1
|
Sun J, Qi X, Du C. Biosynthesis and yield improvement strategies of fengycin. Arch Microbiol 2025; 207:90. [PMID: 40097705 DOI: 10.1007/s00203-025-04301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Fengycin is a cyclic lipopeptide antibiotic predominantly synthesized by Bacillus species. It exhibits remarkable antifungal, antitumor, and antiadhesion activities. It also possesses advantageous properties such as low toxicity, effective antibacterial activity, and biodegradability, making it a promising candidate for applications in biocontrol, medicine, and industry. However, challenges including low yield, complex purification processes, and high production costs currently restrict its large-scale commercialization. To promote the research and development of fengycin and facilitate its practical applications, this review summarizes fengycin's structural characteristics, subclasses, and producing bacteria. Additionally, it delves into the biosynthesis process, known regulatory factors and mechanism, as well as strategies for enhancing yield through strain improvement and fermentation condition optimization. Furthermore, it addresses the limitations and future directions for fengycin research. This review provides a valuable insights and guidance for future researchers aiming to expand fengycin's applications in medical and agricultural fields. This work also establishes a theoretical foundation for realizing its significant commercial potential.
Collapse
Affiliation(s)
- Junfeng Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiaohua Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
2
|
Jagadeesh V, Okahashi N, Matsuda F, Tsuge K, Kondo A. Combinatorial Nonribosomal Peptide Synthetase Libraries Using the SEAM-Combi-OGAB Method. ACS Synth Biol 2025; 14:520-530. [PMID: 39907600 DOI: 10.1021/acssynbio.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
To overcome the difficulty of building large nonribosomal peptide synthetase (NRPS) gene cluster libraries, an efficient one-pot method using Bacillus subtilis was developed. This new method, named Seamed Express Assembly Method (SEAM)-combi-Ordered Gene Assembly in Bacillus subtilis (OGAB), combines the SEAM-OGAB approach for NRPS gene cluster construction with the combi-OGAB method for combinatorial DNA library construction to randomly swap DNA fragments for NRPS modules. In this study, NRPS gene clusters of plipastatin and gramicidin S were used as the starting material. The full length of each gene cluster was prepared as plasmid DNA by introducing restriction enzyme SfiI sites into the module border according to SEAM-OGAB. These two plasmids were mixed, digested with SfiI, ligated in a tandem repeat form, and used to transform B. subtilis according to the combi-OGAB method. While 64 of all the possible combinations were used in the calculation, 32 types of plasmid DNA were obtained from 50 randomly selected transformants. These transformants produced at least 30 types of peptides, including cyclic and linear variations with lengths ranging from 5 to 10 amino acids. Thus, this method enabled an efficient construction of NRPS gene cluster libraries with more than five module members, making it advantageous for applications in peptide libraries.
Collapse
Affiliation(s)
- Varada Jagadeesh
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Japan
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Japan
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Kenji Tsuge
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Ancajas CMF, Oyedele AS, Butt CM, Walker AS. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Prod Rep 2024; 41:1543-1578. [PMID: 38912779 PMCID: PMC11484176 DOI: 10.1039/d4np00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Time span in literature: 1985-early 2024Natural products play a key role in drug discovery, both as a direct source of drugs and as a starting point for the development of synthetic compounds. Most natural products are not suitable to be used as drugs without further modification due to insufficient activity or poor pharmacokinetic properties. Choosing what modifications to make requires an understanding of the compound's structure-activity relationships. Use of structure-activity relationships is commonplace and essential in medicinal chemistry campaigns applied to human-designed synthetic compounds. Structure-activity relationships have also been used to improve the properties of natural products, but several challenges still limit these efforts. Here, we review methods for studying the structure-activity relationships of natural products and their limitations. Specifically, we will discuss how synthesis, including total synthesis, late-stage derivatization, chemoenzymatic synthetic pathways, and engineering and genome mining of biosynthetic pathways can be used to produce natural product analogs and discuss the challenges of each of these approaches. Finally, we will discuss computational methods including machine learning methods for analyzing the relationship between biosynthetic genes and product activity, computer aided drug design techniques, and interpretable artificial intelligence approaches towards elucidating structure-activity relationships from models trained to predict bioactivity from chemical structure. Our focus will be on these latter topics as their applications for natural products have not been extensively reviewed. We suggest that these methods are all complementary to each other, and that only collaborative efforts using a combination of these techniques will result in a full understanding of the structure-activity relationships of natural products.
Collapse
Affiliation(s)
| | | | - Caitlin M Butt
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Kenfaoui J, Dutilloy E, Benchlih S, Lahlali R, Ait-Barka E, Esmaeel Q. Bacillus velezensis: a versatile ally in the battle against phytopathogens-insights and prospects. Appl Microbiol Biotechnol 2024; 108:439. [PMID: 39145847 PMCID: PMC11327198 DOI: 10.1007/s00253-024-13255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The escalating interest in Bacillus velezensis as a biocontrol agent arises from its demonstrated efficacy in inhibiting both phytopathogenic fungi and bacteria, positioning it as a promising candidate for biotechnological applications. This mini review aims to offer a comprehensive exploration of the multifaceted properties of B. velezensis, with particular focus on its beneficial interactions with plants and its potential for controlling phytopathogenic fungi. The molecular dialogues involving B. velezensis, plants, and phytopathogens are scrutinized to underscore the intricate mechanisms orchestrating these interactions. Additionally, the review elucidates the mode of action of B. velezensis, particularly through cyclic lipopeptides, highlighting their importance in biocontrol and promoting plant growth. The agricultural applications of B. velezensis are detailed, showcasing its role in enhancing crop health and productivity while reducing reliance on chemical pesticides. Furthermore, the review extends its purview in the industrial and environmental arenas, highlighting its versatility across various sectors. By addressing challenges such as formulation optimization and regulatory frameworks, the review aims to chart a course for the effective utilization of B. velezensis. KEY POINTS: • B. velezensis fights phytopathogens, boosting biotech potential • B. velezensis shapes agri-biotech future, offers sustainable solutions • Explores plant-B. velezensis dialogue, lipopeptide potential showcased.
Collapse
Affiliation(s)
- Jihane Kenfaoui
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Emma Dutilloy
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Salma Benchlih
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Rachid Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Essaid Ait-Barka
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France.
| |
Collapse
|
5
|
Guo Z, Sun J, Ma Q, Li M, Dou Y, Yang S, Gao X. Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering. Microorganisms 2024; 12:998. [PMID: 38792827 PMCID: PMC11124408 DOI: 10.3390/microorganisms12050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Surfactin is widely used in the petroleum extraction, cosmetics, biopharmaceuticals and agriculture industries. It possesses antibacterial and antiviral activities and can reduce interfacial tension. Bacillus are commonly used as production chassis, but wild-type Bacillus subtilis 168 cannot synthesise surfactin. In this study, the phosphopantetheinyl transferase (PPTase) gene sfp* (with a T base removed) was overexpressed and enzyme activity was restored, enabling B. subtilis 168 to synthesise surfactin with a yield of 747.5 ± 6.5 mg/L. Knocking out ppsD and yvkC did not enhance surfactin synthesis. Overexpression of predicted surfactin transporter gene yfiS increased its titre to 1060.7 ± 89.4 mg/L, while overexpression of yerP, ycxA and ycxA-efp had little or negative effects on surfactin synthesis, suggesting YfiS is involved in surfactin efflux. By replacing the native promoter of the srfA operon encoding surfactin synthase with three promoters, surfactin synthesis was significantly reduced. However, knockout of the global transcriptional regulator gene codY enhanced the surfactin titre to 1601.8 ± 91.9 mg/L. The highest surfactin titre reached 3.89 ± 0.07 g/L, with the yield of 0.63 ± 0.02 g/g DCW, after 36 h of fed-batch fermentation in 5 L fermenter. This study provides a reference for further understanding surfactin synthesis and constructing microbial cell factories.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaomei Yang
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo 255049, China; (Z.G.); (J.S.); (Q.M.); (M.L.); (Y.D.)
| | - Xiuzhen Gao
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo 255049, China; (Z.G.); (J.S.); (Q.M.); (M.L.); (Y.D.)
| |
Collapse
|
6
|
Zhang K, Kries H. Biomimetic engineering of nonribosomal peptide synthesis. Biochem Soc Trans 2023; 51:1521-1532. [PMID: 37409512 DOI: 10.1042/bst20221264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Nonribosomal peptides (NRPs) have gained attention due to their diverse biological activities and potential applications in medicine and agriculture. The natural diversity of NRPs is a result of evolutionary processes that have occurred over millions of years. Recent studies have shed light on the mechanisms by which nonribosomal peptide synthetases (NRPSs) evolve, including gene duplication, recombination, and horizontal transfer. Mimicking natural evolution could be a useful strategy for engineering NRPSs to produce novel compounds with desired properties. Furthermore, the emergence of antibiotic-resistant bacteria has highlighted the urgent need for new drugs, and NRPs represent a promising avenue for drug discovery. This review discusses the engineering potential of NRPSs in light of their evolutionary history.
Collapse
Affiliation(s)
- Kexin Zhang
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
- Organic Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
7
|
Li JY, Liu YF, Zhou L, Gang HZ, Liu JF, Sun GZ, Wang WD, Yang SZ, Mu BZ. Structural Diversity of the Lipopeptide Biosurfactant Produced by a Newly Isolated Strain, Geobacillus thermodenitrifcans ME63. ACS OMEGA 2023; 8:22150-22158. [PMID: 37360472 PMCID: PMC10286266 DOI: 10.1021/acsomega.3c02194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The genus Geobacillus is active in degradation of hydrocarbons in thermophilic and facultative environments since it was first reported in 1920. Here, we report a new strain, Geobacillus thermodenitrificans ME63, isolated from an oilfield with the ability of producing the biosurfactant. The composition, chemical structure, and surface activity of the biosurfactant produced by G. thermodenitrificans ME63 were investigated by using a combination of the high-performance liquid chromatography, time-of-flight ion mass spectrometry, and surface tensiometer. The biosurfactant produced by strain ME63 was identified as surfactin with six variants, which is one of the representative family of lipopeptide biosurfactants. The amino acid residue sequence in the peptide of this surfactin is N-Glu → Leu → Leu → Val → Leu → Asp → Leu-C. The critical micelle concentration (CMC) of the surfactin is 55 mg L-1, and the surface tension at CMC is 35.9 mN m-1, which is promising in bioremediation and oil recovery industries. The surface activity and emulsification properties of biosurfactants produced by G. thermodenitrificans ME63 showed excellent resistance to temperature changes, salinity changes, and pH changes.
Collapse
Affiliation(s)
- Jia-Yi Li
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
| | - Yi-Fan Liu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Hong-Ze Gang
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Jin-Feng Liu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Daqing
Huali Biotechnology Co., Ltd, Daqing, Heilongjiang 163511, China
| | - Gang-Zheng Sun
- Research
Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257088, China
| | - Wei-Dong Wang
- Research
Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257088, China
| | - Shi-Zhong Yang
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Bo-Zhong Mu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Sreedharan SM, Rishi N, Singh R. Microbial Lipopeptides: Properties, Mechanics and Engineering for Novel Lipopeptides. Microbiol Res 2023; 271:127363. [PMID: 36989760 DOI: 10.1016/j.micres.2023.127363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/04/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Microorganisms produce active surface agents called lipopeptides (LPs) which are amphiphilic in nature. They are cyclic or linear compounds and are predominantly isolated from Bacillus and Pseudomonas species. LPs show antimicrobial activity towards various plant pathogens and act by inhibiting the growth of these organisms. Several mechanisms are exhibited by LPs, such as cell membrane disruption, biofilm production, induced systematic resistance, improving plant growth, inhibition of spores, etc., making them suitable as biocontrol agents and highly advantageous for industrial utilization. The biosynthesis of lipopeptides involves large multimodular enzymes referred to as non-ribosomal peptide synthases. These enzymes unveil a broad range of engineering approaches through which lipopeptides can be overproduced and new LPs can be generated asserting high efficacy. Such approaches involve several synthetic biology systems and metabolic engineering techniques such as promotor engineering, enhanced precursor availability, condensation domain engineering, and adenylation domain engineering. Finally, this review provides an update of the applications of lipopeptides in various fields.
Collapse
|
9
|
Xu Y, Wu JY, Liu QJ, Xue JY. Genome-Wide Identification and Evolutionary Analyses of SrfA Operon Genes in Bacillus. Genes (Basel) 2023; 14:422. [PMID: 36833349 PMCID: PMC9956979 DOI: 10.3390/genes14020422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
A variety of secondary metabolites contributing to plant growth are synthesized by bacterial nonribosomal peptide synthases (NRPSs). Among them, the NRPS biosynthesis of surfactin is regulated by the SrfA operon. To explore the molecular mechanism for the diversity of surfactins produced by bacteria within the genus Bacillus, we performed a genome-wide identification study focused on three critical genes of the SrfA operon-SrfAA, SrfAB and SrfAC-from 999 Bacillus genomes (belonging to 47 species). Gene family clustering indicated the three genes can be divided into 66 orthologous groups (gene families), of which a majority comprised members of multiple genes (e.g., OG0000009 had members of all three SrfAA, SrfAB and SrfAC genes), indicating high sequence similarity among the three genes. Phylogenetic analyses also found that none of the three genes formed monophyletic groups, but were usually arranged in a mixed manner, suggesting the close evolutionary relationship among the three genes. Considering the module structure of the three genes, we propose that self-duplication, especially tandem duplications, might have contributed to the initial establishment of the entire SrfA operon, and further gene fusion and recombination as well as accumulated mutations might have continuously shaped the different functional roles of SrfAA, SrfAB and SrfAC. Overall, this study provides novel insight into metabolic gene clusters and operon evolution in bacteria.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Jia-Yi Wu
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing-Jie Liu
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Danaeifar M, Mazlomi MA. Combinatorial biosynthesis: playing chess with the metabolism. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:171-190. [PMID: 35435779 DOI: 10.1080/10286020.2022.2065265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Secondary metabolites are a group of natural products that produced by bacteria, fungi and plants. Many applications of these compounds from medicine to industry have been discovered. However, some changes in their structure and biosynthesis mechanism are necessary for their properties to be more suitable and also for their production to be profitable. The main and most useful method to achieve this goal is combinatorial biosynthesis. This technique uses the multi-unit essence of the secondary metabolites biosynthetic enzymes to make changes in their order, structure and also the organism that produces them.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| |
Collapse
|
11
|
Gupta RK, Fuke P, Khardenavis AA, Purohit HJ. In Silico Genomic Characterization of Bacillus velezensis Strain AAK_S6 for Secondary Metabolite and Biocontrol Potential. Curr Microbiol 2023; 80:81. [PMID: 36662309 DOI: 10.1007/s00284-022-03173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
This study reports the draft genome sequence of Bacillus velezensis strain AAK_S6 as a valuable biocontrol agent with high genetic potential to harbor broad-spectrum secondary metabolite producing capacity. A genome data of 4,430,946 bp were generated with a GC content of 46.4% that comprised a total of 4861 genes including a total of 4757 coding sequences (CDS), 104 rRNAs, 85 tRNAs and 80 pseudo-genes. Based on the overall genome-based relatedness indices (OGRI), the strain AAK_S6 has been reassigned to its correct taxonomic position. The strain shared > 99% OrthoANI, > 98% ANIb, > 99% ANIm, > 0.9900 TETRA, > 93% dDDH and 0.08% GC content difference with model strains B. velezensis FZB42T and B. velezensis NRRL B-41580T thus delineating them as closely related species. The genome was mined for strain-specific secondary metabolites that revealed 20 gene clusters for the biosynthesis of several cyclic lipopeptides, saccharides, polyketides along with bacilysin. Thus, the comparative genome analysis of strain AAK_S6 with members of the genus Bacillus by phylogenomic approach revealed that the genomes were almost similar genetically and contained the core genome for B. velezensis. Genomic data strongly supported that the strain AAK_S6 represented an excellent potential candidate for the production of secondary metabolites that could serve as a basis for developing new biocontrol agents, plant growth promoters, and microbial fertilizers.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priya Fuke
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Hemant J Purohit
- Ex-Chief Scientist, Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| |
Collapse
|
12
|
Jagadeesh V, Yoshida T, Uraji M, Okahashi N, Matsuda F, Vavricka CJ, Tsuge K, Kondo A. Simple and Rapid Non-ribosomal Peptide Synthetase Gene Assembly Using the SEAM-OGAB Method. ACS Synth Biol 2023; 12:305-318. [PMID: 36563322 DOI: 10.1021/acssynbio.2c00565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recombination of biosynthetic gene clusters including those of non-ribosomal peptide synthetases (NRPSs) is essential for understanding the mechanisms of biosynthesis. Due to relatively huge gene cluster sizes ranging from 10 to 150 kb, the prevalence of sequence repeats, and inability to clearly define optimal points for manipulation, functional characterization of recombinant NRPSs with maintained activity has been hindered. In this study, we introduce a simple yet rapid approach named "Seamed Express Assembly Method (SEAM)" coupled with Ordered Gene Assembly in Bacillus subtilis (OGAB) to reconstruct fully functional plipastatin NRPS. This approach is enabled by the introduction of restriction enzyme sites as seams at module borders. SEAM-OGAB is then first demonstrated by constructing the ppsABCDE NRPS (38.4 kb) to produce plipastatin, a cyclic decapeptide in B. subtilis. The introduced amino acid level seams do not hinder the NRPS function and enable successful production of plipastatin at a commensurable titer. It is challenging to modify the plipastatin NRPS gene cluster due to the presence of three long direct-repeat sequences; therefore, this study demonstrates that SEAM-OGAB can be readily applied towards the recombination of various NRPSs. Compared to previous NRPS gene assembly methods, the advantage of SEAM-OGAB is that it readily enables the shuffling of NRPS gene modules, and therefore, chimeric NRPSs can be rapidly constructed for the production of novel peptides. This chimeric assembly application of SEAM-OGAB is demonstrated by swapping plipastatin NRPS and surfactin NRPS modules to produce two novel lipopeptides in B. subtilis.
Collapse
Affiliation(s)
- Varada Jagadeesh
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takanobu Yoshida
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Misugi Uraji
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Japan.,Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Japan.,Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kenji Tsuge
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
13
|
Gao GR, Hou ZJ, Ding MZ, Bai S, Wei SY, Qiao B, Xu QM, Cheng JS, Yuan YJ. Improved Production of Fengycin in Bacillus subtilis by Integrated Strain Engineering Strategy. ACS Synth Biol 2022; 11:4065-4076. [PMID: 36379006 DOI: 10.1021/acssynbio.2c00380] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fengycin is a lipopeptide with broad-spectrum antifungal activity. However, its low yield limits its commercial application. Therefore, we iteratively edited multiple target genes associated with fengycin synthesis by combinatorial metabolic engineering. The ability of Bacillus subtilis 168 to manufacture lipopeptides was restored, and the fengycin titer was 1.81 mg/L. Fengycin production was further increased to 174.63 mg/L after knocking out pathways associated with surfactin and bacillaene synthesis and replacing the native promoter (PppsA) with the Pveg promoter. Subsequently, fengycin levels were elevated to 258.52 mg/L by upregulating the expression of relevant genes involved in the fatty acid pathway. After blocking spore and biofilm formation, fengycin production reached 302.51 mg/L. Finally, fengycin production was increased to approximately 885.37 mg/L after adding threonine in the optimized culture medium, which was 488-fold higher compared with that of the initial strain. Integrated strain engineering provides a strategy to construct a system for improving fengycin production.
Collapse
Affiliation(s)
- Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Si-Yu Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| |
Collapse
|
14
|
Lv Z, Ma W, Zhang P, Lu Z, Zhou L, Meng F, Wang Z, Bie X. Deletion of COM donor and acceptor domains and the interaction between modules in bacillomycin D produced by Bacillus amyloliquefaciens. Synth Syst Biotechnol 2022; 7:989-1001. [PMID: 35782484 PMCID: PMC9213223 DOI: 10.1016/j.synbio.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Xiaomei Bie
- Corresponding author. Nanjing Agr Univ, Coll Food Sci & Technol, Nanjing, 210095, PR China.
| |
Collapse
|
15
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
16
|
Schoenborn AA, Yannarell SM, Wallace ED, Clapper H, Weinstein IC, Shank EA. Defining the Expression, Production, and Signaling Roles of Specialized Metabolites during Bacillus subtilis Differentiation. J Bacteriol 2021; 203:e0033721. [PMID: 34460312 PMCID: PMC8544424 DOI: 10.1128/jb.00337-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Bacterial specialized (or secondary) metabolites are structurally diverse molecules that mediate intra- and interspecies interactions by altering growth and cellular physiology and differentiation. Bacillus subtilis, a Gram-positive model bacterium commonly used to study biofilm formation and sporulation, has the capacity to produce more than 10 specialized metabolites. Some of these B. subtilis specialized metabolites have been investigated for their role in facilitating cellular differentiation, but only rarely has the behavior of multiple metabolites been simultaneously investigated. In this study, we explored the interconnectivity of differentiation (biofilm and sporulation) and specialized metabolites in B. subtilis. Specifically, we interrogated how development influences specialized metabolites and vice versa. Using the sporulation-inducing medium DSM, we found that the majority of the specialized metabolites examined are expressed and produced during biofilm formation and sporulation. Additionally, we found that six of these metabolites (surfactin, ComX, bacillibactin, bacilysin, subtilosin A, and plipastatin) are necessary signaling molecules for proper progression of B. subtilis differentiation. This study further supports the growing body of work demonstrating that specialized metabolites have essential physiological functions as cell-cell communication signals in bacteria. IMPORTANCE Bacterially produced specialized metabolites are frequently studied for their potential use as antibiotics and antifungals. However, a growing body of work has suggested that the antagonistic potential of specialized metabolites is not their only function. Here, using Bacillus subtilis as our model bacterium, we demonstrated that developmental processes such as biofilm formation and sporulation are tightly linked to specialized metabolite gene expression and production. Additionally, under our differentiation-inducing conditions, six out of the nine specialized metabolites investigated behave as intraspecific signals that impact B. subtilis physiology and influence biofilm formation and sporulation. Our work supports the viewpoint that specialized metabolites have a clear role as cell-cell signaling molecules within differentiated populations of bacteria.
Collapse
Affiliation(s)
- Alexi A. Schoenborn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah M. Yannarell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haley Clapper
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ilon C. Weinstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elizabeth A. Shank
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
17
|
Lilge L, Vahidinasab M, Adiek I, Becker P, Kuppusamy Nesamani C, Treinen C, Hoffmann M, Morabbi Heravi K, Henkel M, Hausmann R. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains. Microbiologyopen 2021; 10:e1241. [PMID: 34713601 PMCID: PMC8515880 DOI: 10.1002/mbo3.1241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/12/2022] Open
Abstract
Bacillus subtilis is described as a promising production strain for lipopeptides. In the case of B. subtilis strains JABs24 and DSM10T , surfactin and plipastatin are produced. Lipopeptide formation is controlled, among others, by the DegU response regulator. The activating phospho-transfer by the DegS sensor kinase is stimulated by the pleiotropic regulator DegQ, resulting in enhanced DegU activation. In B. subtilis 168, a point mutation in the degQ promoter region leads to a reduction in gene expression. Corresponding reporter strains showed a 14-fold reduced expression. This effect on degQ expression and the associated impact on lipopeptide formation was examined for B. subtilis JABs24, a lipopeptide-producing derivative of strain 168, and B. subtilis wild-type strain DSM10T , which has a native degQ expression. Based on the stimulatory effects of the DegU regulator on secretory protease formation, the impact of degQ expression on extracellular protease activity was additionally investigated. To follow the impact of degQ, a deletion mutant was constructed for DSM10T , while a natively expressed degQ version was integrated into strain JABs24. This allowed strain-specific quantification of the stimulatory effect of degQ expression on plipastatin and the negative effect on surfactin production in strains JABs24 and DSM10T . While an unaffected degQ expression reduced surfactin production in JABs24 by about 25%, a sixfold increase in plipastatin was observed. In contrast, degQ deletion in DSM10T increased surfactin titer by threefold but decreased plipastatin production by fivefold. In addition, although significant differences in extracellular protease activity were detected, no decrease in plipastatin and surfactin produced during cultivation was observed.
Collapse
Affiliation(s)
- Lars Lilge
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Maliheh Vahidinasab
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Isabel Adiek
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Philipp Becker
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Chanthiya Kuppusamy Nesamani
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Chantal Treinen
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Mareen Hoffmann
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Kambiz Morabbi Heravi
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Marius Henkel
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| |
Collapse
|
18
|
Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochem Soc Trans 2021; 49:203-215. [PMID: 33439248 DOI: 10.1042/bst20200425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Natural peptide products are a valuable source of important therapeutic agents, including antibiotics, antivirals and crop protection agents. Aided by an increased understanding of structure-activity relationships of these complex molecules and the biosynthetic machineries that produce them, it has become possible to re-engineer complete machineries and biosynthetic pathways to create novel products with improved pharmacological properties or modified structures to combat antimicrobial resistance. In this review, we will address the progress that has been made using non-ribosomally produced peptides and ribosomally synthesized and post-translationally modified peptides as scaffolds for designed biosynthetic pathways or combinatorial synthesis for the creation of novel peptide antimicrobials.
Collapse
|
19
|
Komatsu S, Tsumori C, Ohnishi K, Kai K. Genome- and Mass Spectrometry-Guided Discovery of Ralstoamides A and B from Ralstonia solanacearum Species Complex. ACS Chem Biol 2020; 15:2860-2865. [PMID: 33112588 DOI: 10.1021/acschembio.0c00605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strains of Ralstonia solanacearum species complex (RSSC) are devastating plant pathogens distributed globally with a wide host range and genetic diversity. Many RSSC strains harbor the polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrid gene rmyA/rmyB for ralstonin production. We report that ralstoamides A (1) and B (2), which are ralstonin-like but shorter lipopeptides, were discovered from the Japanese strains using accumulated RSSC genome data and LC/MS-based metabolite analysis. Their structures, including absolute configurations, were elucidated by spectroscopic analysis and chemical techniques. ramA, a PKS-NRPS gene for ralstoamide production, was identified from the producer strains by genome sequencing and gene-deletion experiments. Based on the analysis of biosynthetic genes of ralstoamides and ralstonins, we suggest the occurrence of NRPS-module reduction of rmyA/rmyB genes in some RSSC strains. This possible molecular evolution changed not only the structures, but also the biological activity of RSSC lipopeptides.
Collapse
Affiliation(s)
- Shoko Komatsu
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Sakai, Osaka 599-8531, Japan
| | - Chiaki Tsumori
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Sakai, Osaka 599-8531, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
20
|
Vahidinasab M, Lilge L, Reinfurt A, Pfannstiel J, Henkel M, Morabbi Heravi K, Hausmann R. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microb Cell Fact 2020; 19:205. [PMID: 33167976 PMCID: PMC7654001 DOI: 10.1186/s12934-020-01468-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/29/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. RESULTS The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. CONCLUSIONS This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.
Collapse
Affiliation(s)
- Maliheh Vahidinasab
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany.
| | - Aline Reinfurt
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| |
Collapse
|
21
|
Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Appl Microbiol Biotechnol 2020; 104:8077-8087. [DOI: 10.1007/s00253-020-10801-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/08/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
|
22
|
Yuan Y, Xu QM, Yu SC, Sun HZ, Cheng JS, Yuan YJ. Control of the polymyxin analog ratio by domain swapping in the nonribosomal peptide synthetase of Paenibacillus polymyxa. J Ind Microbiol Biotechnol 2020; 47:551-562. [PMID: 32495197 DOI: 10.1007/s10295-020-02275-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/15/2020] [Indexed: 11/26/2022]
Abstract
Polymyxins are used as the last-line therapy against multidrug-resistant bacteria. However, their further clinical development needs to solve problems related to the presence of heterogeneous analogs, but there is still no platform or methods that can regulate the biosynthesis of polymyxin analogs. In this study, we present an approach to swap domains in the polymyxin gene cluster to regulate the production of different analogs. Following adenylation domain swapping, the proportion of polymyxin B1 increased from 41.36 to 52.90%, while that of B1-1 decreased from 18.25 to 3.09%. The ratio of polymyxin B1 and B3 following starter condensation domain swapping changed from 41.36 and 16.99 to 55.03 and 6.39%, respectively. The two domain-swapping strains produced 62.96% of polymyxin B1, 6.70% of B3 and 3.32% of B1-1. This study also revealed the presence of overflow fluxes between acetoin, 2,3-butanediol and polymyxin. To our best knowledge, this is the first report of engineering the polymyxin synthetase gene cluster in situ to regulate the relative proportions of polymyxin analogs. This research paves a way for regulating lipopeptide analogs and will facilitate the development of novel lipopeptide derivatives.
Collapse
Affiliation(s)
- Ye Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin, 300387, People's Republic of China.
| | - Si-Cen Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Hui-Zhong Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| |
Collapse
|
23
|
Penha RO, Vandenberghe LPS, Faulds C, Soccol VT, Soccol CR. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. PLANTA 2020; 251:70. [PMID: 32086615 DOI: 10.1007/s00425-020-03357-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/05/2020] [Indexed: 05/27/2023]
Abstract
Lipopeptides could help to overcome a large concern in agriculture: resistance against chemical pesticides. These molecules have activity against various phytopathogens and a potential to be transformed by genetic engineering. The exponential rise of pest resistances to different chemical pesticides and the global appeal of consumers for a sustainable agriculture and healthy nutrition have led to the search of new solutions for pest control. Furthermore, new laws require a different stance of producers. Based on that, bacteria of the genus Bacillus present a great agricultural potential, producing lipopeptides (LPs) that have high activity against insects, mites, nematodes, and/or phytopathogens that are harmful to plant cultures. Biopesticide activity can be found mainly in three families of Bacillus lipopeptides: surfactin, iturin, and fengycin. These molecules have an amphiphilic nature, interfering with biological membrane structures. Their antimicrobial properties include activity against bacteria, fungi, oomycetes, and viruses. Recent studies also highlight the ability of these compounds to stimulate defense mechanisms of plants and biofilm formation, which is a key factor for the successful colonization of biocontrol organisms. The use of molecular biology has also recently been researched for continuous advances and discoveries of new LPs, avoiding possible future problems of resistance against these molecules. As a consequence of the properties and possibilities of LPs, numerous studies and developments as well as the attention of large companies in the field is expected in the near future.
Collapse
Affiliation(s)
- Rafaela O Penha
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Luciana P S Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Craig Faulds
- Aix-Marseille Université, POLYTECH Marseille, UMR 1163 Biotechnologie Des Champignons Filamenteux, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Vanete T Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Carlos R Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil.
| |
Collapse
|
24
|
Medeot DB, Fernandez M, Morales GM, Jofré E. Fengycins From Bacillus amyloliquefaciens MEP 218 Exhibit Antibacterial Activity by Producing Alterations on the Cell Surface of the Pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Front Microbiol 2020; 10:3107. [PMID: 32038550 PMCID: PMC6985098 DOI: 10.3389/fmicb.2019.03107] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Bacillus amyloliquefaciens MEP218 is an autochthonous bacterial isolate with antibacterial and antifungal activities against a wide range of phytopathogenic microorganisms. Cyclic lipopeptides (CLP), particularly fengycins, produced by this bacterium; are the main antimicrobial compounds responsible for the growth inhibition of phytopathogens. In this work, the CLP fraction containing fengycins with antibacterial activity was characterized by LC-ESI-MS/MS. In addition, the antibacterial activity of these fengycins was evaluated on the pathogens Xanthomonas axonopodis pv. vesicatoria (Xav), a plant pathogen causing the bacterial spot disease, and Pseudomonas aeruginosa PA01, an opportunistic human pathogen. In vitro inhibition assays showed bactericidal effects on Xav and PA01. Atomic force microscopy images revealed dramatic alterations in the bacterial surface topography in response to fengycins exposure. Cell damage was evidenced by a decrease in bacterial cell heights and the loss of intracellular content measured by potassium efflux assays. Furthermore, the viability of MRC-5 human normal lung fibroblasts was not affected by the treatment with fengycins. This study shows in vivo evidence on the less-known properties of fengycins as antibacterial molecules and leaves open the possibility of using this CLP as a novel antibiotic.
Collapse
Affiliation(s)
- Daniela B Medeot
- Instituto de Biotecnología Ambiental y Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, Río Cuarto, Argentina
| | - Maricruz Fernandez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Gustavo M Morales
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales - Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Edgardo Jofré
- Instituto de Biotecnología Ambiental y Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, Río Cuarto, Argentina.,Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
25
|
Pass-back chain extension expands multimodular assembly line biosynthesis. Nat Chem Biol 2019; 16:42-49. [PMID: 31636431 PMCID: PMC6917876 DOI: 10.1038/s41589-019-0385-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022]
Abstract
Modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymatic assembly lines are large and dynamic protein machines that generally effect a linear sequence of catalytic cycles. Here we report the heterologous reconstitution and comprehensive characterization of two hybrid NRPS-PKS assembly lines that defy many standard rules of assembly line biosynthesis to generate a large combinatorial library of cyclic lipodepsipeptide protease inhibitors called thalassospiramides. We generate a series of precise domain-inactivating mutations in thalassospiramide assembly lines and present evidence for an unprecedented biosynthetic model that invokes inter-module substrate activation and tailoring, module skipping, and pass-back chain extension, whereby the ability to pass the growing chain back to a preceding module is flexible and substrate-driven. Expanding bidirectional inter-module domain interactions could represent a viable mechanism for generating chemical diversity without increasing the size of biosynthetic assembly lines and challenges our understanding of the potential elasticity of multi-modular megaenzymes.
Collapse
|
26
|
Luo C, Chen Y, Liu X, Wang X, Wang X, Li X, Zhao Y, Wei L. Engineered biosynthesis of cyclic lipopeptide locillomycins in surrogate host Bacillus velezensis FZB42 and derivative strains enhance antibacterial activity. Appl Microbiol Biotechnol 2019; 103:4467-4481. [PMID: 30989253 DOI: 10.1007/s00253-019-09784-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023]
Abstract
Locillomycins are cyclic lipononapeptides assembled by a nonlinear hexamodular NRPS and have strong antibacterial activity. In this study, we genetically engineered Bacillus velezensis FZB42 as a surrogate host for the heterologous expression of the loc gene cluster for locillomycins. The fosmid N13 containing whole loc gene cluster was screened from the B. velezensis 916 genomic library. Subsequently, a spectinomycin resistance cassette, and the cassette fused with an IPTG inducible promoter Pspac, was introduced in the fosmid N13 using λ Red recombination system, respectively. The resulting fosmids, designated N13+Spec and N13+PSSpec, were used for the transformation of B. velezensis FZB42 to obtain derivative strains FZBNPLOC and FZBPSLOC. RT-PCR and qRT-PCR results revealed the efficient heterologous expression of the loc gene cluster in both derivative strains. Particularly, there was positive correlation between the derivative FZBPSLOC strain and the enhanced production of locillomycins upon addition of the inducer IPTG with the highest production of locillomycins at 15-fold more than that of B. velezensis 916. This overproduction of locillomycins was also related to the enhancement of antibacterial activity against methicillin-resistant Staphylococcus aureus, and exhibited moderate changes in its hemolytic activity. Together our findings demonstrate that the nonlinear hexamodular NRPS, encoded by the loc gene cluster from B. velezensis 916, is sufficient for the biosynthesis of cyclic lipononapeptide locillomycins in the surrogate host B. velezensis FZB42. Moreover, the FZBPSLOC strain will also be useful for further development of novel locillomycins derivatives with improved antibacterial activity.
Collapse
Affiliation(s)
- Chuping Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China.
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Yongxing Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xuehui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xiaoyu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiangqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|