRNAs in Oxidative Stress-Related Metabolic Diseases. Antioxidants (Basel) 2023; 12:1290. [PMID: 37372020 DOI: 10.3390/antiox12061290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
A common denominator of metabolic diseases, including type 2 diabetes Mellitus, dyslipidemia, and atherosclerosis, are elevated oxidative stress and chronic inflammation. These complex, multi-factorial diseases are caused by the detrimental interaction between the individual genetic background and multiple environmental stimuli. The cells, including the endothelial ones, acquire a preactivated phenotype and metabolic memory, exhibiting increased oxidative stress, inflammatory gene expression, endothelial vascular activation, and prothrombotic events, leading to vascular complications. There are different pathways involved in the pathogenesis of metabolic diseases, and increased knowledge suggests a role of the activation of the NF-kB pathway and NLRP3 inflammasome as key mediators of metabolic inflammation. Epigenetic-wide associated studies provide new insight into the role of microRNAs in the phenomenon of metabolic memory and the development consequences of vessel damage. In this review, we will focus on the microRNAs related to the control of anti-oxidative enzymes, as well as microRNAs related to the control of mitochondrial functions and inflammation. The objective is the search for new therapeutic targets to improve the functioning of mitochondria and reduce oxidative stress and inflammation, despite the acquired metabolic memory.
Collapse
Affiliation(s)
- Ayauly Duisenbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Gabriela C Lopez-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara 44638, Mexico
| | - Miguel Pérez
- Hospital de Alta Resolución de Alcalá la Real, 23680 Jaén, Spain
| | - María D Avilés Pérez
- Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), University Hospital Clínico San Cecilio, 18016 Granada, Spain
| | | | - Víctor Roger Pereira Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Juan Gorts Ortega
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
21
|
Role of Endothelial Progenitor Cells in Frailty. Int J Mol Sci 2023; 24:ijms24032139. [PMID: 36768461 PMCID: PMC9916666 DOI: 10.3390/ijms24032139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Frailty is a clinical condition closely related to aging which is characterized by a multidimensional decline in biological reserves, a failure of physiological mechanisms and vulnerability to minor stressors. Chronic inflammation, the impairment of endothelial function, age-related endocrine system modifications and immunosenescence are important mechanisms in the pathophysiology of frailty. Endothelial progenitor cells (EPCs) are considered important contributors of the endothelium homeostasis and turn-over. In the elderly, EPCs are impaired in terms of function, number and survival. In addition, the modification of EPCs' level and function has been widely demonstrated in atherosclerosis, hypertension and diabetes mellitus, which are the most common age-related diseases. The purpose of this review is to illustrate the role of EPCs in frailty. Initially, we describe the endothelial dysfunction in frailty, the response of EPCs to the endothelial dysfunction associated with frailty and, finally, interventions which may restore the EPCs expression and function in frail people.
Collapse
|
22
|
Gollie JM, Sen S. Circulating Endothelial Progenitor and Mesenchymal Stromal Cells as Biomarkers for Monitoring Disease Status and Responses to Exercise. Rev Cardiovasc Med 2022; 23:396. [PMID: 37680455 PMCID: PMC10483375 DOI: 10.31083/j.rcm2312396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Noncommunicable chronic diseases, such as obesity, cardiovascular disease (CVD), and type 2 diabetes (T2D), pose significant health challenges globally. Important advances have been made in the understanding of the pathophysiologal mechanisms and treatment of noncommunicable diseases in recent years. Lack of physical activity is a primary contributor to many noncommunicable diseases including metabolic syndrome, T2D, CVD, and obesity. Certain diabetes medications and non-pharmaceutical interventions, such as physical activity and exercise, are shown to be effective in decreasing the CVD risks associated with heart disease, stroke, obesity, prediabetes, and T2D. The ability to measure and analyze circulating adult stem cells (ASCs) has gained particular interest due to their potential to identify at-risk individuals and implications in various therapeutics. Therefore, the purpose of this narrative review is to (1) provide an overview of ASCs; specifically endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs), (2) describe the responses of these cells to acute and chronic exercise, and (3) highlight the potential effect of exercise on EPCs and MSCs in aging and disease. EPCs are circulating cells, abundantly available in peripheral blood, bone marrow, and umbilical cord, and are defined by cell surface markers such as CD34+. EPCs are expected to play an important role in angiogenesis and neovascularization and have been implicated in the treatment of CVD. MSCs are essential for maintaining tissue and organ homeostasis. MSCs are defined as multipotent heterogeneous cells that can proliferate in vitro as plastic-adherent cells, have fibroblast-like morphology, form colonies in vitro, and can differentiate into ostyeoblasts, adipocytes, chondroblasts, and myoblasts. In the presence of aging and disease, EPCs and MSCs decrease in quantity and functional capacity. Importantly, exercise facilitates EPC differentiation and production from bone marrow and also helps to promote migration and homing to the hypoxic and damaged tissue which in turn improve angiogenesis and vasculogenesis. Similarly, exercise stimulates increases in proliferation and migratory activity of MSCs. Despite the reported benefits of exercise on EPC and MSC number and function, little is known regarding the optimal exercise prescription for aging and clinical populations. Moreover, the interactions between medications and exercise on EPCs and MSCs is currently unclear. Use of ASCs as a biomarker have the potential to revolutionize the management of patients with a variety of metabolic and obesity related disorders and also pro-inflammatory diseases. Further investigation of clinical entities are urgently needed to understand the implications of interventions such as exercise, diet, and various medications on EPC and MSC quantity and function in aging and clinical populations.
Collapse
Affiliation(s)
- Jared M. Gollie
- Research & Development, VA Medical Center, Washington, DC 20422, USA
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, DC 20037, USA
| | - Sabyasachi Sen
- Department of Medicine, VA Medical Center, Washington, DC 20422, USA
- Department of Medicine, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
23
|
Wang Y, Xia N. Influence of Sodium-Glucose Cotransporter-2 Inhibitors on Plasma Adiponectin in Patients with Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Horm Metab Res 2022; 54:833-844. [PMID: 36049756 DOI: 10.1055/a-1897-6121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The influence of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on plasma adiponectin remains not comprehensively evaluated. We performed a meta-analysis to systematically evaluate the effect of SGLT2 inhibitors on plasma level of adiponectin in patients with type 2 diabetes mellitus (T2DM). Randomized controlled trials comparing SGLT-2 inhibitors with non-active controls on plasma adiponectin in T2DM patients were retrieved by search of the Medline (PubMed), Embase, and CENTER (Cochrane Library) databases from inception to April 5, 2022. Study characteristics and outcome data were independently extracted by two authors. A random-effect model by incorporating the potential between-study heterogeneity was used to combine the results. Fourteen studies with 2142 patients contributed to the meta-analysis. Compared to placebo, SGLT-2 inhibitors significantly increased plasma adiponectin [standard mean difference (SMD): 0.35, 95% CI: 0.24 to 0.46, p<0.001] with mild heterogeneity (I2=19%). Predefined subgroup analyses suggested that tofogliflozin (SMD: 0.37, p<0.001), luseogliflozin (SMD: 0.51, p<0.001), and ipragliflozin (SMD: 0.34, p<0.001) were associated with increased adiponectin, but not for dapagliflozin (SMD: 0.14, p 0.26). In addition, SGLT-2 inhibitors were associated with increased adiponectin in studies from Asia (SMD: 0.42, p<0.001), but not in studies from the western countries (SMD: 0.16, p 0.17). Moreover, the increment of adiponectin was more significant in patients with body mass index (BMI)<30 kg/m2 (SMD: 0.46, p<0.001) than that in patients with BMI≤30 kg/m2 (SMD: 0.19, p 0.02, p for subgroup difference 0.01). In conclusion, SGLT-2 inhibitors could significantly increase plasma adiponectin as compared with placebo in T2DM patients.
Collapse
Affiliation(s)
- Yang Wang
- Guangxi Medical University First Affiliated Hospital, 6th Building Shuangyong Road, Nanning, China
| | - Ning Xia
- Guangxi Medical University First Affiliated Hospital, 6th Building Shuangyong Road, Nanning, China
| |
Collapse
|
24
|
Liraglutide Improves the Angiogenic Capability of EPC and Promotes Ischemic Angiogenesis in Mice under Diabetic Conditions through an Nrf2-Dependent Mechanism. Cells 2022; 11:cells11233821. [PMID: 36497087 PMCID: PMC9736458 DOI: 10.3390/cells11233821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The impairment in endothelial progenitor cell (EPC) functions results in dysregulation of vascular homeostasis and dysfunction of the endothelium under diabetic conditions. Improving EPC function has been considered as a promising strategy for ameliorating diabetic vascular complications. Liraglutide has been widely used as a therapeutic agent for diabetes. However, the effects and mechanisms of liraglutide on EPC dysfunction remain unclear. The capability of liraglutide in promoting blood perfusion and angiogenesis under diabetic conditions was evaluated in the hind limb ischemia model of diabetic mice. The effect of liraglutide on the angiogenic function of EPC was evaluated by cell scratch recovery assay, tube formation assay, and nitric oxide production. RNA sequencing was performed to assess the underlying mechanisms. Liraglutide enhanced blood perfusion and angiogenesis in the ischemic hindlimb of db/db mice and streptozotocin-induced type 1 diabetic mice. Additionally, liraglutide improved tube formation, cell migration, and nitric oxide production of high glucose (HG)-treated EPC. Assessment of liraglutide target pathways revealed a network of genes involved in antioxidant activity. Further mechanism study showed that liraglutide decreased the production of reactive oxygen species and increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 deficiency attenuated the beneficial effects of liraglutide on improving EPC function and promoting ischemic angiogenesis under diabetic conditions. Moreover, liraglutide activates Nrf2 through an AKT/GSK3β/Fyn pathway, and inhibiting this pathway abolished liraglutide-induced Nrf2 activation and EPC function improvement. Overall, these results suggest that Liraglutide represents therapeutic potential in promoting EPC function and ameliorating ischemic angiogenesis under diabetic conditions, and these beneficial effects relied on Nrf2 activation.
Collapse
|
25
|
Rossing P, Caramori ML, Chan JC, Heerspink HJ, Hurst C, Khunti K, Liew A, Michos ED, Navaneethan SD, Olowu WA, Sadusky T, Tandon N, Tuttle KR, Wanner C, Wilkens KG, Zoungas S, de Boer IH. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int 2022; 102:S1-S127. [PMID: 36272764 DOI: 10.1016/j.kint.2022.06.008] [Citation(s) in RCA: 491] [Impact Index Per Article: 163.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
|
26
|
Premji R, Nylen ES, Naser N, Gandhi S, Burman KD, Sen S. Lipid Profile Changes Associated with SGLT-2 Inhibitors and GLP-1 Agonists in Diabetes and Metabolic Syndrome. Metab Syndr Relat Disord 2022; 20:321-328. [PMID: 35452324 DOI: 10.1089/met.2022.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The introduction of sodium glucose transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists in type 2 diabetes mellitus treatment has shown an unexpectedly significant improvement in heart disease outcome trials. Although they have very different modes of action, a portion of the salutary cardiovascular disease improvement may be related to their impact on diabetic dyslipidemia. As discussed in this focused review, the sodium glucose transporter-2 inhibitors as a class show a mild increase in low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol levels, while triglycerides (TG) decrease inconsistently. In particular, the rise in LDL appears to be related to the less atherogenic, large buoyant LDL particles. The glucagon-like peptide-1 receptor agonists show more of an impact on weight loss and improvement in the underlying low HDL and high TG dyslipidemia. The effect of sodium glucose transporter-2 inhibitors and glucagon-like peptide 1 receptor agonists when used in combination remains largely unknown. Also unexplored is difference in effect of these medications among various ethnicities and metabolic syndrome.
Collapse
Affiliation(s)
- Resmi Premji
- Montage Medical Group, Monterey, California, USA
| | - Eric S Nylen
- Department of Endocrinology, VAMC and George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Nejat Naser
- Department of Endocrinology, VAMC and George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Shruti Gandhi
- Department of Endocrinology, VAMC and George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Kenneth D Burman
- Department of Endocrinology, Georgetown University School of Medicine, Washington Hospital Center, Washington, District of Columbia, USA
| | - Sabyasachi Sen
- Department of Endocrinology, VAMC and George Washington University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
27
|
Sforza A, Vigorelli V, Rurali E, Perrucci GL, Gambini E, Arici M, Metallo A, Rinaldi R, Fiorina P, Barbuti A, Raucci A, Sacco E, Rocchetti M, Pompilio G, Genovese S, Vinci MC. Liraglutide preserves CD34+ stem cells from dysfunction Induced by high glucose exposure. Cardiovasc Diabetol 2022; 21:51. [PMID: 35397526 PMCID: PMC8994898 DOI: 10.1186/s12933-022-01486-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background Glucagon like peptide-1 receptor agonists (GLP-1RAs) have shown to reduce mortality and cardiovascular events in patients with type 2 diabetes mellitus (T2DM). Since the impairment in number and function of vasculotrophic circulating CD34+ hematopoietic stem progenitor cells (HSPCs) in T2D has been reported to increase cardiovascular (CV) risk, we hypothesized that one of the mechanisms whereby GLP-1 RAs exert CV protective effects may be related to the ability to improve CD34+ HSPC function. Methods In cord blood (CB)-derived CD34+ HSPC, the expression of GLP-1 receptor (GLP-1R) mRNA, receptor protein and intracellular signaling was evaluated by RT-qPCR and Western Blot respectively. CD34+ HSPCs were exposed to high glucose (HG) condition and GLP-1RA liraglutide (LIRA) was added before as well as after functional impairment. Proliferation, CXCR4/SDF-1α axis activity and intracellular ROS production of CD34+ HSPC were evaluated. Results CD34+ HSPCs express GLP-1R at transcriptional and protein level. LIRA treatment prevented and rescued HSPC proliferation, CXCR4/SDF-1α axis activity and metabolic imbalance from HG-induced impairment. LIRA stimulation promoted intracellular cAMP accumulation as well as ERK1/2 and AKT signaling activation. The selective GLP-1R antagonist exendin (9–39) abrogated LIRA-dependent ERK1/2 and AKT phosphorylation along with the related protective effects. Conclusion We provided the first evidence that CD34+ HSPC express GLP-1R and that LIRA can favorably impact on cell dysfunction due to HG exposure. These findings open new perspectives on the favorable CV effects of GLP-1 RAs in T2DM patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01486-9.
Collapse
|
28
|
Hu Q, Dong X, Zhang K, Song H, Li C, Zhang T, Feng J, Ke X, Li H, Chen Y, Nie R, Chen X, Liu Y. Fluid Shear Stress Ameliorates Prehypertension-Associated Decline in Endothelium-Reparative Potential of Early Endothelial Progenitor Cells. J Cardiovasc Transl Res 2022; 15:1049-1063. [PMID: 35391709 DOI: 10.1007/s12265-022-10235-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of prehypertension and shear stress on the reendothelialization potential of human early EPCs and explored its potential mechanisms. Early EPCs from the prehypertensive patients showed reduced migration and adhesion in vitro and demonstrated a significantly impaired in vivo reendothelialization capacity. Shear stress pretreatment markedly promoted the in vivo reendothelialization capacity of EPCs. Although basal CXCR4 expression in early EPCs from prehypertensive donors was similar to that from healthy control, SDF-1-induced phosphorylation of CXCR4 was lower in prehypertensive EPCs. Shear stress up-regulated CXCR4 expression and increased CXCR4 phosphorylation, and restored the SDF-1/CXCR4-dependent JAK-2 phosphorylation in prehypertensive EPCs. CXCR4 knockdown or JAK-2 inhibitor treatment prevents against shear stress-induced increase in the migration, adhesion and reendothelialization capacity of the prehypertensive EPCs. Collectively, CXCR4 receptor profoundly modulates the reendothelialization potential of early EPCs. The abnormal CXCR4-mediated JAK-2 signaling may contribute to impaired functions of EPCs from patients with prehypertension.
Collapse
Affiliation(s)
- Qingsong Hu
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Xiaobian Dong
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Kun Zhang
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Huangfeng Song
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, NO.8 Huaying road, Baiyun district, Guangzhou city, 510000, Guangdong, China
| | - Cuizhi Li
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, NO.8 Huaying road, Baiyun district, Guangzhou city, 510000, Guangdong, China
| | - Tao Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Jianyi Feng
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China.,Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, 518057, China
| | - Hairui Li
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Yangxin Chen
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruqiong Nie
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoming Chen
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China.
| | - Youbin Liu
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, NO.8 Huaying road, Baiyun district, Guangzhou city, 510000, Guangdong, China.
| |
Collapse
|
29
|
Elzarki AF, Nandula SR, Awal H, Simon GL, Sen S. Cardiovascular disease (CVD) risk assessment of HIV medication regimens using hematopoietic CD34+ progenitor cells. Stem Cell Res Ther 2022; 13:103. [PMID: 35255964 PMCID: PMC8900400 DOI: 10.1186/s13287-022-02775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Background To determine the effects of integrase inhibitor (INSTI) in comparison with non-INSTI-based regimens such as non-nucleoside reverse transcriptase inhibitors (NNRTIs)-based regimens on cardiovascular disease (CVD) risk in HIV+ patients without overt history of CVD or diabetes, with normal CD4:CD8 count. For CVD risk assessment we primarily used hematopoietic CD34+ progenitor cells, as a biomarker.
Methods Nineteen male subjects, ages 32–61 years with BMI 21.0–36.0, were enrolled. This was a single time point, cross-sectional, observational study. Subjects were enrolled under 2 groups (either on INSTI-based regimen with 13 subjects or NNRTI (non-INSTI)-based regimens with 6 subjects) who were taking stable doses of HAART. The medication regimens were a combination of one NRTI (typically tenofovir–emtricitabine) plus one INSTI or NNRTI. Our outcome measures were focused on cardiovascular and endothelial cell function and systemic inflammation. Our primary outcome measures were peripheral blood-derived hematopoietic progenitor cell number (CD34 and CD133 positive), CD34+ cell function and gene expression studies. Our secondary outcomes were arterial stiffness measures and serum-based markers of inflammation. Results A significant increase in percentage number of progenitor cells, CD133+ cells (p = 0.004), was noted along with an increase of double progenitor mark positive CD133+/CD34+ progenitor cell population being observed in INSTI group as compared to NNRTI group, by flow cytometry. mRNA gene expression for antioxidant gene catalase was noted along with a trend toward a decrease in gene expression of inflammatory marker IL6 (p = 0.06) being observed in CD34+ from INSTI group vs NNRTI group. The plasma IL-6 and CRP levels did not change significantly between the groups. Neutrophil–Lymphocyte ratio (NLR), an important marker of inflammation, was noted to be lower in INSTI group. A mean fasting glucose level was also lower in the INSTI group compared to NNRTI group (p = 0.03). Interestingly, urine microalbumin levels were higher in the INSTI group compared to NNRTI group (p = 0.08), while eGFR levels were significantly lower in the INSTI group (p = 0.002). The arterial stiffness measures did not show statistically significant differences between the two groups. Conclusion We conclude that the INSTI regimen may provide a better CVD risk profile compared to NNRTI-based HAART regimen; however, the increased albuminuria along with lower eGFR, noted in INSTI group, is of concern. Because of the small size, these results would need replication in additional studies before changing clinical practice. Clinical trial registrationhttps://clinicaltrials.gov/ct2/show/NCT03782142?cond=Hiv&spons=Sabyasachi+sen&cntry=US&state=US%3ADC&city=Washington&draw=2&rank=1. ClinicalTrials.gov Identifier: NCT03782142.
Collapse
Affiliation(s)
- Adrian Farid Elzarki
- Department of Medicine (Endocrinology) and Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA.,Veterans Affairs Medical Center, Washington, DC, 20422, USA
| | - Seshagiri Rao Nandula
- Department of Medicine (Endocrinology) and Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA.,Veterans Affairs Medical Center, Washington, DC, 20422, USA
| | - Hassan Awal
- Department of Medicine (Endocrinology) and Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Gary L Simon
- Department of Medicine (Endocrinology) and Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Sabyasachi Sen
- Department of Medicine (Endocrinology) and Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA. .,Veterans Affairs Medical Center, Washington, DC, 20422, USA.
| |
Collapse
|
30
|
Llorens-Cebrià C, Molina-Van den Bosch M, Vergara A, Jacobs-Cachá C, Soler MJ. Antioxidant Roles of SGLT2 Inhibitors in the Kidney. Biomolecules 2022; 12:143. [PMID: 35053290 PMCID: PMC8773577 DOI: 10.3390/biom12010143] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
The reduction-oxidation (redox) system consists of the coupling and coordination of various electron gradients that are generated thanks to serial reduction-oxidation enzymatic reactions. These reactions happen in every cell and produce radical oxidants that can be mainly classified into reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS modulate cell-signaling pathways and cellular processes fundamental to normal cell function. However, overproduction of oxidative species can lead to oxidative stress (OS) that is pathological. Oxidative stress is a main contributor to diabetic kidney disease (DKD) onset. In the kidney, the proximal tubular cells require a high energy supply to reabsorb proteins, metabolites, ions, and water. In a diabetic milieu, glucose-induced toxicity promotes oxidative stress and mitochondrial dysfunction, impairing tubular function. Increased glucose level in urine and ROS enhance the activity of sodium/glucose co-transporter type 2 (SGLT2), which in turn exacerbates OS. SGLT2 inhibitors have demonstrated clear cardiovascular benefits in DKD which may be in part ascribed to the generation of a beneficial equilibrium between oxidant and antioxidant mechanisms.
Collapse
Affiliation(s)
- Carmen Llorens-Cebrià
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
| | - Mireia Molina-Van den Bosch
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
| | - Ander Vergara
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RD21/0005/0016, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Conxita Jacobs-Cachá
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RD21/0005/0016, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria José Soler
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RD21/0005/0016, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
31
|
Durante W, Behnammanesh G, Peyton KJ. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. Int J Mol Sci 2021; 22:ijms22168786. [PMID: 34445519 PMCID: PMC8396183 DOI: 10.3390/ijms22168786] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in diabetes. Recent clinical studies indicate that sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in patients with diabetes. The mechanism underlying the beneficial effect of SGLT2 inhibitors is not completely clear but may involve direct actions on vascular cells. SGLT2 inhibitors increase the bioavailability of endothelium-derived nitric oxide and thereby restore endothelium-dependent vasodilation in diabetes. In addition, SGLT2 inhibitors favorably regulate the proliferation, migration, differentiation, survival, and senescence of endothelial cells (ECs). Moreover, they exert potent antioxidant and anti-inflammatory effects in ECs. SGLT2 inhibitors also inhibit the contraction of vascular smooth muscle cells and block the proliferation and migration of these cells. Furthermore, studies demonstrate that SGLT2 inhibitors prevent postangioplasty restenosis, maladaptive remodeling of the vasculature in pulmonary arterial hypertension, the formation of abdominal aortic aneurysms, and the acceleration of arterial stiffness in diabetes. However, the role of SGLT2 in mediating the vascular actions of these drugs remains to be established as important off-target effects of SGLT2 inhibitors have been identified. Future studies distinguishing drug- versus class-specific effects may optimize the selection of specific SGLT2 inhibitors in patients with distinct cardiovascular pathologies.
Collapse
|