1
|
Choe HW, Kim D, Choi YJ, Koh HG, Park WK. Influence of Microalgal Cell Division Tendency on OD to DCW Conversion Factor and Chlorophyll Contents. J Microbiol Biotechnol 2025; 35:e2412049. [PMID: 40223249 PMCID: PMC12010089 DOI: 10.4014/jmb.2412.12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025]
Abstract
As the importance of achieving a carbon-neutral society grow, research on the production of microalgal bioproducts have gained significant attention. Among the production processes, cultivation has emerged as a critical step as it determines overall productivity and feasibility. However, changes in cell properties during cultivation pose challenges, and there is currently no direct method to simultaneously assess cell growth, cellular division properties and cell enlargement. In this study, two green algae (Chlorella sp. ABC001 and Chlorella sp. HS2) were cultivated under photo and mixotrophic conditions to evaluate their growth, cell size profile, and changes in optical density. The mixotrophic condition resulted in 2.1 and 1.6-fold higher biomass yields than the photoautotrophic condition for ABC001 and HS2, respectively at day 4. Over the 4-day cultivation, cell sizes ranged from 2.51 to 5.57 μm for ABC001 and from 2.56 to 4.41 μm for HS2. By analyzing changes in the conversion factor between dry cell weight (DCW) and optical density (OD), it was observed that variations in the slope correlated with changes in cell size. Additionally, chlorophyll content fluctuated during cultivation, reaching maximum levels (14.34 and 16.58 μg/mg biomass, respectively) under phototrophic condition on day 2. This study highlights the relationship between cell division tendencies, DCW, cell size, and OD, demonstrating their critical role in determining cellular component content. For future optimization of algal product production processes, further research on these cellular differentiation mechanisms will be essential.
Collapse
Affiliation(s)
- Hyung Woon Choe
- Department of Chemistry, Sangmyung University, Seoul 03016, Republic of Korea
| | - DanA Kim
- Department of Chemistry, Sangmyung University, Seoul 03016, Republic of Korea
| | - Young Jun Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Advanced Materials Program, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Gi Koh
- Department of Biological & Chemical Engineering, Hongik University, Sejong-si 30016, Republic of Korea
| | - Won-Kun Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Advanced Materials Program, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Espitia J, Verheyen D, Kozak DS, Van Impe JFM. Influence of microbial cell morphology and composition on radio frequency heating of simple media at different frequencies. Sci Rep 2023; 13:10839. [PMID: 37407624 DOI: 10.1038/s41598-023-35705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
The effect of Listeria monocytogenes, Salmonella Typhimurium, and Saccharomyces cerevisiae on RF heating was studied in sterilized Milli-Q water and saline solution during treatments at 27.0 ± 0.6 MHz and 3.0 ± 0.02 MHz for 30 min. The presence of microorganisms caused a significant increase in temperature (maximum to 54.9 °C), with no significant decrease in cell numbers being observed for any conditions. For both media and frequencies, heating rates followed the order S. Typhimurium ≤ L. monocytogenes ≤ S. cerevisiae, except for heating at 3.0 ± 0.02 MHz in saline solution, where heating rates for S. cerevisiae and S. Typhimurium were equal. Generally, heating rates for microorganisms were significantly higher at 27.0 ± 0.6 MHz than at 3.0 ± 0.02 MHz, except for the S. cerevisiae case. Observed phenomena were probably caused by differences in the cell lipid and peptidoglycan content, with interaction effects with salt being present. This study was the first to investigate the influence of the presence of microorganisms on heating behavior of simple media. On the long term, more research on this topic could lead to finding specific RF frequencies more suitable for the heating of specific media and products for various applications.
Collapse
Affiliation(s)
- Julian Espitia
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium
| | - Davy Verheyen
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium
| | - Dmytro S Kozak
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium
- Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, 34/1 Acad. Vernadskogo Boul., Kiev, 03142, Ukraine
| | - Jan F M Van Impe
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium.
| |
Collapse
|
3
|
De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnol Adv 2023; 64:108121. [PMID: 36775001 DOI: 10.1016/j.biotechadv.2023.108121] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Recombinant proteins (RP) are widely used as biopharmaceuticals, industrial enzymes, or sustainable food source. Yeasts, with their ability to produce complex proteins through a broad variety of cheap carbon sources, have emerged as promising eukaryotic production hosts. As such, the prevalence of yeasts as favourable production organisms in commercial RP production is expected to increase. Yet, with the selection of a robust production host on the one hand, successful scale-up is dependent on a thorough understanding of the challenging environment and limitations of large-scale bioreactors on the other hand. In the present work, several prominent yeast species, including Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, Kluyveromyces lactis and Kluyveromyces marxianus are reviewed for their current state and performance in commercial RP production. Thereafter, the impact of principal process control parameters, including dissolved oxygen, pH, substrate concentration, and temperature, on large-scale RP production are discussed. Finally, technical challenges of process scale-up are identified. To that end, process intensification strategies to enhance industrial feasibility are summarized, specifically highlighting fermentation strategies to ensure sufficient cooling capacity, overcome oxygen limitation, and increase protein quality and productivity. As such, this review aims to contribute to the pursuit of sustainable yeast-based RP production.
Collapse
Affiliation(s)
- Pieter De Brabander
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Evelien Uitterhaegen
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| |
Collapse
|
4
|
Kitahara Y, Itani A, Oda Y, Okamura M, Mizoshiri M, Shida Y, Nakamura T, Kasahara K, Ogasawara W. A real-time monitoring system for automatic morphology analysis of yeast cultivation in a jar fermenter. Appl Microbiol Biotechnol 2022; 106:4683-4693. [PMID: 35687157 DOI: 10.1007/s00253-022-12002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
The monitoring of microbial cultivation in real time and controlling their cultivation aid in increasing the production yield of useful material in a jar fermenter. Common sensors such as dissolved oxygen (DO) and pH can easily provide general-purpose indexes but do not reveal the physiological states of microbes because of the complexity of measuring them in culture conditions. It is well known from microscopic observations that the microbial morphology changes in response to the intracellular state or extracellular environment. Recently, studies have focused on rapid and quantitative image analysis techniques using machine learning or deep learning for gleaning insights into the morphological, physiological or gene expression information in microbes. During image analysis, it is necessary to retrieve high-definition images to analyze the microbial morphology in detail. In this study, we have developed a microfluidic device with a high-speed camera for the microscopic observation of yeast, and have constructed a system capable of generating their morphological information in real-time and at high definition. This system was connected to a jar fermenter, which enabled the automatic sampling for monitoring the cultivation. We successfully acquired high-definition images of over 10,000 yeast cells in about 2.2 s during ethanol fermentation automatically for over 168 h. We recorded 33,600 captures containing over 1,680,000 cell images. By analyzing these images, the morphological changes of yeast cells through ethanol fermentation could be captured, suggesting the expansion of the application of this system in controlling microbial fermentation using the morphological information generated. KEY POINTS: • Enables real-time visualization of microbes in a jar fermenter using microscopy. • Microfluidic device for acquiring high-definition images. • Generates a large amount of image data by using a high-speed camera.
Collapse
Affiliation(s)
- Yukina Kitahara
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Ayaka Itani
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yosuke Oda
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Makoto Okamura
- NRI System Techno Ltd, 134, Kobecho, Hodogaya-ku, Yokohama, Kanagawa, 240-0005, Japan
| | - Mizue Mizoshiri
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Toru Nakamura
- NRI System Techno Ltd, 134, Kobecho, Hodogaya-ku, Yokohama, Kanagawa, 240-0005, Japan
| | - Ken Kasahara
- Chitose Laboratory Corp, Biotechnology Research Center, 2-13-3 Nogawahoncho, Miyamae-ku, Kawasaki, Kanagawa, 216-0041, Japan
| | - Wataru Ogasawara
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan. .,Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
5
|
Emergence of Phenotypically Distinct Subpopulations Is a Factor in Adaptation of Recombinant Saccharomyces cerevisiae under Glucose-Limited Conditions. Appl Environ Microbiol 2022; 88:e0230721. [PMID: 35297727 DOI: 10.1128/aem.02307-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells cultured in a nutrient-limited environment can undergo adaptation, which confers improved fitness under long-term energy limitation. We have shown previously how a recombinant Saccharomyces cerevisiae strain, producing a heterologous insulin product, under glucose-limited conditions adapts over time at the average population level. Here, we investigated this adaptation at the single-cell level by application of fluorescence-activated cell sorting (FACS) and showed that the following three apparent phenotypes underlie the adaptive response observed at the bulk level: (i) cells that drastically reduced insulin production (23%), (ii) cells with reduced enzymatic capacity in central carbon metabolism (46%), and (iii) cells that exhibited pseudohyphal growth (31%). We speculate that the phenotypic heterogeneity is a result of different mechanisms to increase fitness. Cells with reduced insulin productivity have increased fitness by reducing the burden of the heterologous insulin production, and the populations with reduced enzymatic capacity of the central carbon metabolism and pseudohyphal growth have increased fitness toward the glucose-limited conditions. The results highlight the importance of considering population heterogeneity when studying adaptation and evolution. IMPORTANCE The yeast Saccharomyces cerevisiae is an attractive microbial host for industrial production and is used widely for manufacturing, e.g., pharmaceuticals. Chemostat cultivation mode is an efficient cultivation strategy for industrial production processes as it ensures a constant, well-controlled cultivation environment. Nevertheless, both the production of a heterologous product and the constant cultivation environment in the chemostat impose a selective pressure on the production organism, which may result in adaptation and loss of productivity. The exact mechanisms behind the observed adaptation and loss of performance are often unidentified. We used a recombinant S. cerevisiae strain producing heterologous insulin and investigated the adaptation occurring during chemostat growth at the single-cell level. We showed that three apparent phenotypes underlie the adaptive response observed at the bulk level in the chemostat. These findings highlight the importance of considering population heterogeneity when studying adaptation in industrial bioprocesses.
Collapse
|
6
|
Sun J, Silander O, Rutherfurd-Markwick K, Wen D, Davy TPP, Mutukumira AN. Phenotypic and genotypic characterisation of Lactobacillus and yeast isolates from a traditional New Zealand Māori potato starter culture. Curr Res Food Sci 2022; 5:1287-1294. [PMID: 36061410 PMCID: PMC9428859 DOI: 10.1016/j.crfs.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 11/05/2022] Open
Abstract
Parāroa Rēwena is a traditional Māori sourdough produced by fermentation using a potato starter culture. The microbial composition of the starter culture is not well characterised, despite the long history of this product. The morphological, physiological, biochemical and genetic tests were conducted to characterise 26 lactic acid bacteria (LAB) and 15 yeast isolates from a Parāroa Rēwena potato starter culture. The results of sugar fermentation tests, API 50 CHL tests, and API ID 32 C tests suggest the presence of four different LAB phenotypes and five different yeast phenotypes. 16S rRNA and 26S rRNA sequencing identified the LAB as Lacticaseibacillus paracasei and the yeast isolates as Saccharomyces cerevisiae, respectively. Multilocus sequence typing (MLST) of the L. paracasei isolates indicated that they had identical genotypes at the MLST loci, to L. paracasei subsp. paracasei IBB 3423 or L. paracasei subsp. paracasei F19. This study provides new insights into the microbial composition of the traditional sourdough Parāroa Rēwena starter culture. 16S sequencing, Multilocus sequencing typing for LAB in the potato starter culture. 26S sequencing for yeast in the starter culture. Lacticaseibacillus paracasei subsp. paracasei IBB3423. Lacticaseibacillus paracasei subsp. paracasei F19. Saccharomycescerevisiae.
Collapse
|
7
|
Yang Y, Liu G, Chen X, Liu M, Zhan C, Liu X, Bai Z. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris. Enzyme Microb Technol 2020; 138:109556. [PMID: 32527526 DOI: 10.1016/j.enzmictec.2020.109556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Pichia pastoris is a methylotrophic yeast in which host heterologous expression of proteins has been developed owing to the strong inducible alcohol oxidase promoter (PAOX1). However, it is difficult to manipulate the genome in P. pastoris. Based on previous attempts to apply the CRISPR/Cas9 system in P. pastoris, a CRISPR/Cas9 system with episomal sgRNA plasmid was developed and 100 % genome editing efficiency, high multicopy gene editing and stable multigene editing were obtained without a sharp decline caused by multi-sgRNA. And 28/34 (∼82 %) sgRNAs tested were effective. The CGG may have a slightly higher and more stable cleavage efficiency than the other three NGG motifs, and a low GC content may be preferable for higher cleavage efficiency. This provides researchers with a stable genome editing tool that shows a high editing efficiency, shortening the experimentation period. Furthermore, we introduced dCas9 into P. pastoris and achieved target gene interference, expanding the CRISPR/Cas9 toolbox in P. pastoris.
Collapse
Affiliation(s)
- Yankun Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Guoqiang Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meng Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunjun Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|