1
|
Huang J, Gao T, Lu Z, Zhong D, Li M, Qiu HJ, Li Y, Wu H, Sun Y. Evaluation of the Immunogenicity of a Pool of Recombinant Lactococcus lactis Expressing Eight Antigens of African Swine Fever Virus in a Mouse Model. Vet Sci 2025; 12:140. [PMID: 40005900 PMCID: PMC11861804 DOI: 10.3390/vetsci12020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), poses a great threat to the global pig industry. There is an urgent demand for effective and safe vaccines to address this threat. This study reports the generation and evaluation of a recombinant Lactococcus lactis pool, each strain expressing one of eight ASFV antigens (F317L, H171R, D117L, E120R, B602L, CD2v, p54, and p72). We evaluated the immune responses in mice through oral gavage and intramuscular immunization to the recombinant L. lactis pool. The results show that the mice immunized via intramuscular injection induced high-level serum IgG antibodies within 7 d post-primary immunization, which was maintained over an extended period. Additionally, there was a marked increase in the interferon gamma (IFN-γ) and interleukin 10 (IL-10) levels in the sera. In contrast, the mice immunized via oral gavage did not induce obvious serum IgG antibodies. However, they experienced a transient peak of secretory IgA (sIgA) antibodies in fecal samples within 7 d post-primary immunization, which subsequently decreased to levels that were statistically similar to those in the control group. In addition, this study also found that the multi-antigen cocktail vaccination was safe for mice. This study provides a reference for the development and immunization of ASF vaccines with L. lactis as live carriers.
Collapse
Affiliation(s)
- Jingshan Huang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Tianqi Gao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Dailang Zhong
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Mingzhi Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.H.); (T.G.); (Z.L.); (D.Z.); (M.L.); (H.-J.Q.); (Y.L.)
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Baltà-Foix R, Serrano-Adrover C, López-Cano A, Gifre-Renom L, Sanchez-Chardi A, Arís A, Garcia-Fruitós E. Lactiplantibacillus plantarum: a new example of inclusion body producing bacteria. Microb Cell Fact 2023; 22:111. [PMID: 37296442 PMCID: PMC10251561 DOI: 10.1186/s12934-023-02120-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Lactic Acid Bacteria such as Lactococcus lactis, Latilactobacillus sakei (basonym: Lactobacillus sakei) and Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) have gained importance as recombinant cell factories. Although it was believed that proteins produced in these lipopolysaccharides (LPS)-free microorganisms do not aggregate, it has been shown that L. lactis produce inclusion bodies (IBs) during the recombinant production process. These protein aggregates contain biologically active protein, which is slowly released, being a biomaterial with a broad range of applications including the obtainment of soluble protein. However, the aggregation phenomenon has not been characterized so far in L. plantarum. Thus, the current study aims to determine the formation of protein aggregates in L. plantarum and evaluate their possible applications. RESULTS To evaluate the formation of IBs in L. plantarum, the catalytic domain of bovine metalloproteinase 9 (MMP-9cat) protein has been used as model protein, being a prone-to-aggregate (PTA) protein. The electron microscopy micrographs showed the presence of electron-dense structures in L. plantarum cytoplasm, which were further purified and analyzed. The ultrastructure of the isolated protein aggregates, which were smooth, round and with an average size of 250-300 nm, proved that L. plantarum also forms IBs under recombinant production processes of PTA proteins. Besides, the protein embedded in these aggregates was fully active and had the potential to be used as a source of soluble protein or as active nanoparticles. The activity determination of the soluble protein solubilized from these IBs using non-denaturing protocols proved that fully active protein could be obtained from these protein aggregates. CONCLUSIONS These results proved that L. plantarum forms aggregates under recombinant production conditions. These aggregates showed the same properties as IBs formed in other expression systems such as Escherichia coli or L. lactis. Thus, this places this LPS-free microorganism as an interesting alternative to produce proteins of interest for the biopharmaceutical industry, which are obtained from the IBs in an important number of cases.
Collapse
Affiliation(s)
- Ricardo Baltà-Foix
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Caterina Serrano-Adrover
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Adrià López-Cano
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Laia Gifre-Renom
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Alejandro Sanchez-Chardi
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Anna Arís
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain.
| | - Elena Garcia-Fruitós
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain.
| |
Collapse
|
3
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
4
|
López-Cano A, Bach A, López-Serrano S, Aragon V, Blanch M, Pastor JJ, Tedó G, Morais S, Garcia-Fruitós E, Arís A. Potential of Oral Nanoparticles Containing Cytokines as Intestinal Mucosal Immunostimulants in Pigs: A Pilot Study. Animals (Basel) 2022; 12:ani12091075. [PMID: 35565502 PMCID: PMC9101217 DOI: 10.3390/ani12091075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Antibiotics are essential compounds to cope with bacterial infections. However, their inadequate and excessive use has triggered the rapid arising of antimicrobial-resistant bacteria. In this scenario, immunostimulants, which are molecules that boost the immune system, open up a new approach to face this problem, enhancing treatment efficacy and preventing infections by immune system response. Cytokines are central effector molecules of the immune system, and their recombinant production and administration in animals could be an interesting immune modulation strategy. The aim of this study was the development of a highly stable nanoparticle of porcine cytokines to achieve the immunostimulation of intestinal mucosa in piglets. The outcomes of the present study prove this approach is able to stimulate swine intestinal cells and macrophages in vitro and tends to modulate inflammatory responses in vivo, although further studies are required to definitively evaluate their potential in animals. Abstract Antimicrobial resistance is a global threat that is worryingly rising in the livestock sector. Among the proposed strategies, immunostimulant development appears an interesting approach to increase animal resilience at critical production points. The use of nanoparticles based on cytokine aggregates, called inclusion bodies (IBs), has been demonstrated as a new source of immunostimulants in aquaculture. Aiming to go a step further, the objective of this study was to produce cytokine nanoparticles using a food-grade microorganism and to test their applicability to stimulate intestinal mucosa in swine. Four cytokines (IL-1β, IL-6, IL-8, and TNF-α) involved in inflammatory response were produced recombinantly in Lactococcus lactis in the form of protein nanoparticles (IBs). They were able to stimulate inflammatory responses in a porcine enterocyte cell line (IPEC-J2) and alveolar macrophages, maintaining high stability at low pH and high temperature. In addition, an in vivo assay was conducted involving 20 piglets housed individually as a preliminary exploration of the potential effects of IL-1β nanoparticles in piglet intestinal mucosa after a 7 d oral administration. The treated animals tended to have greater levels of TNF-α in the blood, indicating that the tested dose of nanoparticles tended to generate an inflammatory response in the animals. Whether this response is sufficient to increase animal resilience needs further evaluation.
Collapse
Affiliation(s)
- Adrià López-Cano
- Department of Ruminant Production, Institute of Agriculture and Food Research (IRTA), 08140 Caldes de Montbui, Spain; (A.L.-C.); (A.B.)
| | - Alex Bach
- Department of Ruminant Production, Institute of Agriculture and Food Research (IRTA), 08140 Caldes de Montbui, Spain; (A.L.-C.); (A.B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Sergi López-Serrano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (V.A.)
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Marta Blanch
- Innovation Division, Lucta S.A., Edifici Eureka, UAB Research Park, 08193 Bellaterra, Spain; (M.B.); (J.J.P.); (G.T.); (S.M.)
| | - Jose J. Pastor
- Innovation Division, Lucta S.A., Edifici Eureka, UAB Research Park, 08193 Bellaterra, Spain; (M.B.); (J.J.P.); (G.T.); (S.M.)
| | - Gemma Tedó
- Innovation Division, Lucta S.A., Edifici Eureka, UAB Research Park, 08193 Bellaterra, Spain; (M.B.); (J.J.P.); (G.T.); (S.M.)
| | - Sofia Morais
- Innovation Division, Lucta S.A., Edifici Eureka, UAB Research Park, 08193 Bellaterra, Spain; (M.B.); (J.J.P.); (G.T.); (S.M.)
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Food Research (IRTA), 08140 Caldes de Montbui, Spain; (A.L.-C.); (A.B.)
- Correspondence: (E.G.-F.); (A.A.)
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Food Research (IRTA), 08140 Caldes de Montbui, Spain; (A.L.-C.); (A.B.)
- Correspondence: (E.G.-F.); (A.A.)
| |
Collapse
|
5
|
Li Z, Wang X, Wang J, Yuan X, Jiang X, Wang Y, Zhong C, Xu D, Gu T, Wang F. Bacterial biofilms as platforms engineered for diverse applications. Biotechnol Adv 2022; 57:107932. [DOI: 10.1016/j.biotechadv.2022.107932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022]
|
6
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Garcia-Fruitós E. Recombinant Protein Production and Purification of Insoluble Proteins. Methods Mol Biol 2022; 2406:1-31. [PMID: 35089548 DOI: 10.1007/978-1-0716-1859-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The efficient production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and its growth conditions to minimize the formation of insoluble protein aggregates should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
7
|
Zhang F, Zhang Z, Li X, Li J, Lv J, Ma Z, Pan L. Immune Responses to Orally Administered Recombinant Lactococcus lactis Expressing Multi-Epitope Proteins Targeting M Cells of Foot-and-Mouth Disease Virus. Viruses 2021; 13:v13102036. [PMID: 34696469 PMCID: PMC8537116 DOI: 10.3390/v13102036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Foot and mouth disease virus (FMDV), whose transmission occurs through mucosal surfaces, can also be transmitted through aerosols, direct contact, and pollutants. Therefore, mucosal immunity can efficiently inhibit viral colonization. Since vaccine material delivery into immune sites is important for efficient oral mucosal vaccination, the M cell-targeting approach is important for effective vaccination given M cells are vital for luminal antigen influx into the mucosal lymph tissues. In this study, we coupled M cell-targeting ligand Co1 to multi-epitope TB1 of FMDV to obtain TB1-Co1 in order to improve delivery efficiency of the multi-epitope protein antigen TB1. Lactococcus lactis (L. lactis) was engineered to express heterologous antigens for applications as vaccine vehicles with the ability to elicit mucosal as well as systemic immune responses. We successfully constructed L. lactis (recombinant) with the ability to express multi-epitope antigen proteins (TB1 and TB1-Co1) of the FMDV serotype A (named L. lactis-TB1 and L. lactis-TB1-Co1). Then, we investigated the immunogenic potential of the constructed recombinant L. lactis in mice and guinea pigs. Orally administered L. lactis-TB1 as well as L. lactis-TB1-Co1 in mice effectively induced mucosal secretory IgA (SIgA) and IgG secretion, development of a strong cell-mediated immune reactions, substantial T lymphocyte proliferation in the spleen, and upregulated IL-2, IFN-γ, IL-10, and IL-5 levels. Orally administered ligand-conjugated TB1 promoted specific IgG as well as SIgA responses in systemic and mucosal surfaces, respectively, when compared to orally administered TB1 alone. Then, guinea pigs were orally vaccinated with L. lactis-TB1-Co1 plus adjuvant CpG-ODN at three different doses, L. lactis-TB1-Co1, and PBS. Animals that had been immunized with L. lactis-TB1-Co1 plus adjuvant CpG-ODN and L. lactis-TB1-Co1 developed elevated antigen-specific serum IgG, IgA, neutralizing antibody, and mucosal SIgA levels, when compared to control groups. Particularly, in mice, L. lactis-TB1-Co1 exhibited excellent immune effects than L. lactis-TB1. Therefore, L. lactis-TB1-Co1 can induce elevations in mucosal as well as systemic immune reactions, and to a certain extent, provide protection against FMDV. In conclusion, M cell-targeting approaches can be employed in the development of effective oral mucosa vaccines for FMDV.
Collapse
Affiliation(s)
- Fudong Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (F.Z.); (Z.Z.); (X.L.); (J.L.); (J.L.); (Z.M.)
| | - Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (F.Z.); (Z.Z.); (X.L.); (J.L.); (J.L.); (Z.M.)
| | - Xian Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (F.Z.); (Z.Z.); (X.L.); (J.L.); (J.L.); (Z.M.)
| | - Jiahao Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (F.Z.); (Z.Z.); (X.L.); (J.L.); (J.L.); (Z.M.)
| | - Jianliang Lv
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (F.Z.); (Z.Z.); (X.L.); (J.L.); (J.L.); (Z.M.)
| | - Zhongyuan Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (F.Z.); (Z.Z.); (X.L.); (J.L.); (J.L.); (Z.M.)
| | - Li Pan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (F.Z.); (Z.Z.); (X.L.); (J.L.); (J.L.); (Z.M.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
8
|
Zhao X, Li S, Ding J, Wei J, Tian P, Wei H, Chen T. Combination of an engineered Lactococcus lactis expressing CXCL12 with light-emitting diode yellow light as a treatment for scalded skin in mice. Microb Biotechnol 2021; 14:2090-2100. [PMID: 34310856 PMCID: PMC8449663 DOI: 10.1111/1751-7915.13885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Impaired wound closure is an increasingly crucial clinical challenge. Recently, wound healing has shifted towards innovative treatments that exploit nanotechnology, biomaterials, biologics and phototherapy. Here, we constructed an engineered MG1363-pMG36e-mCXCL12 strain with pMG36e plasmid encoding stromal cell-derived factor 1α (named CXCL12) and evaluated the synergistic effects of light-emitting diode (LED) yellow light and MG1363-pMG36e-mCXCL12 on scald wounds in mice. The results indicated that the combined treatment with LED yellow light with mCXCL12 delivering strain accelerated wound closure, tissue remodelling, re-epithelialization and hair follicle regeneration and inhibited over-inflammation oppositely in the central and surrounding wounds by macroscopic, histopathologic and immunohistochemistry parameters. Furthermore, combination therapy increased the epidermal growth factor and Ki67-positive cells and upregulated beta-catenin (β-catenin), cellular-myelocytomatosis (c-Myc), wingless-type MMTV integration site family member 1 (Wnt1), Jagged 1, neurogenic locus notch homolog protein 1 (Notch 1) and hairy and enhancer of split 1 (Hes 1) protein levels of the Wnt and Notch signalling pathways. It also facilitated collagen fibrogenesis and deposition and improved the activities of hydroxyproline, superoxide dismutase and glutathione peroxidase in scalded granulation tissue, in addition to reducing the inflammatory factors interleukin 1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). The combined treatment effectively reduced skin pathogens Ralstonia and Acinetobacter to further reduce the risk of infection. Overall, combination of LED yellow light and MG1363-pMG36e-mCXCL12 represents a potential strategy for the treatment of cutaneous wounds.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shengjie Li
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jianing Ding
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jing Wei
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Puyuan Tian
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
9
|
Selecting Subpopulations of High-Quality Protein Conformers among Conformational Mixtures of Recombinant Bovine MMP-9 Solubilized from Inclusion Bodies. Int J Mol Sci 2021; 22:ijms22063020. [PMID: 33809594 PMCID: PMC8001920 DOI: 10.3390/ijms22063020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
A detailed workflow to analyze the physicochemical characteristics of mammalian matrix metalloproteinase (MMP-9) protein species obtained from protein aggregates (inclusion bodies-IBs) was followed. MMP-9 was recombinantly produced in the prokaryotic microbial cell factories Clearcoli (an engineered form of Escherichia coli) and Lactococcus lactis, mainly forming part of IBs and partially recovered under non-denaturing conditions. After the purification by affinity chromatography of solubilized MMP-9, four protein peaks were obtained. However, so far, the different conformational protein species forming part of IBs have not been isolated and characterized. Therefore, with the aim to link the physicochemical characteristics of the isolated peaks with their biological activity, we set up a methodological approach that included dynamic light scattering (DLS), circular dichroism (CD), and spectrofluorometric analysis confirming the separation of subpopulations of conformers with specific characteristics. In protein purification procedures, the detailed analysis of the individual physicochemical properties and the biological activity of protein peaks separated by chromatographic techniques is a reliable source of information to select the best-fitted protein populations.
Collapse
|
10
|
Abarghooi Kahaki F, Monzavi S, Bamehr H, Bandani E, Payandeh Z, Jahangiri A, Khalili S. Expression and Purification of Membrane Proteins in Different Hosts. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Nisin M: a Bioengineered Nisin A Variant That Retains Full Induction Capacity but Has Significantly Reduced Antimicrobial Activity. Appl Environ Microbiol 2020; 86:AEM.00984-20. [PMID: 32471915 DOI: 10.1128/aem.00984-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/25/2020] [Indexed: 02/04/2023] Open
Abstract
Nisin A is a potent antimicrobial with potential as an alternative to traditional antibiotics, and a number of genetically modified variants have been created that target clinically relevant pathogens. In addition to antimicrobial activity, nisin autoregulates its own production via a signal transduction pathway, a property that has been exploited in a protein expression system termed the nisin-controlled gene expression (NICE) system. Although NICE has become one of the most popular protein expression systems, one drawback is that the inducer peptide, nisin A, also has inhibitory activity. It has already been demonstrated that the N-terminal region of nisin A contributes to antimicrobial activity and signal transduction properties; therefore, we conducted bioengineering of nisin at positions Pro9 and Gly10 within ring B to produce a bank of variants that could potentially be used as alternative induction peptides. One variant, designated nisin M, has threonines at positions 9 and 10 and retains induction capacity comparable to that of wild-type nisin A, while most of the antimicrobial activity is abolished. Further analysis confirmed that nisin M produces a mix of peptides as a result of different degrees of dehydration of the two threonines. We show that nisin M exhibits potential as a more suitable alternative to nisin A for the expression of proteins that may be difficult to express or for production of proteins in strains that are sensitive to wild-type nisin. Moreover, it may address the increasing demand by industry for optimization of peptide fermentations to increase yields or production rates.IMPORTANCE This study describes the generation of a nisin variant with superior characteristics for use in the NICE protein expression system. The variant, termed nisin M, retains an induction capacity comparable to that of wild-type nisin A but exhibits significantly reduced antimicrobial activity and can therefore be used at concentrations that are normally toxic to the expression host.
Collapse
|
12
|
Carratalá JV, Cano-Garrido O, Sánchez J, Membrado C, Pérez E, Conchillo-Solé O, Daura X, Sánchez-Chardi A, Villaverde A, Arís A, Garcia-Fruitós E, Ferrer-Miralles N. Aggregation-prone peptides modulate activity of bovine interferon gamma released from naturally occurring protein nanoparticles. N Biotechnol 2020; 57:11-19. [PMID: 32028049 DOI: 10.1016/j.nbt.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 01/24/2020] [Accepted: 02/02/2020] [Indexed: 12/28/2022]
Abstract
Efficient protocols for the production of recombinant proteins are indispensable for the development of the biopharmaceutical sector. Accumulation of recombinant proteins in naturally-occurring protein aggregates is detrimental to biopharmaceutical development. In recent years, the view of protein aggregates has changed with the recognition that they are a valuable source of functional recombinant proteins. In this study, bovine interferon-gamma (rBoIFN-γ) was engineered to enhance the formation of protein aggregates, also known as protein nanoparticles (NPs), by the addition of aggregation-prone peptides (APPs) in the generally recognized as safe (GRAS) bacterial Lactococcus lactis expression system. The L6K2, HALRU and CYOB peptides were selected to assess their intrinsic aggregation capability to nucleate protein aggregation. These APPs enhanced the tendency of the resulting protein to aggregate at the expense of total protein yield. However, fine physico-chemical characterization of the resulting intracellular protein NPs, the protein released from them and the protein purified from the soluble cell fraction indicated that the compactability of protein conformations was directly related to the biological activity of variants of IFN-γ, used here as a model protein with therapeutic potential. APPs enhanced the aggregation tendency of fused rBoIFN-γ while increasing compactability of protein species. Biological activity of rBoIFN-γ was favored in more compacted conformations. Naturally-occurring protein aggregates can be produced in GRAS microorganisms as protein depots of releasable active protein. The addition of APPs to enhance the aggregation tendency has a positive impact in overall compactability and functionality of resulting protein conformers.
Collapse
Affiliation(s)
- José Vicente Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Olivia Cano-Garrido
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Julieta Sánchez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Cristina Membrado
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Eudald Pérez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Xavier Daura
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain and Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antonio Villaverde
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, Barcelona, Spain.
| |
Collapse
|
13
|
Engineering Biology to Construct Microbial Chassis for the Production of Difficult-to-Express Proteins. Int J Mol Sci 2020; 21:ijms21030990. [PMID: 32024292 PMCID: PMC7037952 DOI: 10.3390/ijms21030990] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
A large proportion of the recombinant proteins manufactured today rely on microbe-based expression systems owing to their relatively simple and cost-effective production schemes. However, several issues in microbial protein expression, including formation of insoluble aggregates, low protein yield, and cell death are still highly recursive and tricky to optimize. These obstacles are usually rooted in the metabolic capacity of the expression host, limitation of cellular translational machineries, or genetic instability. To this end, several microbial strains having precisely designed genomes have been suggested as a way around the recurrent problems in recombinant protein expression. Already, a growing number of prokaryotic chassis strains have been genome-streamlined to attain superior cellular fitness, recombinant protein yield, and stability of the exogenous expression pathways. In this review, we outline challenges associated with heterologous protein expression, some examples of microbial chassis engineered for the production of recombinant proteins, and emerging tools to optimize the expression of heterologous proteins. In particular, we discuss the synthetic biology approaches to design and build and test genome-reduced microbial chassis that carry desirable characteristics for heterologous protein expression.
Collapse
|
14
|
Chan CJ, Yong YS, Song AAL, Abdul Rahim R, In LLA, Lim RLH. Lactococcus lactis harbouring Ara h 2.02 alleviates allergen-specific Th2-associated responses in sensitized mice. J Appl Microbiol 2019; 128:862-874. [PMID: 31758869 DOI: 10.1111/jam.14524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
AIM To study the prophylactic effect of recombinant Lactococcus lactis (rLl) harbouring Ara h 2.02 peanut allergen, in sensitized and challenged mice. METHODS AND RESULTS Ara h 2.02 cDNA was cloned into pNZ8048 for heterologous expression in L. lactis. The purified recombinant allergen showed IgE binding comparable with native Ara h 2. Balb/c mice were fed with either recombinant (rLl), nonrecombinant L. lactis (Ll) or NaHCO3 (Sham) prior to sensitization and challenged with rAra h 2.02, whereas the baseline group was only fed with Ll. Allergen-specific immunoglobulin and splenocyte cytokines responses were determined for each mouse. Mice fed with either Ll or rLl showed significant alleviation of IgE and IgG1 compared to the Sham group. Despite no significant decrease in Th2 (IL-4, IL-13, IL-6) or increase in Th1 (IFN-γ) cytokines, both groups showed lower IL-10 level, while the IL-4 : IFN-γ ratio was significantly lower for rLl compared to Ll group. CONCLUSIONS Oral administration of rLl harbouring Ara h 2.02 demonstrated alleviation of Th2-associated responses in allergen-challenged mice and a possible added allergen-specific prophylactic effect. SIGNIFICANCE AND IMPACT OF THE STUDY Ara h 2.02 coupled with the intrinsic properties of probiotic L. lactis as a delivery vehicle can be explored for the development of a commercially scalable vaccine.
Collapse
Affiliation(s)
- C J Chan
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| | - Y S Yong
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| | - A A L Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - R Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - L L A In
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| | - R L H Lim
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Natochii T, Motronenko V. Comparative Characteristics of Biotechnological Approaches to Obtaining Recombinant Human Cytokines in Bacterial Expressing Systems. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2019. [DOI: 10.20535/ibb.2019.3.3.170150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
16
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
17
|
Gifre-Renom L, Cano-Garrido O, Fàbregas F, Roca-Pinilla R, Seras-Franzoso J, Ferrer-Miralles N, Villaverde A, Bach À, Devant M, Arís A, Garcia-Fruitós E. A new approach to obtain pure and active proteins from Lactococcus lactis protein aggregates. Sci Rep 2018; 8:13917. [PMID: 30224788 PMCID: PMC6141594 DOI: 10.1038/s41598-018-32213-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/15/2018] [Indexed: 11/25/2022] Open
Abstract
The production of pure and soluble proteins is a complex, protein-dependent and time-consuming process, in particular for those prone-to-aggregate and/or difficult-to-purify. Although Escherichia coli is widely used for protein production, recombinant products must be co-purified through costly processes to remove lipopolysaccharide (LPS) and minimize adverse effects in the target organism. Interestingly, Lactococcus lactis, which does not contain LPS, could be a promising alternative for the production of relevant proteins. However, to date, there is no universal strategy to produce and purify any recombinant protein, being still a protein-specific process. In this context and considering that L. lactis is also able to form functional protein aggregates under overproduction conditions, we explored the use of these aggregates as an alternative source of soluble proteins. In this study, we developed a widely applicable and economically affordable protocol to extract functional proteins from these nanoclusters. For that, two model proteins were used: mammary serum amyloid A3 (M-SAA3) and metalloproteinase 9 (MMP-9), a difficult-to-purify and a prone-to-aggregate protein, respectively. The results show that it is possible to obtain highly pure, soluble, LPS-free and active recombinant proteins from L. lactis aggregates through a cost-effective and simple protocol with special relevance for difficult-to-purify or highly aggregated proteins.
Collapse
Affiliation(s)
- L Gifre-Renom
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - O Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain
| | - F Fàbregas
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - R Roca-Pinilla
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - J Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain.,Cibbim-Nanomedicine, Hospital Vall d'Hebron, Institut de Recerca de la Vall d'Hebron (VHIR), 08035, Barcelona, Spain
| | - N Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain
| | - A Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Cerdanyola del Vallès, Spain
| | - À Bach
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M Devant
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain
| | - A Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain.
| | - E Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140, Caldes de Montbui, Spain.
| |
Collapse
|
18
|
Mancha-Agresti P, Drumond MM, Carmo FLRD, Santos MM, Santos JSCD, Venanzi F, Chatel JM, Leclercq SY, Azevedo V. A New Broad Range Plasmid for DNA Delivery in Eukaryotic Cells Using Lactic Acid Bacteria: In Vitro and In Vivo Assays. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:83-91. [PMID: 28344994 PMCID: PMC5363290 DOI: 10.1016/j.omtm.2016.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
Lactococcus lactis is well documented as a promising candidate for development of novel oral live vaccines. It has been broadly engineered for heterologous expression, as well as for plasmid expression vector delivery, directly inside eukaryotic cells, for DNA vaccine, or as therapeutic vehicle. This work describes the characteristics of a new plasmid, pExu (extra chromosomal unit), for DNA delivery using L. lactis and evaluates its functionality both by in vitro and in vivo assays. This plasmid exhibits the following features: (1) a theta origin of replication and (2) an expression cassette containing a multiple cloning site and a eukaryotic promoter, the cytomegalovirus (pCMV). The functionality of pExu:egfp was evaluated by fluorescence microscopy. The L. lactis MG1363 (pExu:egfp) strains were administered by gavage to Balb/C mice and the eGFP expression was monitored by fluorescence microscopy. The pExu vector has demonstrated an excellent stability either in L. lactis or in Escherichia coli. The eGFP expression at different times in in vitro assay showed that 15.8% of CHO cells were able to express the protein after transfection. The enterocytes of mice showed the expression of eGFP protein. Thus, L. lactis carrying the pExu is a good candidate to deliver genes into eukaryotic cells.
Collapse
Affiliation(s)
- Pamela Mancha-Agresti
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (ICB/UFMG), 31270-901 Belo Horizonte, Brazil
| | - Mariana Martins Drumond
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (ICB/UFMG), 31270-901 Belo Horizonte, Brazil; CEFET - Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, Campus I, 30421-169 Belo Horizonte, Brazil
| | - Fillipe Luiz Rosa do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (ICB/UFMG), 31270-901 Belo Horizonte, Brazil
| | - Monica Morais Santos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (ICB/UFMG), 31270-901 Belo Horizonte, Brazil
| | | | - Franco Venanzi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Jean-Marc Chatel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sophie Yvette Leclercq
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel Dias (FUNED), Belo Horizonte, 30510-010 Minas Gerais, Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (ICB/UFMG), 31270-901 Belo Horizonte, Brazil
| |
Collapse
|
19
|
Cano-Garrido O, Sánchez-Chardi A, Parés S, Giró I, Tatkiewicz WI, Ferrer-Miralles N, Ratera I, Natalello A, Cubarsi R, Veciana J, Bach À, Villaverde A, Arís A, Garcia-Fruitós E. Functional protein-based nanomaterial produced in microorganisms recognized as safe: A new platform for biotechnology. Acta Biomater 2016; 43:230-239. [PMID: 27452157 DOI: 10.1016/j.actbio.2016.07.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Inclusion bodies (IBs) are protein-based nanoparticles formed in Escherichia coli through stereospecific aggregation processes during the overexpression of recombinant proteins. In the last years, it has been shown that IBs can be used as nanostructured biomaterials to stimulate mammalian cell attachment, proliferation, and differentiation. In addition, these nanoparticles have also been explored as natural delivery systems for protein replacement therapies. Although the production of these protein-based nanomaterials in E. coli is economically viable, important safety concerns related to the presence of endotoxins in the products derived from this microorganism need to be addressed. Lactic acid bacteria (LAB) are a group of food-grade microorganisms that have been classified as safe by biologically regulatory agencies. In this context, we have demonstrated herein, for the first time, the production of fully functional, IB-like protein nanoparticles in LAB. These nanoparticles have been fully characterized using a wide range of techniques, including field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, zymography, cytometry, confocal microscopy, and wettability and cell coverage measurements. Our results allow us to conclude that these materials share the main physico-chemical characteristics with IBs from E. coli and moreover are devoid of any harmful endotoxin contaminant. These findings reveal a new platform for the production of protein-based safe products with high pharmaceutical interest. STATEMENT OF SIGNIFICANCE The development of both natural and synthetic biomaterials for biomedical applications is a field in constant development. In this context, E. coli is a bacteria that has been widely studied for its ability to naturally produce functional biomaterials with broad biomedical uses. Despite being effective, products derived from this species contain membrane residues able to trigger a non-desired immunogenic responses. Accordingly, exploring alternative bacteria able to synthesize such biomaterials in a safe molecular environment is becoming a challenge. Thus, the present study describes a new type of functional protein-based nanomaterial free of toxic contaminants with a wide range of applications in both human and veterinary medicine.
Collapse
|
20
|
Rueda F, Gasser B, Sánchez-Chardi A, Roldán M, Villegas S, Puxbaum V, Ferrer-Miralles N, Unzueta U, Vázquez E, Garcia-Fruitós E, Mattanovich D, Villaverde A. Functional inclusion bodies produced in the yeast Pichia pastoris. Microb Cell Fact 2016; 15:166. [PMID: 27716225 PMCID: PMC5045588 DOI: 10.1186/s12934-016-0565-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bacterial inclusion bodies (IBs) are non-toxic protein aggregates commonly produced in recombinant bacteria. They are formed by a mixture of highly stable amyloid-like fibrils and releasable protein species with a significant extent of secondary structure, and are often functional. As nano structured materials, they are gaining biomedical interest because of the combination of submicron size, mechanical stability and biological activity, together with their ability to interact with mammalian cell membranes for subsequent cell penetration in absence of toxicity. Since essentially any protein species can be obtained as IBs, these entities, as well as related protein clusters (e.g., aggresomes), are being explored in biocatalysis and in biomedicine as mechanically stable sources of functional protein. One of the major bottlenecks for uses of IBs in biological interfaces is their potential contamination with endotoxins from producing bacteria. RESULTS To overcome this hurdle, we have explored here the controlled production of functional IBs in the yeast Pichia pastoris (Komagataella spp.), an endotoxin-free host system for recombinant protein production, and determined the main physicochemical and biological traits of these materials. Quantitative and qualitative approaches clearly indicate the formation of IBs inside yeast, similar in morphology, size and biological activity to those produced in E. coli, that once purified, interact with mammalian cell membranes and penetrate cultured mammalian cells in absence of toxicity. CONCLUSIONS Structurally and functionally similar from those produced in E. coli, the controlled production of IBs in P. pastoris demonstrates that yeasts can be used as convenient platforms for the biological fabrication of self-organizing protein materials in absence of potential endotoxin contamination and with additional advantages regarding, among others, post-translational modifications often required for protein functionality.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Brigitte Gasser
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Mònica Roldán
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Verena Puxbaum
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, C/Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
21
|
Cano-Garrido O, Céspedes MV, Unzueta U, Saccardo P, Roldán M, Sánchez-Chardi A, Cubarsi R, Vázquez E, Mangues R, García-Fruitós E, Villaverde A. CXCR4(+)-targeted protein nanoparticles produced in the food-grade bacterium Lactococcus lactis. Nanomedicine (Lond) 2016; 11:2387-98. [PMID: 27529439 DOI: 10.2217/nnm-2016-0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Lactococcus lactis is a Gram-positive (endotoxin-free) food-grade bacteria exploited as alternative to Escherichia coli for recombinant protein production. We have explored here for the first time the ability of this platform as producer of complex, self-assembling protein materials. MATERIALS & METHODS Biophysical properties, cell penetrability and in vivo biodistribution upon systemic administration of tumor-targeted protein nanoparticles produced in L. lactis have been compared with the equivalent material produced in E. coli. RESULTS Protein nanoparticles have been efficiently produced in L. lactis, showing the desired size, internalization properties and biodistribution. CONCLUSION In vitro and in vivo data confirm the potential and robustness of the production platform, pointing out L. lactis as a fascinating cell factory for the biofabrication of protein materials intended for therapeutic applications.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Oncogenesis & Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu I Sant Pau, 08025 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Oncogenesis & Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu I Sant Pau, 08025 Barcelona, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Mònica Roldán
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Rafael Cubarsi
- Departament de Matemàtica Aplicada IV. Universitat Politècnica de Catalunya. Jordi Girona 1-3. 08034 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ramon Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Oncogenesis & Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu I Sant Pau, 08025 Barcelona, Spain
| | - Elena García-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
22
|
Tools to cope with difficult-to-express proteins. Appl Microbiol Biotechnol 2016; 100:4347-55. [DOI: 10.1007/s00253-016-7514-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
|
23
|
Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. Sci Rep 2016; 6:21809. [PMID: 26902619 PMCID: PMC4763179 DOI: 10.1038/srep21809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023] Open
Abstract
Lactococcus lactis, a non-pathogenic bacteria, has been genetically engineered to express the III7–10 fragment of human fibronectin as a membrane protein. The engineered L. lactis is able to develop biofilms on different surfaces (such as glass and synthetic polymers) and serves as a long-term substrate for mammalian cell culture, specifically human mesenchymal stem cells (hMSC). This system constitutes a living interface between biomaterials and stem cells. The engineered biofilms remain stable and viable for up to 28 days while the expressed fibronectin fragment induces hMSC adhesion. We have optimised conditions to allow long-term mammalian cell culture, and found that the biofilm is functionally equivalent to a fibronectin-coated surface in terms of osteoblastic differentiation using bone morphogenetic protein 2 (BMP-2) added to the medium. This living bacteria interface holds promise as a dynamic substrate for stem cell differentiation that can be further engineered to express other biochemical cues to control hMSC differentiation.
Collapse
|
24
|
Sanchez-Garcia L, Martín L, Mangues R, Ferrer-Miralles N, Vázquez E, Villaverde A. Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact 2016; 15:33. [PMID: 26861699 PMCID: PMC4748523 DOI: 10.1186/s12934-016-0437-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/01/2016] [Indexed: 01/01/2023] Open
Abstract
Diabetes, growth or clotting disorders are among the spectrum of human diseases related to protein absence or malfunction. Since these pathologies cannot be yet regularly treated by gene therapy, the administration of functional proteins produced ex vivo is required. As both protein extraction from natural producers and chemical synthesis undergo inherent constraints that limit regular large-scale production, recombinant DNA technologies have rapidly become a choice for therapeutic protein production. The spectrum of organisms exploited as recombinant cell factories has expanded from the early predominating Escherichia coli to alternative bacteria, yeasts, insect cells and especially mammalian cells, which benefit from metabolic and protein processing pathways similar to those in human cells. Up to date, around 650 protein drugs have been worldwide approved, among which about 400 are obtained by recombinant technologies. Other 1300 recombinant pharmaceuticals are under development, with a clear tendency towards engineered versions with improved performance and new functionalities regarding the conventional, plain protein species. This trend is exemplified by the examination of the contemporary protein-based drugs developed for cancer treatment.
Collapse
Affiliation(s)
- Laura Sanchez-Garcia
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Lucas Martín
- Technology Transfer Office, Edifici Eureka, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Ramon Mangues
- Institut d'Investigacions Biomèdiques Sant Pau, Josep Carreras Research Institute and CIBER-BBN, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
25
|
Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis. Microb Cell Fact 2015; 14:208. [PMID: 26715338 PMCID: PMC4696319 DOI: 10.1186/s12934-015-0399-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lactococcus lactis has been safely consumed in fermented foods for millennia. This Gram-positive bacterium has now become of industrial importance as an expression host for the overproduction of lipopolysaccharide-free recombinant proteins used as food ingredients, therapeutic proteins and biotechnological enzymes. RESULTS This paper reports an agmatine-controlled expression (ACE) system for L. lactis, comprising the lactococcal agmatine-sensor/transcriptional activator AguR and its target promoter P(aguB). The usefulness and efficiency of this system was checked via the reporter gene gfp and by producing PEP (Myxococcus xanthus prolyl-endopeptidase), an enzyme of biomedical interest able to degrade the immunotoxic peptides produced during the gastrointestinal breakdown of gluten. CONCLUSION The ACE system developed in this work was suitable for the efficient expression of the functional recombinant proteins GFP and PEP. The expression system was tightly regulated by the agmatine concentration and allowed high protein production without leakiness.
Collapse
|