1
|
Mahdy RNE, Nader MA, Helal MG, Abu-Risha SE, Abdelmageed ME. Protective effect of Dulaglutide, a GLP1 agonist, on acetic acid-induced ulcerative colitis in rats: involvement of GLP-1, TFF-3, and TGF-β/PI3K/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5611-5628. [PMID: 39579211 PMCID: PMC11985593 DOI: 10.1007/s00210-024-03631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
A chronic inflammatory condition of the colon called ulcerative colitis (UC) is characterized by mucosal surface irritation that extends from the rectum to the near proximal colon portions. The rationale of this work was to conclude if dulaglutide (Dula) could protect rats from developing colitis caused by exposure to acetic acid (AA). Rats were randomly divided into seven groups (each with eight rats): Normal control, Dula control, AA (received 2 milliliters of 3% v/v AA through the rectum), Sulfasalazine (SLZ); given SLZ (100 mg/kg) orally from day 11 to day 21 then AA intrarectally on day 22 and Dula groups ( pretreated with 50, 100 or 150 μg/kg subcutaneous injection of Dula - once weekly for three weeks and AA on day 22 to induce ulcerative colitis, colon tissues and blood samples were taken on day 23. By generating colonic histological deviations such as inflammatory processes, goblet cell death, glandular hyperplasia, and mucosa ulcers, Dula dropped AA-induced colitis. Additionally, these modifications diminished blood lactate dehydrogenase (LDH), C-reactive protein (CRP), colon weight, and the weight/length ratio of the colon. In addition, Dula decreased the oxidative stress biomarker malondialdehyde (MDA) and increased the antioxidant enzymes (total antioxidant capacity (TAC), reduced glutathione (GSH), and superoxide dismutase (SOD) concentrations). Dula also significantly reduced the expression of transforming growth factor-1 (TGF-β1), phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT) signaling pathway, and the inflammatory cytokines: nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), and interferon-γ (IFN-γ) in colonic cellular structures. In addition, Dula enforced the levels of glucagon-like peptide-1 (GLP-1) and trefoil factor-3 (TFF-3) that were crucial to intestinal mucosa regeneration and healing of wounds. By modulating TGF-β1 in conjunction with other inflammatory pathways like PI3K/AKT and NF-κB, regulating the oxidant/antioxidant balance, and improving the integrity of the intestinal barrier, Dula prevented AA-induced colitis in rats.
Collapse
Affiliation(s)
- Raghda N El Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Sinai University- Kantra Branch, Ismailia, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sally E Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Yang L, Li X, Ni L, Lin Y. Treatment of endothelial cell dysfunction in atherosclerosis: a new perspective integrating traditional and modern approaches. Front Physiol 2025; 16:1555118. [PMID: 40206381 PMCID: PMC11979162 DOI: 10.3389/fphys.2025.1555118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Atherosclerosis (AS), a prime causative factor in cardiovascular disease, originates from endothelial cell dysfunction (ECD). Comprising a vital part of the vascular endothelium, endothelial cells play a crucial role in maintaining vascular homeostasis, optimizing redox balance, and regulating inflammatory responses. More evidence shows that ECD not only serves as an early harbinger of AS but also exhibits a strong association with disease progression. In recent years, the treatment strategies for ECD have been continuously evolving, encompassing interventions ranging from lifestyle modifications to traditional pharmacotherapy aimed at reducing risk factors, which also have demonstrated the ability to improve endothelial cell function. Additionally, novel strategies such as promising biotherapy and gene therapy have drawn attention. These methods have demonstrated enormous potential and promising prospects in improving endothelial function and reversing AS. However, it is essential to remain cognizant that the current treatments still present significant challenges regarding therapeutic efficacy, long-term safety, and ethical issues. This article aims to provide a systematic review of these treatment methods, analyze the mechanisms and efficacy of various therapeutic strategies, with the goal of offering insights and guidance for clinical practice, and further advancing the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
3
|
Rroji M, Spahia N, Figurek A, Spasovski G. Targeting Diabetic Atherosclerosis: The Role of GLP-1 Receptor Agonists, SGLT2 Inhibitors, and Nonsteroidal Mineralocorticoid Receptor Antagonists in Vascular Protection and Disease Modulation. Biomedicines 2025; 13:728. [PMID: 40149704 PMCID: PMC11940462 DOI: 10.3390/biomedicines13030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Atherosclerosis is a closely related complication of diabetes mellitus (DM), driven by endothelial dysfunction, inflammation, and oxidative stress. The progression of atherosclerosis is accelerated by hyperglycemia, insulin resistance, and hyperlipidemia. Novel antidiabetic agents, SGLT2 inhibitors, and GLP-1 agonists improve glycemic control and offer cardiovascular protection, reducing the risk of major adverse cardiovascular events (MACEs) and heart failure hospitalization. These agents, along with nonsteroidal mineralocorticoid receptor antagonists (nsMRAs), promise to mitigate metabolic disorders and their impact on endothelial function, oxidative stress, and inflammation. This review explores the potential molecular mechanisms through which these drugs may prevent the development of atherosclerosis and cardiovascular disease (CVD), supported by a summary of preclinical and clinical evidence.
Collapse
Affiliation(s)
- Merita Rroji
- Department of Nephrology, University of Medicine Tirana, 1001 Tirana, Albania
- Department of Nephrology, University Hospital Center Mother Tereza, 1001 Tirana, Albania;
| | - Nereida Spahia
- Department of Nephrology, University Hospital Center Mother Tereza, 1001 Tirana, Albania;
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland;
| | - Goce Spasovski
- Department of Nephrology, University Sts. Cyril and Methodius, 1000 Skopje, North Macedonia;
| |
Collapse
|
4
|
Korakas E, Thymis J, Oikonomou E, Mourouzis K, Kountouri A, Pliouta L, Pililis S, Pavlidis G, Lampsas S, Katogiannis K, Palaiodimou L, Tsivgoulis G, Siasos G, Ikonomidis I, Raptis A, Lambadiari V. Dulaglutide and Dapagliflozin Combination Concurrently Improves the Endothelial Glycocalyx and Vascular and Myocardial Function in Patients with T2DM and Albuminuria vs. DPP-4i. J Clin Med 2024; 13:7497. [PMID: 39768420 PMCID: PMC11678541 DOI: 10.3390/jcm13247497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The association between diabetic nephropathy and arterial elasticity and endothelial function is well established. In this study, we compared the effect of the combination of dulaglutide and dapagliflozin versus DPP-4 inhibitors on the endothelial glycocalyx, arterial stiffness, myocardial function, and albuminuria. Methods: Overall, 60 patients were randomized to combined dulaglutide and dapagliflozin treatment (n = 30) or DPP-4 inhibitors (DPP-4i, n = 30) (ClinicalTrials.gov: NCT06611904). We measured at baseline and 4 and 12 months post-treatment: (i) the perfused boundary region of the sublingual arterial microvessels, (ii) pulse wave velocity (PWV) and central systolic blood pressure (cSBP), (iii) global left ventricular longitudinal strain (GLS), and (iv) urine albumin-to-creatinine ratio (UACR). Results: After twelve months, dual therapy showed greater improvements vs. DPP-4i in PBR (2.10 ± 0.31 to 1.93 ± 0.23 μm vs. 2.11 ± 0.31 to 2.08 ± 0.28 μm, p < 0.001), UACR (326 ± 61 to 142 ± 47 mg/g vs. 345 ± 48 to 306 ± 60 mg/g, p < 0.01), and PWV (11.77 ± 2.37 to 10.7 ± 2.29 m/s vs. 10.64 ± 2.44 to 10.54 ± 2.84 m/s, p < 0.001), while only dual therapy showed improvement in cSBP (130.21 ± 17.23 to 123.36 ± 18.42 mmHg). These effects were independent of glycemic control. Both treatments improved GLS, but the effect of dual therapy was significantly higher compared to DPP-4i (18.19% vs. 6.01%, respectively). Conclusions: Twelve-month treatment with dulaglutide and dapagliflozin showed a greater improvement in arterial stiffness, endothelial function, myocardial function, and albuminuria than DPP-4is. Early initiation of combined therapy as an add-on to metformin should be considered in these patients.
Collapse
Affiliation(s)
- Emmanouil Korakas
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - John Thymis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.); (K.K.); (I.I.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, Sotiria Chest Disease Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (K.M.)
| | - Konstantinos Mourouzis
- 3rd Department of Cardiology, Medical School, Sotiria Chest Disease Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (K.M.)
| | - Aikaterini Kountouri
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - Loukia Pliouta
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - Sotirios Pililis
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - George Pavlidis
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - Stamatios Lampsas
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - Konstantinos Katogiannis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.); (K.K.); (I.I.)
| | - Lina Palaiodimou
- 2nd Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece (G.T.)
| | - Georgios Tsivgoulis
- 2nd Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece (G.T.)
| | - Gerasimos Siasos
- Cardiovascular Division, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Ignatios Ikonomidis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.); (K.K.); (I.I.)
| | - Athanasios Raptis
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1 Str., Chaidari, 12462 Athens, Greece; (E.K.); (A.K.); (L.P.); (S.P.); (G.P.); (S.L.); (A.R.)
| |
Collapse
|
5
|
Hershenson R, Nardi-Agmon I, Leshem-Lev D, Kornowski R, Eisen A. The effect of empagliflozin on circulating endothelial progenitor cells in patients with diabetes and stable coronary artery disease. Cardiovasc Diabetol 2024; 23:386. [PMID: 39468546 PMCID: PMC11520434 DOI: 10.1186/s12933-024-02466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with premature atherosclerotic disease, coronary artery disease (CAD) and chronic heart failure (HF), leading to increased morbidity and mortality. Sodium-Glucose Co-transporter 2 Inhibitors (SGLT2i) exhibit cardioprotective benefits beyond glucose lowering, reducing the risk of major cardiovascular events (MACE) and HF hospitalizations in patients with DM and CAD. Endothelial progenitor cells (EPCs) are bone marrow-derived cells involved in vascular repair, mobilized in response to vascular injury. The number and function of circulating EPCs (cEPCs) are negatively affected by cardiovascular risk factors, including DM. This study aimed to examine the response of cEPCs to SGLT2i treatment in DM patients with stable CAD. METHODS A prospective single-center study included patients with DM and stable CAD who were started on an SGLT2i (empagliflozin). Peripheral blood samples were collected at baseline, 1 month, and 3 months to evaluate cEPC levels and function by flow cytometry, immunohistochemistry and MTT assays. RESULTS Eighteen patients were included in the study (median age 73, (IQR 69, 77) years, 67% male). After 1 month of treatment with empagliflozin, there was no significant change in cEPCs level or function. However, following 3 months of treatment, a significant increase was observed both in cell levels (CD34(+)/VEGFR-2(+): from 0.49% (IQR 0.32, 0.64) to 1.58% (IQR 0.93, 1.82), p = 0.0006; CD133(+)/VEGFR-2(+): from 0.38% (IQR 0.27, 0.6) to 0.82% (IQR 0.7, 1.95), p = 0.0001) and in cell function (from 0.25 CFUs (IQR 0, 0.5) at baseline, to 2 CFUs (IQR 1, 2) at 3 months, p = 0.0012). CONCLUSIONS Empagliflozin treatment in patients with DM and stable CAD increases cEPC levels and function, implying a cardioprotective mechanism. These findings highlight the potential of SGLT2i in treating cardiovascular diseases, warranting further research to explore these effects and their long-term implications.
Collapse
Affiliation(s)
- Roy Hershenson
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Inbar Nardi-Agmon
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Dorit Leshem-Lev
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Eisen
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Abbasi-Malati Z, Khanicheragh P, Narmi MT, Mardi N, Khosrowshahi ND, Hiradfar A, Rezabakhsh A, Sadeghsoltani F, Rashidi S, Chegeni SA, Roozbahani G, Rahbarghazi R. Tumoroids, a valid preclinical screening platform for monitoring cancer angiogenesis. Stem Cell Res Ther 2024; 15:267. [PMID: 39183337 PMCID: PMC11346257 DOI: 10.1186/s13287-024-03880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
In recent years, biologists and clinicians have witnessed prominent advances in in vitro 3D culture techniques related to biomimetic human/animal tissue analogs. Numerous data have confirmed that unicellular and multicellular (tumoroids) tumor spheroids with dense native cells in certain matrices are sensitive and valid analytical tools for drug screening, cancer cell dynamic growth, behavior, etc. in laboratory settings. Angiogenesis/vascularization is a very critical biological phenomenon to support oxygen and nutrients to tumor cells within the deep layer of solid masses. It has been shown that endothelial cell (EC)-incorporated or -free spheroid/tumoroid systems provide a relatively reliable biological platform for monitoring the formation of nascent blood vessels in micron/micrometer scales. Besides, the paracrine angiogenic activity of cells within the spheroid/tumoroid systems can be monitored after being treated with different therapeutic approaches. Here, we aimed to collect recent advances and findings related to the monitoring of cancer angiogenesis using unicellular and multicellular tumor spheroids. Vascularized spheroids/tumoroids can help us in the elucidation of mechanisms related to cancer formation, development, and metastasis by monitoring the main influencing factors.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Amirataollah Hiradfar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayyeh Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Golbarg Roozbahani
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Park B, Krishnaraj A, Teoh H, Bakbak E, Dennis F, Quan A, Hess DA, Verma S. GLP-1RA therapy increases circulating vascular regenerative cell content in people living with type 2 diabetes. Am J Physiol Heart Circ Physiol 2024; 327:H370-H376. [PMID: 38874618 DOI: 10.1152/ajpheart.00257.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 (SGLT2) inhibitors are guideline-recommended therapies for the management of type 2 diabetes (T2D), atherosclerotic cardiovascular disease, heart failure, and chronic kidney disease. We previously observed in people living with T2D and coronary artery disease that circulating vascular regenerative (VR) progenitor cell content increased following 6-mo use of the SGLT2 inhibitor empagliflozin. In this post hoc subanalysis of the ORIGINS-RCE CardioLink-13 study (ClinicalTrials.gov Identifier NCT05253521), we analyzed the circulating VR progenitor cell content of 92 individuals living with T2D, among whom 20 were on a GLP-1RA, 42 were on an SGLT2 inhibitor but not a GLP-1RA, and 30 were on neither of these vascular protective therapies. In the GLP-1RA group, the mean absolute count of circulating VR progenitor cells defined by high aldehyde dehydrogenase (ALDH) activity (ALDHhiSSClow) and VR progenitor cells further characterized by surface expression of the proangiogenic marker CD133 (ALDHhiSSClowCD133+) was higher than the group receiving neither a GLP-1RA nor an SGLT2 inhibitor (P = 0.02) and comparable with that in the SGLT2 inhibitor group (P = 0.25). The absolute count of proinflammatory, granulocyte-restricted precursor cells (ALDHhiSSChi) was significantly lower in the GLP-1RA group compared with the group on neither therapy (P = 0.031). Augmented vessel repair initiated by VR cells with previously documented proangiogenic activity, alongside a reduction in systemic, granulocyte precursor-driven inflammation, may represent novel mechanisms responsible for the cardiovascular-metabolic benefits of GLP-1RA therapy. Prospective, randomized clinical trials are now warranted to establish the value of recovering circulating VR progenitor cell content with blood vessel regenerative functions.NEW & NOTEWORTHY In this post hoc subanalysis of 92 individuals living with T2D and at high cardiovascular risk, the authors summarize the differences in circulating vascular regenerative (VR) progenitor cell content between those on GLP-1RA therapy, on SGLT2 inhibitor without GLP-1RA therapy, and on neither therapy. Those on GLP-1RA therapy demonstrated greater circulating VR progenitor cell content and reduced proinflammatory granulocyte precursor content. These results offer novel mechanistic insights into the cardiometabolic benefits associated with GLP-1RA therapy.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - David A Hess
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Chan JSF, Ussher JR. Vascular regeneration: a new mechanism of glucagon-like peptide-1 receptor agonist-mediated cardioprotection? Am J Physiol Heart Circ Physiol 2024; 327:H406-H408. [PMID: 38995213 DOI: 10.1152/ajpheart.00446.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Jordan S F Chan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
10
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Ravic M, Srejovic I, Novakovic J, Andjic M, Sretenovic J, Muric M, Nikolic M, Bolevich S, Alekseevich Kasabov K, Petrovich Fisenko V, Stojanovic A, Jakovljevic V. Effect of GLP-1 Receptor Agonist on Ischemia Reperfusion Injury in Rats with Metabolic Syndrome. Pharmaceuticals (Basel) 2024; 17:525. [PMID: 38675485 PMCID: PMC11053642 DOI: 10.3390/ph17040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic syndrome (MetS) represents an important factor that increases the risk of myocardial infarction, and more severe complications. Glucagon Like Peptide-1 Receptor Agonists (GLP-1RAs) exhibit cardioprotective potential, but their efficacy in MetS-related myocardial dysfunction has not been fully explored. Therefore, we aimed to assess the effects of exenatide and dulaglutide on heart function and redox balance in MetS-induced rats. Twenty-four Wistar albino rats with induced MetS were divided into three groups: MetS, exenatide-treated (5 µg/kg), dulaglutide-treated (0.6 mg/kg). After 6 weeks of treatment, in vivo heart function was assessed via echocardiography, while ex vivo function was evaluated using a Langendorff apparatus to simulate ischemia-reperfusion injury. Heart tissue samples were analyzed histologically, and oxidative stress biomarkers were measured spectrophotometrically from the coronary venous effluent. Both exenatide and dulaglutide significantly improved the ejection fraction by 3% and 7%, respectively, compared to the MetS group. Histological analyses corroborated these findings, revealing a reduction in the cross-sectional area of cardiomyocytes by 11% in the exenatide and 18% in the dulaglutide group, indicating reduced myocardial damage in GLP-1RA-treated rats. Our findings suggest strong cardioprotective potential of GLP-1RAs in MetS, with dulaglutide showing a slight advantage. Thus, both exenatide and dulaglutide are potentially promising targets for cardioprotection and reducing mortality in MetS patients.
Collapse
Affiliation(s)
- Marko Ravic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Ivan Srejovic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia; (K.A.K.); (V.P.F.)
| | - Jovana Novakovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Jasmina Sretenovic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Maja Muric
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Marina Nikolic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia;
| | - Kirill Alekseevich Kasabov
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia; (K.A.K.); (V.P.F.)
| | - Vladimir Petrovich Fisenko
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia; (K.A.K.); (V.P.F.)
| | - Aleksandra Stojanovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Vladimir Jakovljevic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia;
| |
Collapse
|
12
|
Li Y, Gong X, Găman MA, Hernández-Wolters B, Velu P, Li Y. The effect of subcutaneous dulaglutide on weight loss in patients with Type 2 diabetes mellitus: Systematic review and meta-analysis of randomized controlled trials. Eur J Clin Invest 2024; 54:e14125. [PMID: 37950521 DOI: 10.1111/eci.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Dulaglutide, a subcutaneously administered glucagon-like peptide 1 receptor agonist, has been hypothesized to lead to weight loss in patients with Type 2 diabetes mellitus (T2DM). However, the consequences of its prescription on body weight (BW) and other anthropometric indices, for example, body mass index (BMI) or waist circumference (WC), have not been completely clarified. Therefore, we aimed to assess the effects of subcutaneous dulaglutide administration on BW, BMI and WC values in T2DM subjects by means of a systematic review and meta-analysis of RCTs. METHODS We computed a literature search in five databases (PubMed/Medline, Web of Science, EMBASE, Scopus and Google Scholar) from their inception to February 2023 to identify RCTs that examined the influence of subcutaneous dulaglutide on obesity indices. We calculated effect sizes using the random-effects model (using DerSimonian-Laird method). Results were derived across weighted mean differences (WMD) and 95% confidence intervals (CI). Subgroup analyses were applied to explore possible sources of heterogeneity among the RCTs. The current systematic review and meta-analysis was conducted in compliance with The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. RESULTS In total, 18 studies with 33 RCT arms (BW = 33 RCT arms, 14,612 participants, 7869 cases and 6743 controls; BMI = 10 RCT arms, 14,612 subjects, 7869 cases and 6743 controls; WC = 10 RCT arms, 1632 participants, 945 cases and 687 cases) were included in the meta-analysis. BW (WMD: -0.86 kg, 95% CI: -1.22, -0.49, p < 0.001), BMI (WMD: -0.68 kg/m2 , 95% CI: -0.88, -0.49, p < 0.001) and WC (WMD: -1.23 cm, 95% CI: -1.82, -0.63, p < 0.001) values decreased notably following subcutaneous dulaglutide administration versus placebo. BW notably decreased in RCTs lasting >18 weeks (WMD: -1.42 kg, 95% CI: -1.90, -0.94, p < 0.001), whereas notable reductions in WC were seen in RCTs lasting ≤18 weeks (WMD: -1.78 cm, 95% CI: -2.59, -0.98, p < 0.001). Dulaglutide dosages >1 mg/day significantly decreased BW (WMD: -1.94 kg, 95% CI: -2.54, -1.34, p < 0.001), BMI (WMD: -0.80 kg/m2 , 95% CI: -1.07, -0.54, p < 0.001) and WC (WMD: -1.47 cm, 95% CI: -1.80, -1.13, p < 0.001). BW decreased particularly following dulaglutide prescription in individuals with obesity (WMD: -1.05 kg, 95% CI: -1.28, -0.82, p < 0.001) versus overweight. The dose-response meta-analysis revealed that BW decreased significantly when dulaglutide was prescribed in doses ≤3 mg/day versus >3 mg/day. CONCLUSIONS Subcutaneous dulaglutide administration in T2DM reduces BW, BMI and WC. The decrease in BW and WC was influenced by the dose and the duration of dulaglutide administration. The reduction in BMI was only influenced by the dosage of dulaglutide. Moreover, T2DM patients who suffered from obesity experienced a notable decrease in BW versus T2DM subjects without obesity.
Collapse
Affiliation(s)
- Yang Li
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingji Gong
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Periyannan Velu
- Galileovasan Offshore and Research and Development Pvt. Ltd., Nagapattinam, India
| | - Yushan Li
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Altabas V, Marinković Radošević J, Špoljarec L, Uremović S, Bulum T. The Impact of Modern Anti-Diabetic Treatment on Endothelial Progenitor Cells. Biomedicines 2023; 11:3051. [PMID: 38002051 PMCID: PMC10669792 DOI: 10.3390/biomedicines11113051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes is one of the leading chronic diseases globally with a significant impact on mortality. This condition is associated with chronic microvascular and macrovascular complications caused by vascular damage. Recently, endothelial progenitor cells (EPCs) raised interest due to their regenerative properties. EPCs are mononuclear cells that are derived from different tissues. Circulating EPCs contribute to regenerating the vessel's intima and restoring vascular function. The ability of EPCs to repair vascular damage depends on their number and functionality. Diabetic patients have a decreased circulating EPC count and impaired EPC function. This may at least partially explain the increased risk of diabetic complications, including the increased cardiovascular risk in these patients. Recent studies have confirmed that many currently available drugs with proven cardiovascular benefits have beneficial effects on EPC count and function. Among these drugs are also medications used to treat different types of diabetes. This manuscript aims to critically review currently available evidence about the ways anti-diabetic treatment affects EPC biology and to provide a broader context considering cardiovascular complications. The therapies that will be discussed include lifestyle adjustments, metformin, sulphonylureas, gut glucosidase inhibitors, thiazolidinediones, dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor analogs, sodium-glucose transporter 2 inhibitors, and insulin.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Marinković Radošević
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | - Lucija Špoljarec
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | | | - Tomislav Bulum
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Benítez-Camacho J, Ballesteros A, Beltrán-Camacho L, Rojas-Torres M, Rosal-Vela A, Jimenez-Palomares M, Sanchez-Gomar I, Durán-Ruiz MC. Endothelial progenitor cells as biomarkers of diabetes-related cardiovascular complications. Stem Cell Res Ther 2023; 14:324. [PMID: 37950274 PMCID: PMC10636846 DOI: 10.1186/s13287-023-03537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetes mellitus (DM) constitutes a chronic metabolic disease characterized by elevated levels of blood glucose which can also lead to the so-called diabetic vascular complications (DVCs), responsible for most of the morbidity, hospitalizations and death registered in these patients. Currently, different approaches to prevent or reduce DM and its DVCs have focused on reducing blood sugar levels, cholesterol management or even changes in lifestyle habits. However, even the strictest glycaemic control strategies are not always sufficient to prevent the development of DVCs, which reflects the need to identify reliable biomarkers capable of predicting further vascular complications in diabetic patients. Endothelial progenitor cells (EPCs), widely known for their potential applications in cell therapy due to their regenerative properties, may be used as differential markers in DVCs, considering that the number and functionality of these cells are affected under the pathological environments related to DM. Besides, drugs commonly used with DM patients may influence the level or behaviour of EPCs as a pleiotropic effect that could finally be decisive in the prognosis of the disease. In the current review, we have analysed the relationship between diabetes and DVCs, focusing on the potential use of EPCs as biomarkers of diabetes progression towards the development of major vascular complications. Moreover, the effects of different drugs on the number and function of EPCs have been also addressed.
Collapse
Affiliation(s)
- Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Ballesteros
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Lucía Beltrán-Camacho
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
- Cell Biology, Physiology and Immunology Department, Córdoba University, Córdoba, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain.
| |
Collapse
|
15
|
Bakbak E, Krishnaraj A, Park B, Verma S, Hess DA. Vascular regenerative cells in cardiometabolic disease. Curr Opin Cardiol 2023; 38:546-551. [PMID: 37668181 DOI: 10.1097/hco.0000000000001089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
PURPOSE OF REVIEW This review will provide an overview of the recent literature linking the pathophysiology of cardiometabolic disease with the depletion and dysfunction of circulating vascular regenerative (VR) cell content. Moreover, we provide rationale for the use of VR cells as a biomarker for cardiovascular risk and the use of pharmacological agents to improve VR cell content. RECENT FINDINGS Recent studies demonstrate the potential of VR cells as a biomarker of cardiovascular risk and as a therapeutic target. Notably, lipid-lowering agents, antihyperglycemic therapies such as sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists, as well as exercise and weight loss, have all been found to improve VR cell content, providing mechanistic evidence supporting a role in mitigating adverse cardiovascular outcomes in people with cardiometabolic-based disease. SUMMARY The importance of VR cells as a biomarker in assessing cardiovascular risk is becoming increasingly apparent. This review highlights recent literature supporting the accurate use of VR cell characterization to monitor the capacity for vessel repair and novel strategies to improve vessel health. Future research is required to validate and optimize these emerging approaches.
Collapse
Affiliation(s)
- Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
| | - Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
- Department of Surgery, University of Toronto, Toronto
| | - David A Hess
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital
- Department of Pharmacology and Toxicology
- Department of Physiology and Pharmacology, Western University, London
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
16
|
Longo M, Di Meo I, Caruso P, Francesca Muscio M, Scappaticcio L, Maio A, Ida Maiorino M, Bellastella G, Signoriello G, Knop FK, Rosaria Rizzo M, Esposito K. Circulating levels of endothelial progenitor cells are associated with better cognitive function in older adults with glucagon-like peptide 1 receptor agonist-treated type 2 diabetes. Diabetes Res Clin Pract 2023; 200:110688. [PMID: 37116797 DOI: 10.1016/j.diabres.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
AIMS To evaluate cognitive function in subjects with type 2 diabetes (T2D) treated with glucagon-like peptide 1 receptor agonist (GLP-1RA) plus metformin or metformin alone and its association with endothelial progenitor cells (EPCs). METHODS Adults with T2D treated with GLP-1RA plus metformin (GLP-1RA + MET) or MET alone for at least 12 months were included. Montreal Cognitive Assessment test (MoCA), Mini-Mental State Examination (MMSE), Mini Nutritional Assessment (MNA) and disability tests were administered. Circulating levels of seven EPCs phenotypes were measured by flow cytometry. RESULTS A total of 154 elderly patients were included, of whom 78 in GLP-1RA + MET group and 76 in MET group. The GLP-1RA + MET group showed better cognitive function as indicated by a significant higher MoCA and MMSE scores, and higher levels of CD34+ CD133+, CD133+ KDR+, and CD34+ CD133+ KDR+ as compared with MET group. The number of CD34+ CD133+ KDR+ cells was an independent predictor of higher MoCA, MMSE and MNA scores. CONCLUSIONS People with T2D on GLP-1RA + MET treatment had better cognitive function and higher circulating levels of EPCs as compared with those on MET alone warranting further studies to understand the interrelationship between EPCs, GLP-RA treatment and cognitive health.
Collapse
Affiliation(s)
- Miriam Longo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Geriatrics and Internal Medicine, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Caruso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Francesca Muscio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Geriatrics and Internal Medicine, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lorenzo Scappaticcio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonietta Maio
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Bellastella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Signoriello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Geriatrics and Internal Medicine, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Endocrinology and Metabolic Diseases, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
17
|
Ferdinand KC, Dunn J, Nicolay C, Sam F, Blue EK, Wang H. Weight-dependent and weight-independent effects of dulaglutide on blood pressure in patients with type 2 diabetes. Cardiovasc Diabetol 2023; 22:49. [PMID: 36894938 PMCID: PMC9999488 DOI: 10.1186/s12933-023-01775-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/18/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Patients with type 2 diabetes (T2D) treated with glucagon-like peptide-1 receptor agonists may experience reductions in weight and blood pressure. The primary objective of the current study was to determine the weight-dependent and weight-independent effects of ~ 6 months treatment with dulaglutide 1.5 mg treatment in participants with T2D. METHODS Mediation analysis was conducted for five randomized, placebo-controlled trials of dulaglutide 1.5 mg to estimate the weight-dependent (i.e., mediated by weight) and weight-independent effects from dulaglutide vs. placebo on change from baseline for systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure. A random-effects meta-analysis combined these results. To investigate a dose response between dulaglutide 4.5 mg and placebo, mediation analysis was first conducted in AWARD-11 to estimate the weight-dependent and weight-independent effects of dulaglutide 4.5 mg vs. 1.5 mg, followed by an indirect comparison with the mediation result for dulaglutide 1.5 mg vs. placebo. RESULTS Baseline characteristics were largely similar across the trials. In the mediation meta-analysis of placebo-controlled trials, the total treatment effect of dulaglutide 1.5 mg after placebo-adjustment on SBP was - 2.6 mmHg (95% CI - 3.8, - 1.5; p < 0.001) and was attributed to both a weight-dependent effect (- 0.9 mmHg; 95% CI: - 1.4, - 0.5; p < 0.001) and a weight-independent effect (- 1.5 mmHg; 95% CI: - 2.6, - 0.3; p = 0.01), accounting for 36% and 64% of the total effect, respectively. For pulse pressure, the total treatment effect of dulaglutide (- 2.5 mmHg; 95% CI: - 3.5, - 1.5; p < 0.001) was 14% weight-dependent and 86% weight-independent. For DBP there was limited impact of dulaglutide treatment, with only a small weight-mediated effect. Dulaglutide 4.5 mg demonstrated an effect on reduction in SBP and pulse pressure beyond that of dulaglutide 1.5 mg which was primarily weight mediated. CONCLUSIONS Dulaglutide 1.5 mg reduced SBP and pulse pressure in people with T2D across the placebo-controlled trials in the AWARD program. While up to one third of the effect of dulaglutide 1.5 mg on SBP and pulse pressure was due to weight reduction, the majority was independent of weight. A greater understanding of the pleotropic effects of GLP-1 RA that contribute to reduction in blood pressure could support developing future approaches for treating hypertension. Trial registrations (clinicaltrials.gov) NCT01064687, NCT00734474, NCT01769378, NCT02597049, NCT01149421, NCT03495102.
Collapse
Affiliation(s)
| | - Julia Dunn
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Flora Sam
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Hui Wang
- TechData Service Company, King of Prussia, PA, USA
| |
Collapse
|
18
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Glucagon-Like Peptide 1 Receptor Agonists Versus Sodium-Glucose Cotransporter 2 Inhibitors for Atherosclerotic Cardiovascular Disease in Patients With Type 2 Diabetes. Cardiol Res 2023; 14:12-21. [PMID: 36896226 PMCID: PMC9990545 DOI: 10.14740/cr1459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/11/2023] [Indexed: 02/27/2023] Open
Abstract
Beyond improving hemoglobin A1c (HbA1c) in adults with type 2 diabetes, glucagon-like peptide 1 receptor agonists (GLP-1RA) have been approved for reducing risk of major adverse cardiovascular events (MACE) with established cardiovascular disease (CVD) or multiple CV risk factors. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) also reduced the risk for the primary composite CV outcome in patients with type 2 diabetes at high risk for CV events. In the American Diabetes Association (ADA) and European Association of Study in Diabetes (EASD) consensus report 2022, there is the description "In people with established atherosclerotic CVD (ASCVD) or with a high risk for ASCVD, GLP-1RA were prioritized over SGLT2i"; however, the evidence supporting such statement is limited. Therefore, we studied the superiority of GLP-1RA over SGLT2i for prevention of ASCVD from various viewpoints. We could not find a meaningful difference in the risk reduction in three-point MACE (3P-MACE), mortality due to any cause, mortality due to CV cause and nonfatal myocardial infarction between GLP-1RA and SGLT2i trials. The risk of nonfatal stroke decreased in all five GLP-1RA trials; however, two of three SGLT2i trials showed an increase in risk of nonfatal stroke. The risk of hospitalization for heart failure (HHF) decreased in all three SGLT2i trials, and one GLP-1RA trial showed an increase in risk of HHF. The risk reduction of HHF in SGLT2i trials was greater than that in GLP-1RA trials. These findings were consistent with current systematic reviews and meta-analyses. The risk reduction of 3P-MACE was significantly and negatively correlated with changes in HbA1c (R = -0.861, P = 0.006) and body weight (R = -0.895, P = 0.003) in GLP-1RA and SGLT2i trials. The studies using SGLT2i failed to reduce carotid intima media thickness (cIMT), the surrogate marker for atherosclerosis; however, several studies using GLP-1RA successfully reduced cIMT in patients with type 2 diabetes. Compared with SGLT2i, GLP-1RA had a higher probability of decreasing serum triglyceride. GLP-1RA have multiple vascular biological anti-atherogenic properties.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| |
Collapse
|
19
|
Baumbach A, Cui YX, Evans RN, Culliford L, Johnson T, Rogers CA, Reeves BC, Bucciarelli-Ducci C, Harris J, Hamilton M, Madeddu P. A cohort study of circulating progenitor cells after ST-segment elevation and non-ST segment elevation myocardial infarction in non-diabetic and diabetic patients. Front Cardiovasc Med 2022; 9:1011140. [DOI: 10.3389/fcvm.2022.1011140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
BackgroundMyocardial infarction induces elevation of progenitor cells in the circulation, a reparative response inhibited by type-2 diabetes.ObjectivesDetermine if myocardial infarct severity and diabetes interactively influence the migratory activity of CD34+/CXCR4+ progenitor cells and if the migratory test predicts cardiac outcomes.Materials and methodsA longitudinal study was conducted on patients with or without diabetes with a STEMI or NSTEMI. CD34+/CXCR4+ cells were measured in the peripheral blood using flow cytometry, and migratory activity was tested in vitro on cells isolated from samples collected on days 0 and 4 post-infarct. Cardiac function was assessed at three months using cardiac MRI.ResultsOf 1,149 patients screened, 71 (6.3%) were eligible and consented. Fifty had STEMI (16 with diabetes) and 21 NSTEMI (8 with diabetes). The proportion of CD34+/CXCR4+ cells within blood mononuclear cells was 1.96 times higher after STEMI compared with NSTEMI (GMR = 1.96, 95% CI 0.87, 4.37) and 1.55 times higher in patients with diabetes compared to patients without diabetes (GMR = 1.55, 95% CI 0.77, 3.13). In the latter, STEMI was associated with a 2.42-times higher proportion of migrated CD34 + /CXCR4 + cells compared with NSTEMI (GMR = 2.42, 95% CI 0.66, 8.81). In patients with diabetes, the association was the opposite, with a 55% reduction in the proportion of migrated CD34+/CXCR4+ cells. No statistically significant associations were observed between the frequency in peripheral blood or in vitro migration capacity of CD34+/CXCR4+ cells and MRI outcomes.ConclusionWe document the interaction between infarct and diabetes on the migratory activity of CD34+/CXCR4+ cells. The test did not predict functional outcomes in the studied cohort.
Collapse
|