1
|
Kanai M, Shibata T, Zhou Y, Hayashi R, Fukuba I, Kochi T, Teramoto S, Shimoi H, Takahashi H, Akao T. Efficient genes identification via quantitative trait loci analysis by crossbreeding of sake and laboratory yeast. Appl Microbiol Biotechnol 2025; 109:84. [PMID: 40198396 PMCID: PMC11978678 DOI: 10.1007/s00253-025-13470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Saccharomyces cerevisiae, a unicellular eukaryotic microorganism, includes various strains used in alcoholic beverage production, like sake, shochu/awamori, and wine yeasts. Despite being the same "Saccharomyces cerevisiae", each strain has unique genes and mutations that make them suitable for specific production processes. We focused on sake yeast, Saccharomyces cerevisiae, suitable for sake making. To identify genes and mutations contributing to sake yeast's characteristics more efficiently, we improved the quantitative trait loci (QTL) analysis system. This genetic statistical method used spore-separating haploid strains (F1 segregant haploids) from crossing sake yeast and laboratory yeast haploid strains. We increased the number of F1 segregant haploids for QTL analysis from 100 to 400 and set DNA markers uniformly across the genome (approximately 12 Mbp) at 5,267 locations using single nucleotide polymorphisms (SNPs) spaced about 3 kb apart. Additionally, a small-scale sake making test using 400 F1 segregant haploids and QTL analysis of ethanol concentration in sake sample identified the PBS2 gene and its causative mutation (amino acid substitution at position 545). The PBS2 gene was also implicated in producing organic acids (fumaric, succinic, and malic acids) and inorganic acids (phosphoric acid) for sake. These findings validated the improved QTL analysis system as effective genes screening method. KEY POINTS: • A new QTL analysis system was constructed using sake and laboratory yeast. • PBS2 gene involved in the ethanol-producing capacity of Saccharomyces cerevisiae was identified. • PBS2 gene was also involved in the organic acid concentration in sake.
Collapse
Affiliation(s)
- Muneyoshi Kanai
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Tomoko Shibata
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Yan Zhou
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Risa Hayashi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Ikuko Fukuba
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Takayuki Kochi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Satoko Teramoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Hitoshi Shimoi
- The Brewing Society of Japan, 2-6-30 Takinogawa, Kita-Ku, Tokyo, 114-0023, Japan
| | - Hidekazu Takahashi
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima, 960-1296, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
2
|
Salas-Millán JÁ, Aguayo E. Fermentation for Revalorisation of Fruit and Vegetable By-Products: A Sustainable Approach Towards Minimising Food Loss and Waste. Foods 2024; 13:3680. [PMID: 39594095 PMCID: PMC11594132 DOI: 10.3390/foods13223680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
In a world increasingly focused on sustainability and integrated resource use, the revalorisation of horticultural by-products is emerging as a key strategy to minimise food loss and waste while maximising value within the food supply chain. Fermentation, one of the earliest and most versatile food processing techniques, utilises microorganisms or enzymes to induce desirable biochemical transformations that enhance the nutritional value, digestibility, safety, and sensory properties of food products. This process has been identified as a promising method for producing novel, high-value food products from discarded or non-aesthetic fruits and vegetables that fail to meet commercial standards due to aesthetic factors such as size or appearance. Besides waste reduction, fermentation enables the production of functional beverages and foods enriched with probiotics, antioxidants, and other bioactive compounds, depending on the specific horticultural matrix and the types of microorganisms employed. This review explores the current bioprocesses used or under investigation, such as alcoholic, lactic, and acetic acid fermentation, for the revalorisation of fruit and vegetable by-products, with particular emphasis on how fermentation can transform these by-products into valuable foods and ingredients for human consumption, contributing to a more sustainable and circular food system.
Collapse
Affiliation(s)
- José Ángel Salas-Millán
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla Del Mar, 30202 Cartagena, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla Del Mar, 30202 Cartagena, Spain
| |
Collapse
|
3
|
Yan W, Li Y, Louis EJ, Kyriacou CP, Hu Y, Cordell RL, Xie X. Quantitative genetic analysis of attractiveness of yeast products to Drosophila. Genetics 2024; 227:iyae048. [PMID: 38560786 PMCID: PMC11151935 DOI: 10.1093/genetics/iyae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
An attractive perfume is a complex mixture of compounds, some of which may be unpleasant on their own. This is also true for the volatile combinations from yeast fermentation products in vineyards and orchards when assessed by Drosophila. Here, we used crosses between a yeast strain with an attractive fermentation profile and another strain with a repulsive one and tested fly responses using a T-maze. QTL analysis reveals allelic variation in four yeast genes, namely PTC6, SAT4, YFL040W, and ARI1, that modulated expression levels of volatile compounds [assessed by gas chromatography-mass spectrometry (GC-MS)] and in different combinations, generated various levels of attractiveness. The parent strain that is more attractive to Drosophila has repulsive alleles at two of the loci, while the least attractive parent has attractive alleles. Behavioral assays using artificial mixtures mimicking the composition of odors from fermentation validated the results of GC-MS and QTL mapping, thereby directly connecting genetic variation in yeast to attractiveness in flies. This study can be used as a basis for dissecting the combination of olfactory receptors that mediate the attractiveness/repulsion of flies to yeast volatiles and may also serve as a model for testing the attractiveness of pest species such as Drosophila suzukii to their host fruit.
Collapse
Affiliation(s)
- Weiru Yan
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Yishen Li
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Edward J Louis
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | - Yue Hu
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Rebecca L Cordell
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Xiaodong Xie
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
De Guidi I, Galeote V, Blondin B, Legras JL. Copper-based grape pest management has impacted wine aroma. Sci Rep 2024; 14:10124. [PMID: 38698114 PMCID: PMC11066116 DOI: 10.1038/s41598-024-60335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Despite the high energetic cost of the reduction of sulfate to H2S, required for the synthesis of sulfur-containing amino acids, some wine Saccharomyces cerevisiae strains have been reported to produce excessive amounts of H2S during alcoholic fermentation, which is detrimental to wine quality. Surprisingly, in the presence of sulfite, used as a preservative, wine strains produce more H2S than wild (oak) or wine velum (flor) isolates during fermentation. Since copper resistance caused by the amplification of the sulfur rich protein Cup1p is a specific adaptation trait of wine strains, we analyzed the link between copper resistance mechanism, sulfur metabolism and H2S production. We show that a higher content of copper in the must increases the production of H2S, and that SO2 increases the resistance to copper. Using a set of 51 strains we observed a positive and then negative relation between the number of copies of CUP1 and H2S production during fermentation. This complex pattern could be mimicked using a multicopy plasmid carrying CUP1, confirming the relation between copper resistance and H2S production. The massive use of copper for vine sanitary management has led to the selection of resistant strains at the cost of a metabolic tradeoff: the overproduction of H2S, resulting in a decrease in wine quality.
Collapse
Affiliation(s)
- Irene De Guidi
- SPO, INRAE, Institut Agro, Université de Montpellier, 34060, Montpellier, France
| | - Virginie Galeote
- SPO, INRAE, Institut Agro, Université de Montpellier, 34060, Montpellier, France
| | - Bruno Blondin
- SPO, INRAE, Institut Agro, Université de Montpellier, 34060, Montpellier, France
| | - Jean-Luc Legras
- SPO, INRAE, Institut Agro, Université de Montpellier, 34060, Montpellier, France.
| |
Collapse
|
5
|
Long Y, Han X, Meng X, Xu P, Tao F. A robust yeast chassis: comprehensive characterization of a fast-growing Saccharomyces cerevisiae. mBio 2024; 15:e0319623. [PMID: 38214535 PMCID: PMC10865977 DOI: 10.1128/mbio.03196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Robust chassis are critical to facilitate advances in synthetic biology. This study describes a comprehensive characterization of a new yeast isolate Saccharomyces cerevisiae XP that grows faster than commonly used research and industrial S. cerevisiae strains. The genomic, transcriptomic, and metabolomic analyses suggest that the fast growth rate is, in part, due to the efficient electron transport chain and key growth factor synthesis. A toolbox for genetic manipulation of the yeast was developed; we used it to construct l-lactic acid producers for high lactate production. The development of genetically malleable yeast strains that grow faster than currently used strains may significantly enhance the uses of S. cerevisiae in biotechnology.IMPORTANCEYeast is known as an outstanding starting strain for constructing microbial cell factories. However, its growth rate restricts its application. A yeast strain XP, which grows fast in high concentrations of sugar and acidic environments, is revealed to demonstrate the potential in industrial applications. A toolbox was also built for its genetic manipulation including gene insertion, deletion, and ploidy transformation. The knowledge of its metabolism, which could guide the designing of genetic experiments, was generated with multi-omics analyses. This novel strain along with its toolbox was then tested by constructing an l-lactic acid efficient producer, which is conducive to the development of degradable plastics. This study highlights the remarkable competence of nonconventional yeast for applications in biotechnology.
Collapse
Affiliation(s)
- Yangdanyu Long
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Han
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuanlin Meng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
De Guidi I, Serre C, Noble J, Ortiz-Julien A, Blondin B, Legras JL. QTL mapping reveals novel genes and mechanisms underlying variations in H2S production during alcoholic fermentation in Saccharomyces cerevisiae. FEMS Yeast Res 2024; 24:foad050. [PMID: 38124683 PMCID: PMC11090286 DOI: 10.1093/femsyr/foad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Saccharomyces cerevisiae requirement for reduced sulfur to synthesize methionine and cysteine during alcoholic fermentation, is mainly fulfilled through the sulfur assimilation pathway. Saccharomyces cerevisiae reduces sulfate into sulfur dioxide (SO2) and sulfide (H2S), whose overproduction is a major issue in winemaking, due to its negative impact on wine aroma. The amount of H2S produced is highly strain-specific and also depends on SO2 concentration, often added to grape must. Applying a bulk segregant analysis to a 96-strain-progeny derived from two strains with different abilities to produce H2S, and comparing allelic frequencies along the genome of pools of segregants producing contrasting H2S quantities, we identified two causative regions involved in H2S production in the presence of SO2. A functional genetic analysis allowed the identification of variants in four genes able to impact H2S formation, viz; ZWF1, ZRT2, SNR2, and YLR125W, and involved in functions and pathways not associated with sulfur metabolism until now. These data point out that, in wine fermentation conditions, redox status, and zinc homeostasis are linked to H2S formation while providing new insights into the regulation of H2S production, and a new vision of the interplay between the sulfur assimilation pathway and cell metabolism.
Collapse
Affiliation(s)
- Irene De Guidi
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Céline Serre
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | | | | | - Bruno Blondin
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Jean-Luc Legras
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
7
|
Chemical Methods for Microbiological Control of Winemaking: An Overview of Current and Future Applications. BEVERAGES 2022. [DOI: 10.3390/beverages8030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preservation technologies for winemaking have relied mainly on the addition of sulfur dioxide (SO2), in consequence of the large spectrum of action of this compound, linked to the control of undesirable microorganisms and the prevention of oxidative phenomena. However, its potential negative effects on consumer health have addressed the interest of the international research on alternative treatments to substitute or minimize the SO2 content in grape must and wine. This review is aimed at analyzing chemical methods, both traditional and innovative, useful for the microbiological stabilization of wine. After a preliminary description of the antimicrobial and technological properties of SO2, the additive traditionally used during wine production, the effects of the addition (in must and wine) of other compounds officially permitted in winemaking, such as sorbic acid, dimethyl dicarbonate (DMDC), lysozyme and chitosan, are discussed and evaluated. Furthermore, other substances showing antimicrobial properties, for which the use for wine microbiological stabilization is not yet permitted in EU, are investigated. Even if these treatments exhibit a good efficacy, a single compound able to completely replace SO2 is not currently available, but a combination of different procedures might be useful to reduce the sulfite content in wine. Among the strategies proposed, particular interest is directed towards the use of insect-based chitosan as a reliable alternative to SO2, mainly due to its low environmental impact. The production of wines containing low sulfite levels by using pro-environmental practices can meet both the consumers’ expectations, who are even more interested in the healthy traits of foods, and wine-producers’ needs, who are interested in the use of sustainable practices to promote the profile of their brand.
Collapse
|
8
|
Polygenic Analysis of Tolerance to Carbon Dioxide Inhibition of Isoamyl Acetate "Banana" Flavor Production in Yeast Reveals MDS3 as Major Causative Gene. Appl Environ Microbiol 2022; 88:e0081422. [PMID: 36073947 PMCID: PMC9499027 DOI: 10.1128/aem.00814-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The introduction in modern breweries of tall cylindroconical fermentors, replacing the traditional open fermentation vats, unexpectedly revealed strong inhibition of flavor production by the high CO2 pressure in the fermentors. We have screened our collection of Saccharomyces cerevisiae strains for strains displaying elevated tolerance to inhibition of flavor production by +0.65 bar CO2, using a laboratory scale CO2 pressurized fermentation system. We focused on the production of isoamyl acetate, a highly desirable flavor compound conferring fruity banana flavor in beer and other alcoholic beverages, from its precursor isoamyl alcohol (IAAc/Alc ratio). We selected the most tolerant Saccharomyces cerevisiae strain, saké yeast Kyokai no. 1, isolated a stable haploid segregant seg63 with the same high IAAc/Alc ratio under CO2 pressure, crossed seg63 with the unrelated inferior strain ER7A and phenotyped 185 haploid segregants, of which 28 displaying a high IAAc/Alc ratio were pooled. Mapping of Quantitative Trait Loci (QTLs) by whole-genome sequence analysis based on SNP variant frequency revealed two QTLs. In the major QTL, reciprocal hemizygosity analysis identified MDS3 as the causative mutant gene, a putative member of the TOR signaling pathway. The MDS3Seg.63 allele was dominant and contained a single causative point mutation, T2171C, resulting in the F274S substitution. Introduction of MDS3Seg.63 in an industrial tetraploid lager yeast with CRISPR/Cas9 enhanced isoamyl acetate production by 145% under CO2 pressure. This work shows the strong potential of polygenic analysis and targeted genetic modification for creation of cisgenic industrial brewer's yeast strains with specifically improved traits. IMPORTANCE The upscaling of fermentation to very tall cylindroconical tanks is known to negatively impact beer flavor. Most notably, the increased CO2 pressure in such tanks compromises production by the yeast of the desirable fruity “banana” flavor (isoamyl acetate). The cause of the CO2 inhibition of yeast flavor production has always remained enigmatic. Our work has brought the first insight into its molecular-genetic basis and provides a specific gene tool for yeast strain improvement. We first identified a yeast strain with superior tolerance to CO2 inhibition of flavor production, and applied polygenic analysis to identify the responsible gene. We narrowed down the causative element to a single nucleotide difference, MDS3T2171C, and showed that it can be engineered into brewing yeast to obtain strains with superior flavor production in high CO2 pressure conditions, apparently without affecting other traits relevant for beer brewing. Alternatively, such a strain could be obtained through marker-assisted breeding.
Collapse
|
9
|
Huang CW, Deed RC, Parish-Virtue K, Pilkington LI, Walker ME, Jiranek V, Fedrizzi B. Characterization of polysulfides in Saccharomyces cerevisiae cells and finished wine from a cysteine-supplemented model grape medium. Food Microbiol 2022; 109:104124. [DOI: 10.1016/j.fm.2022.104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
|
10
|
Genetic bases for the metabolism of the DMS precursor S-methylmethionine by Saccharomyces cerevisiae. Food Microbiol 2022; 106:104041. [DOI: 10.1016/j.fm.2022.104041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023]
|
11
|
Development of a New Assay for Measuring H2S Production during Alcoholic Fermentation: Application to the Evaluation of the Main Factors Impacting H2S Production by Three Saccharomycescerevisiae Wine Strains. FERMENTATION 2021. [DOI: 10.3390/fermentation7040213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide (H2S) is the main volatile sulfur compound produced by Saccharomycescerevisiae during alcoholic fermentation and its overproduction leads to poor wine sensory profiles. Several factors modulate H2S production and winemakers and researchers require an easy quantitative tool to quantify their impact. In this work, we developed a new sensitive method for the evaluation of total H2S production during alcoholic fermentation using a metal trap and a fluorescent probe. With this method, we evaluated the combined impact of three major factors influencing sulfide production by wine yeast during alcoholic fermentation: assimilable nitrogen, sulfur dioxide and strain, using a full factorial experimental design. All three factors significantly impacted H2S production, with variations according to strains. This method enables large experimental designs for the better understanding of sulfide production by yeasts during fermentation.
Collapse
|
12
|
Simbaña J, Portero-Barahona P, Carvajal Barriga EJ. Wild Ecuadorian Saccharomyces cerevisiae Strains and Their Potential in the Malt-Based Beverages Industry. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1945366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jennifer Simbaña
- Neotropical Center for Biomass Research, Pontificia Universidad Católica del Ecuador, The Catholic University Yeasts Collection-Quito, Quito, Ecuador
| | - Patricia Portero-Barahona
- Neotropical Center for Biomass Research, Pontificia Universidad Católica del Ecuador, The Catholic University Yeasts Collection-Quito, Quito, Ecuador
| | - Enrique Javier Carvajal Barriga
- Neotropical Center for Biomass Research, Pontificia Universidad Católica del Ecuador, The Catholic University Yeasts Collection-Quito, Quito, Ecuador
| |
Collapse
|
13
|
Jimenez-Lorenzo R, Bloem A, Farines V, Sablayrolles JM, Camarasa C. How to modulate the formation of negative volatile sulfur compounds during wine fermentation? FEMS Yeast Res 2021; 21:6311812. [PMID: 34191008 PMCID: PMC8310686 DOI: 10.1093/femsyr/foab038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Beyond the production of positive aromas during alcoholic fermentation, Saccharomyces cerevisiae metabolism also results in the formation of volatile compounds detrimental to wine quality, including a wide range of volatile sulfur compounds (VSCs). The formation of these VSCs during wine fermentation is strongly variable and depends on biological and environmental factors. First, the comparison of the VSCs profile of 22 S. cerevisiae strains provided a comprehensive overview of the intra-species diversity in VSCs production: according to their genetic background, strains synthetized from 1 to 6 different sulfur molecules, in a 1- to 30-fold concentration range. The impact of fermentation parameters on VSCs production was then investigated. We identified yeast assimilable nitrogen, cysteine, methionine and pantothenic acid contents – but not SO2 content – as the main factors modulating VSCs production. In particular, ethylthioacetate and all the VSCs deriving from methionine catabolism displayed a maximal production at yeast assimilable nitrogen concentrations around 250 mg/L; pantothenic acid had a positive impact on compounds deriving from methionine catabolism through the Ehrlich pathway but a negative one on the production of thioesters. Overall, these results highlight those factors to be taken into account to modulate the formation of negative VSCs and limit their content in wines.
Collapse
Affiliation(s)
| | - Audrey Bloem
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Vincent Farines
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | - Carole Camarasa
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
14
|
Vion C, Peltier E, Bernard M, Muro M, Marullo P. Marker Assisted Selection of Malic-Consuming Saccharomyces cerevisiae Strains for Winemaking. Efficiency and Limits of a QTL's Driven Breeding Program. J Fungi (Basel) 2021; 7:304. [PMID: 33921151 PMCID: PMC8071496 DOI: 10.3390/jof7040304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. Breeding programs that take advantage of this characteristic are widely used for selecting starters for wine industry, especially in the recent years when winemakers need to adapt their production to climate change. The aim of this work was to evaluate a marker assisted selection (MAS) program to improve malic acid consumption capacity of Saccharomyces cerevisiae in grape juice. Optimal individuals of two unrelated F1-hybrids were crossed to get a new genetic background carrying many "malic consumer" loci. Then, eleven quantitative trait loci (QTLs) already identified were used for implementing the MAS breeding program. By this method, extreme individuals able to consume more than 70% of malic acid in grape juice were selected. These individuals were tested in different enological matrixes and compared to their original parental strains. They greatly reduced the malic acid content at the end of alcoholic fermentation, they appeared to be robust to the environment, and they accelerated the ongoing of malolactic fermentations by Oenococcus oeni. This study illustrates how MAS can be efficiently used for selecting industrial Saccharomyces cerevisiae strains with outlier properties for winemaking.
Collapse
Affiliation(s)
- Charlotte Vion
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Emilien Peltier
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
| | - Margaux Bernard
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Maitena Muro
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Philippe Marullo
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| |
Collapse
|
15
|
Yeast Metabolism and Its Exploitation in Emerging Winemaking Trends: From Sulfite Tolerance to Sulfite Reduction. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sulfite is widely used as a preservative in foods and beverages for its antimicrobial and antioxidant activities, particularly in winemaking where SO2 is frequently added. Thus, sulfite resistance mechanisms have been extensively studied in the fermenting yeast Saccharomyces cerevisiae. Nevertheless, in recent years, a negative perception has developed towards sulfites in wine, because of human health and environmental concerns. Increasing consumer demand for wines with low SO2 content is pushing the winemaking sector to develop new practices in order to reduce sulfite content in wine, including the use of physical and chemical alternatives to SO2, and the exploitation of microbial resources to the same purpose. For this reason, the formation of sulfur-containing compounds by wine yeast has become a crucial point of research during the last decades. In this context, the aim of this review is to examine the main mechanisms weaponized by Saccharomyces cerevisiae for coping with sulfite, with a particular emphasis on the production of sulfite and glutathione, sulfite detoxification through membrane efflux (together with the genetic determinants thereof), and production of SO2-binding compounds.
Collapse
|
16
|
Song Y, Gibney P, Cheng L, Liu S, Peck G. Yeast Assimilable Nitrogen Concentrations Influence Yeast Gene Expression and Hydrogen Sulfide Production During Cider Fermentation. Front Microbiol 2020; 11:1264. [PMID: 32670223 PMCID: PMC7326769 DOI: 10.3389/fmicb.2020.01264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
The fermentation of apple juice into hard cider is a complex biochemical process that transforms sugars into alcohols by yeast, of which Saccharomyces cerevisiae is the most widely used species. Among many factors, hydrogen sulfide (H2S) production by yeast during cider fermentation is affected by yeast strain and yeast assimilable nitrogen (YAN) concentration in the apple juice. In this study, we investigated the regulatory mechanism of YAN concentration on S. cerevisiae H2S formation. Two S. cerevisiae strains, UCD522 (a H2S-producing strain) and UCD932 (a non-H2S-producing strain), were used to ferment apple juice that had Low, Intermediate, and High diammonium phosphate (DAP) supplementation. Cider samples were collected 24 and 72 h after yeast inoculation. Using RNA-Seq, differentially expressed genes (DEGs) identification and annotation, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, we found that gene expression was dependent on yeast strain, fermentation duration, H2S formation, and the interaction of these three factors. For UCD522, under the three DAP treatments, a total of 30 specific GO terms were identified. Of the 18 identified KEGG pathways, “Sulfur metabolism,” “Glycine, serine and threonine metabolism,” and “Biosynthesis of amino acids” were significantly enriched. Both GO and KEGG analyses revealed that the “Sulfate Reduction Sequence (SRS) pathway” was significantly enriched. We also found a complex relationship between H2S production and stress response genes. For UCD522, we confirm that there is a non-linear relationship between YAN and H2S production, with the Low and Intermediate treatments having greater H2S production than the High treatment. By integrating results obtained through the transcriptomic analysis with yeast physiological data, we present a mechanistic view into the H2S production by yeast as a result of different concentrations of YAN during cider fermentation.
Collapse
Affiliation(s)
- Yangbo Song
- College of Enology, Northwest A&F University, Yangling, China.,Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Patrick Gibney
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Shuwen Liu
- College of Enology, Northwest A&F University, Yangling, China
| | - Gregory Peck
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
17
|
Reduction of Sulfur Compounds through Genetic Improvement of Native Saccharomyces cerevisiae Useful for Organic and Sulfite-Free Wine. Foods 2020; 9:foods9050658. [PMID: 32443690 PMCID: PMC7278856 DOI: 10.3390/foods9050658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 01/04/2023] Open
Abstract
Sulfites and sulfides are produced by yeasts in different amounts depending on different factors, including growth medium and specific strain variability. In natural must, some strains can produce an excess of sulfur compounds that confer unpleasant smells, inhibit malolactic fermentation and lead to health concerns for consumers. In organic wines and in sulfite-free wines the necessity to limit or avoid the presence of sulfide and sulfite requires the use of selected yeast strains that are low producers of sulfur compounds, with good fermentative and aromatic aptitudes. In the present study, exploiting the sexual mass-mating spores’ recombination of a native Saccharomyces cerevisiae strain previously isolated from grape, three new S. cerevisiae strains were selected. They were characterized by low sulfide and sulfite production and favorable aromatic imprinting. This approach, that occurs spontaneously also in nature, allowed us to obtain new native S. cerevisiae strains with desired characteristics that could be proposed as new starters for organic and sulfite-free wine production, able to control sulfur compound production and to valorize specific wine types.
Collapse
|
18
|
Nardi T. Microbial Resources as a Tool for Enhancing Sustainability in Winemaking. Microorganisms 2020; 8:microorganisms8040507. [PMID: 32252445 PMCID: PMC7232173 DOI: 10.3390/microorganisms8040507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
In agriculture, the wine sector is one of the industries most affected by the sustainability issue. It is responsible for about 0.3% of annual global greenhouse gas emissions from anthropogenic activities. Sustainability in vitiviniculture was firstly linked to vineyard management, where the use of fertilizers, pesticides and heavy metals is a major concern. More recently, the contribution of winemaking, from grape harvest to bottling, has also been considered. Several cellar processes could be improved for reducing the environmental impact of the whole chain, including microbe-driven transformations. This paper reviews the potential of microorganisms and interactions thereof as a natural, environmentally friendly tool to improve the sustainability aspects of winemaking, all along the production chain. The main phases identified as potentially interesting for exploiting microbial activities to lower inputs are: (i) pre-fermentative stages, (ii) alcoholic fermentation, (iii) stage between alcoholic and malolactic fermentation, (iv) malolactic fermentation, (v) stabilization and spoilage risk management, and (vi) by-products and wastewater treatment. The presence of proper yeast or bacterial strains, the management and timing of inoculation of starter cultures, and some appropriate technological modifications that favor selected microbial activities can lead to several positive effects, including (among other) energy savings, reduction of chemical additives such as sulfites, and reuse of certain residues.
Collapse
Affiliation(s)
- Tiziana Nardi
- CREA-Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| |
Collapse
|
19
|
QTL mapping of modelled metabolic fluxes reveals gene variants impacting yeast central carbon metabolism. Sci Rep 2020; 10:2162. [PMID: 32034164 PMCID: PMC7005809 DOI: 10.1038/s41598-020-57857-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/21/2019] [Indexed: 11/08/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is an attractive industrial microorganism for the production of foods and beverages as well as for various bulk and fine chemicals, such as biofuels or fragrances. Building blocks for these biosyntheses are intermediates of yeast central carbon metabolism (CCM), whose intracellular availability depends on balanced single reactions that form metabolic fluxes. Therefore, efficient product biosynthesis is influenced by the distribution of these fluxes. We recently demonstrated great variations in CCM fluxes between yeast strains of different origins. However, we have limited understanding of flux modulation and the genetic basis of flux variations. In this study, we investigated the potential of quantitative trait locus (QTL) mapping to elucidate genetic variations responsible for differences in metabolic flux distributions (fQTL). Intracellular metabolic fluxes were estimated by constraint-based modelling and used as quantitative phenotypes, and differences in fluxes were linked to genomic variations. Using this approach, we detected four fQTLs that influence metabolic pathways. The molecular dissection of these QTLs revealed two allelic gene variants, PDB1 and VID30, contributing to flux distribution. The elucidation of genetic determinants influencing metabolic fluxes, as reported here for the first time, creates new opportunities for the development of strains with optimized metabolite profiles for various applications.
Collapse
|
20
|
van Wyk N, Grossmann M, Wendland J, von Wallbrunn C, Pretorius IS. The Whiff of Wine Yeast Innovation: Strategies for Enhancing Aroma Production by Yeast during Wine Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13496-13505. [PMID: 31724402 DOI: 10.1021/acs.jafc.9b06191] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite being used chiefly for fermenting the sugars of grape must to alcohol, wine yeasts (most prominently Saccharomyces cerevisiae) play a pivotal role in the final aroma profiles of wines. Strain selection, intentionally incorporating non-Saccharomyces yeast in so-called mixed-culture fermentations, and genetic modifications of S. cerevisiae have all been shown to greatly enhance the chemical composition and sensory profile of wines. In this Review, we highlight how wine researchers employ fermenting yeasts to expand on the aroma profiles of the wines they study.
Collapse
Affiliation(s)
- Niël van Wyk
- Institut für Mikrobiologie und Biochemie , Hochschule Geisenheim University , 65366 Geisenheim , Germany
| | - Manfred Grossmann
- Institut für Mikrobiologie und Biochemie , Hochschule Geisenheim University , 65366 Geisenheim , Germany
| | - Jürgen Wendland
- Institut für Mikrobiologie und Biochemie , Hochschule Geisenheim University , 65366 Geisenheim , Germany
| | - Christian von Wallbrunn
- Institut für Mikrobiologie und Biochemie , Hochschule Geisenheim University , 65366 Geisenheim , Germany
| | | |
Collapse
|
21
|
Payen C, Thompson D. The renaissance of yeasts as microbial factories in the modern age of biomanufacturing. Yeast 2019; 36:685-700. [DOI: 10.1002/yea.3439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/09/2019] [Accepted: 08/04/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Celia Payen
- DuPont Nutrition and Biosciences Wilmington Delaware
| | | |
Collapse
|
22
|
Peltier E, Friedrich A, Schacherer J, Marullo P. Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Front Genet 2019; 10:683. [PMID: 31396264 PMCID: PMC6664092 DOI: 10.3389/fgene.2019.00683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is certainly the prime industrial microorganism and is related to many biotechnological applications including food fermentations, biofuel production, green chemistry, and drug production. A noteworthy characteristic of this species is the existence of subgroups well adapted to specific processes with some individuals showing optimal technological traits. In the last 20 years, many studies have established a link between quantitative traits and single-nucleotide polymorphisms found in hundreds of genes. These natural variations constitute a pool of QTNs (quantitative trait nucleotides) that modulate yeast traits of economic interest for industry. By selecting a subset of genes functionally validated, a total of 284 QTNs were inventoried. Their distribution across pan and core genome and their frequency within the 1,011 Saccharomyces cerevisiae genomes were analyzed. We found that 150 of the 284 QTNs have a frequency lower than 5%, meaning that these variants would be undetectable by genome-wide association studies (GWAS). This analysis also suggests that most of the functional variants are private to a subpopulation, possibly due to their adaptive role to specific industrial environment. In this review, we provide a literature survey of their phenotypic impact and discuss the opportunities and the limits of their use for industrial strain selection.
Collapse
Affiliation(s)
- Emilien Peltier
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Anne Friedrich
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Philippe Marullo
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
23
|
Peltier E, Sharma V, Martí Raga M, Roncoroni M, Bernard M, Jiranek V, Gibon Y, Marullo P. Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices. BMC Genomics 2018; 19:772. [PMID: 30409183 PMCID: PMC6225642 DOI: 10.1186/s12864-018-5145-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022] Open
Abstract
Background The ability of a genotype to produce different phenotypes according to its surrounding environment is known as phenotypic plasticity. Within different individuals of the same species, phenotypic plasticity can vary greatly. This contrasting response is caused by gene-by-environment interactions (GxE). Understanding GxE interactions is particularly important in agronomy, since selected breeds and varieties may have divergent phenotypes according to their growing environment. Industrial microbes such as Saccharomyces cerevisiae are also faced with a large range of fermentation conditions that affect their technological properties. Finding the molecular determinism of such variations is a critical task for better understanding the genetic bases of phenotypic plasticity and can also be helpful in order to improve breeding methods. Results In this study we implemented a QTL mapping program using two independent cross (~ 100 progeny) in order to investigate the molecular basis of yeast phenotypic response in a wine fermentation context. Thanks to whole genome sequencing approaches, both crosses were genotyped, providing saturated genetic maps of thousands of markers. Linkage analyses allowed the detection of 78 QTLs including 21 with significant interaction with the environmental conditions. Molecular dissection of a major QTL demonstrated that the sulfite pump Ssu1p has a pleiotropic effect and impacts the phenotypic plasticity of several traits. Conclusions The detection of QTLs and their interactions with environment emphasizes the complexity of yeast industrial traits. The validation of the interaction of SSU1 allelic variants with the nature of the fermented juice increases knowledge about the impact of the sulfite pump during fermentation. All together these results pave the way for exploiting and deciphering the genetic determinism of phenotypic plasticity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5145-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emilien Peltier
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France. .,Biolaffort, Bordeaux, France.
| | - Vikas Sharma
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France
| | - Maria Martí Raga
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Departament de Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Tarragona, Spain
| | - Miguel Roncoroni
- Wine Science Programme, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Margaux Bernard
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Biolaffort, Bordeaux, France
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Urrbrae, South Australia, 5064, Australia
| | - Yves Gibon
- INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, F-33883, Villenave d'Ornon, France
| | - Philippe Marullo
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Biolaffort, Bordeaux, France
| |
Collapse
|
24
|
Polygenic Analysis in Absence of Major Effector ATF1 Unveils Novel Components in Yeast Flavor Ester Biosynthesis. mBio 2018; 9:mBio.01279-18. [PMID: 30154260 PMCID: PMC6113618 DOI: 10.1128/mbio.01279-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Flavor production in yeast fermentation is of paramount importance for industrial production of alcoholic beverages. Although major enzymes of flavor compound biosynthesis have been identified, few specific mutations responsible for strain diversity in flavor production are known. The ATF1-encoded alcohol acetyl coenzyme A (acetyl-CoA) transferase (AATase) is responsible for the majority of acetate ester biosynthesis, but other components affecting strain diversity remain unknown. We have performed parallel polygenic analysis of low production of ethyl acetate, a compound with an undesirable solvent-like off-flavor, in strains with and without deletion of ATF1 We identified two unique causative mutations, eat1K179fs and snf8E148*, not present in any other sequenced yeast strain and responsible for most ethyl acetate produced in absence of ATF1EAT1 encodes a putative mitochondrial ethanol acetyl-CoA transferase (EATase) and its overexpression, but not that of EAT1K179fs , and strongly increases ethyl acetate without affecting other flavor acetate esters. Unexpectedly, a higher level of acetate esters (including ethyl acetate) was produced when eat1K179fs was present together with ATF1 in the same strain, suggesting that the Eat1 and Atf1 enzymes are intertwined. On the other hand, introduction of snf8E148* lowered ethyl acetate levels also in the presence of ATF1, and it affected other aroma compounds, growth, and fermentation as well. Engineering of snf8E148* in three industrial yeast strains (for production of wine, saké, and ale beer) and fermentation in an application-relevant medium showed a high but strain-dependent potential for flavor enhancement. Our work has identified EAT1 and SNF8 as new genetic elements determining ethyl acetate production diversity in yeast strains.IMPORTANCE Basic research with laboratory strains of the yeast Saccharomyces cerevisiae has identified the structural genes of most metabolic enzymes, as well as genes encoding major regulators of metabolism. On the other hand, more recent work on polygenic analysis of yeast biodiversity in natural and industrial yeast strains is revealing novel components of yeast metabolism. A major example is the metabolism of flavor compounds, a particularly important property of industrial yeast strains used for the production of alcoholic beverages. In this work, we have performed polygenic analysis of production of ethyl acetate, an important off-flavor compound in beer and other alcoholic beverages. To increase the chances of identifying novel components, we have used in parallel a wild-type strain and a strain with a deletion of ATF1 encoding the main enzyme of acetate ester biosynthesis. This revealed a new structural gene, EAT1, encoding a putative mitochondrial enzyme, which was recently identified as an ethanol acetyl-CoA transferase in another yeast species. We also identified a novel regulatory gene, SNF8, which has not previously been linked to flavor production. Our results show that polygenic analysis of metabolic traits in the absence of major effector genes can reveal novel structural and regulatory genes. The mutant alleles identified can be used to affect the flavor profile in industrial yeast strains for production of alcoholic beverages in more subtle ways than by deletion or overexpression of the already known major effector genes and without significantly altering other industrially important traits. The effect of the novel variants was dependent on the genetic background, with a highly desirable outcome in the flavor profile of an ale brewing yeast.
Collapse
|
25
|
Hydrogen sulfide synthesis in native Saccharomyces cerevisiae strains during alcoholic fermentations. Food Microbiol 2018; 70:206-213. [DOI: 10.1016/j.fm.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023]
|
26
|
Eder M, Sanchez I, Brice C, Camarasa C, Legras JL, Dequin S. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics 2018; 19:166. [PMID: 29490607 PMCID: PMC5831830 DOI: 10.1186/s12864-018-4562-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/20/2018] [Indexed: 01/07/2023] Open
Abstract
Background The volatile metabolites produced by Saccharomyces cerevisiae during alcoholic fermentation, which are mainly esters, higher alcohols and organic acids, play a vital role in the quality and perception of fermented beverages, such as wine. Although the metabolic pathways and genes behind yeast fermentative aroma formation are well described, little is known about the genetic mechanisms underlying variations between strains in the production of these aroma compounds. To increase our knowledge about the links between genetic variation and volatile production, we performed quantitative trait locus (QTL) mapping using 130 F2-meiotic segregants from two S. cerevisiae wine strains. The segregants were individually genotyped by next-generation sequencing and separately phenotyped during wine fermentation. Results Using different QTL mapping strategies, we were able to identify 65 QTLs in the genome, including 55 that influence the formation of 30 volatile secondary metabolites, 14 with an effect on sugar consumption and central carbon metabolite production, and 7 influencing fermentation parameters. For ethyl lactate, ethyl octanoate and propanol formation, we discovered 2 interacting QTLs each. Within 9 of the detected regions, we validated the contribution of 13 genes in the observed phenotypic variation by reciprocal hemizygosity analysis. These genes are involved in nitrogen uptake and metabolism (AGP1, ALP1, ILV6, LEU9), central carbon metabolism (HXT3, MAE1), fatty acid synthesis (FAS1) and regulation (AGP2, IXR1, NRG1, RGS2, RGT1, SIR2) and explain variations in the production of characteristic sensorial esters (e.g., 2-phenylethyl acetate, 2-metyhlpropyl acetate and ethyl hexanoate), higher alcohols and fatty acids. Conclusions The detection of QTLs and their interactions emphasizes the complexity of yeast fermentative aroma formation. The validation of underlying allelic variants increases knowledge about genetic variation impacting metabolic pathways that lead to the synthesis of sensorial important compounds. As a result, this work lays the foundation for tailoring S. cerevisiae strains with optimized volatile metabolite production for fermented beverages and other biotechnological applications. Electronic supplementary material The online version of this article (10.1186/s12864-018-4562-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Eder
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France
| | - Isabelle Sanchez
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France.,MISTEA, INRA, SupAgro, F-34060, Montpellier, France
| | - Claire Brice
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France
| | - Carole Camarasa
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France
| | - Jean-Luc Legras
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France
| | - Sylvie Dequin
- SPO, INRA, SupAgro, Université de Montpellier, F-34060, Montpellier, France.
| |
Collapse
|
27
|
Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions. PLoS One 2018; 13:e0190094. [PMID: 29351285 PMCID: PMC5774694 DOI: 10.1371/journal.pone.0190094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/07/2017] [Indexed: 11/19/2022] Open
Abstract
This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes.
Collapse
|
28
|
Trindade de Carvalho B, Holt S, Souffriau B, Lopes Brandão R, Foulquié-Moreno MR, Thevelein JM. Identification of Novel Alleles Conferring Superior Production of Rose Flavor Phenylethyl Acetate Using Polygenic Analysis in Yeast. mBio 2017; 8:e01173-17. [PMID: 29114020 PMCID: PMC5676035 DOI: 10.1128/mbio.01173-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/29/2017] [Indexed: 11/20/2022] Open
Abstract
Flavor compound metabolism is one of the last areas in metabolism where multiple genes encoding biosynthetic enzymes are still unknown. A major challenge is the involvement of side activities of enzymes having their main function in other areas of metabolism. We have applied pooled-segregant whole-genome sequence analysis to identify novel Saccharomyces cerevisiae genes affecting production of phenylethyl acetate (2-PEAc). This is a desirable flavor compound of major importance in alcoholic beverages imparting rose- and honey-like aromas, with production of high 2-PEAc levels considered a superior trait. Four quantitative trait loci (QTLs) responsible for high 2-PEAc production were identified, with two loci each showing linkage to the genomes of the BTC.1D and ER18 parents. The first two loci were investigated further. The causative genes were identified by reciprocal allele swapping into both parents using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9. The superior allele of the first major causative gene, FAS2, was dominant and contained two unique single nucleotide polymorphisms (SNPs) responsible for high 2-PEAc production that were not present in other sequenced yeast strains. FAS2 encodes the alpha subunit of the fatty acid synthetase complex. Surprisingly, the second causative gene was a mutant allele of TOR1, a gene involved in nitrogen regulation. Exchange of both superior alleles in the ER18 parent strain increased 2-PEAc production 70%, nearly to the same level as in the best superior segregant. Our results show that polygenic analysis combined with CRISPR/Cas9-mediated allele exchange is a powerful tool for identification of genes encoding missing metabolic enzymes and for development of industrial yeast strains generating novel flavor profiles in alcoholic beverages.IMPORTANCE Multiple reactions in flavor metabolism appear to be catalyzed by side activities of other enzymes that have been difficult to identify. We have applied genetic mapping of quantitative trait loci in the yeast Saccharomyces cerevisiae to identify mutant alleles of genes determining the production of phenylethyl acetate, an important flavor compound imparting rose- and honey-like aromas to alcoholic beverages. We identified a unique, dominant allele of FAS2 that supports high production of phenylethyl acetate. FAS2 encodes a subunit of the fatty acid synthetase complex and apparently exerts an important side activity on one or more alternative substrates in flavor compound synthesis. The second mutant allele contained a nonsense mutation in TOR1, a gene involved in nitrogen regulation of growth. Together the two alleles strongly increased the level of phenylethyl acetate. Our work highlights the potential of genetic mapping of quantitative phenotypic traits to identify novel enzymes and regulatory components in yeast metabolism, including regular metabolic enzymes with unknown side activities responsible for biosynthesis of specific flavor compounds. The superior alleles identified can be used to develop industrial yeast strains generating novel flavor profiles in alcoholic beverages.
Collapse
Affiliation(s)
- Bruna Trindade de Carvalho
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Sylvester Holt
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Ben Souffriau
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Rogelio Lopes Brandão
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, ICEB II, Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro, CEP 35, Ouro Preto, Brazil
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
29
|
de Souza Bonfim V, Barbosa de Castilho R, Baptista L, Pilling S. SO 3 formation from the X-ray photolysis of SO 2 astrophysical ice analogues: FTIR spectroscopy and thermodynamic investigations. Phys Chem Chem Phys 2017; 19:26906-26917. [PMID: 28953271 DOI: 10.1039/c7cp03679e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this combined experimental-theoretical work we focus on the physical and chemical changes induced by soft X-rays on sulfur dioxide (SO2) ice at a very low temperature, in an attempt to clarify and quantify its survival and chemical changes in some astrophysical environments. SO2 is an important constituent of some Jupiter moons and has also been observed in ices around protostars. The measurements were performed at the Brazilian Synchrotron Light Source (LNLS/CNPEM), in Campinas, Brazil. The SO2 ice sample (12 K) was exposed to a broadband beam of mainly soft X-rays (6-2000 eV) and in situ analyses were performed by IR spectroscopy. The X-ray photodesorption yield (upper limit) was around 0.25 molecules per photon. The values determined for the effective destruction (SO2) and formation (SO3) cross sections were 2.5 × 10-18 cm2 and 2.1 × 10-18 cm2, respectively. The chemical equilibrium (88% of SO2 and 12% of SO3) was reached after the fluence of 1.6 × 1018 photons cm-2. The SO3 formation channels were studied at the second-order Møller-Plesset perturbation theory (MP2) level, which showed the three most favorable reaction routes (ΔH < -79 kcal mol-1) in simulated SO2 ice: (i) SO + O2 → SO3, (ii) SO2 + O → SO3, and (iii) SO2 + O+ → SO3+ + e- → SO3. The amorphous solid environment effect decreases the reactivity of intermediate species towards SO3 formation, and ionic species are even more affected. The experimentally determined effective cross sections and theoretical reaction channels identified in this work allow us to better understand the chemical evolution of certain sulfur-rich astrophysical environments.
Collapse
Affiliation(s)
- Víctor de Souza Bonfim
- Universidade do Vale do Paraíba - UNIVAP/Laboratorio de Astroquimica e Astrobioloiga - LASA, São José dos Campos, SP, Brazil.
| | | | | | | |
Collapse
|
30
|
Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses. G3-GENES GENOMES GENETICS 2017; 7:1693-1705. [PMID: 28592651 PMCID: PMC5473750 DOI: 10.1534/g3.117.042127] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1, PDC1, CPS1, ASI2, LYP1, and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics.
Collapse
|
31
|
Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide. Food Chem 2016; 209:341-7. [DOI: 10.1016/j.foodchem.2016.04.094] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 11/18/2022]
|
32
|
Nidelet T, Brial P, Camarasa C, Dequin S. Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments. Microb Cell Fact 2016; 15:58. [PMID: 27044358 PMCID: PMC4820951 DOI: 10.1186/s12934-016-0456-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background S. cerevisiae has attracted considerable interest in recent years as a model for ecology and evolutionary biology, revealing a substantial genetic and phenotypic diversity. However, there is a lack of knowledge on the diversity of metabolic networks within this species. Results To identify the metabolic and evolutionary constraints that shape metabolic fluxes in S. cerevisiae, we used a dedicated constraint-based model to predict the central carbon metabolism flux distribution of 43 strains from different ecological origins, grown in wine fermentation conditions. In analyzing these distributions, we observed a highly contrasted situation in flux variability, with quasi-constancy of the glycolysis and ethanol synthesis yield yet high flexibility of other fluxes, such as the pentose phosphate pathway and acetaldehyde production. Furthermore, these fluxes with large variability showed multimodal distributions that could be linked to strain origin, indicating a convergence between genetic origin and flux phenotype. Conclusions Flux variability is pathway-dependent and, for some flux, a strain origin effect can be found. These data highlight the constraints shaping the yeast operative central carbon network and provide clues for the design of strategies for strain improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0456-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thibault Nidelet
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France.
| | - Pascale Brial
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - Carole Camarasa
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - Sylvie Dequin
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| |
Collapse
|
33
|
Kinzurik MI, Herbst-Johnstone M, Gardner RC, Fedrizzi B. Evolution of Volatile Sulfur Compounds during Wine Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8017-8024. [PMID: 26271945 DOI: 10.1021/acs.jafc.5b02984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Volatile sulfur compounds (VSCs) play a significant role in the aroma of foods and beverages. With very low sensory thresholds and strong unpleasant aromas, most VSCs are considered to have a negative impact on wine quality. In this study, headspace solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to analyze the time course of the biosynthesis of 12 VSCs formed during wine fermentation. Two different strains of Saccharomyces cerevisiae, the laboratory strain BY4743 and a commercial strain, F15, were assessed using two media: synthetic grape media and Sauvignon Blanc juice. Seven VSCs were detected above background, with three rising above their sensory thresholds. The data revealed remarkable differences in the timing and evolution of production during fermentation, with a transient spike in methanethiol production early during anaerobic growth. Heavier VSCs such as benzothiazole and S-ethyl thioacetate were produced at a steady rate throughout grape juice fermentation, whereas others, such as diethyl sulfide, appear toward the very end of the winemaking process. The results also demonstrate significant differences between yeast strains and fermentation media.
Collapse
Affiliation(s)
- Matias I Kinzurik
- School of Chemical Sciences and ‡School of Biological Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Mandy Herbst-Johnstone
- School of Chemical Sciences and ‡School of Biological Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Richard C Gardner
- School of Chemical Sciences and ‡School of Biological Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences and ‡School of Biological Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| |
Collapse
|