1
|
Kumar S, Mahendiran S, Nair RS, Vyas H, Singh SK, Srivastava P, Jha S, Rana B, Rana A. A mechanistic, functional, and clinical perspective on targeting CD70 in cancer. Cancer Lett 2024; 611:217428. [PMID: 39725151 DOI: 10.1016/j.canlet.2024.217428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
The oncoimmunology research has witnessed notable advancements in recent years. Reshaping the tumor microenvironment (TME) approach is an effective method to improve antitumor immune response. The T cell-mediated antitumor response is crucial for favorable therapeutic outcomes in several cancers. The United States Food and Drug Administration (FDA) has approved immune checkpoint inhibitors (ICIs) for targeting the immune checkpoint proteins (ICPs) expressed in various hematological and solid malignancies. The ICPs are T cell co-inhibitory molecules that block T cell activation and, thus, antitumor response. Currently, most of the FDA-approved ICIs are antagonistic antibodies of programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). In contrast to ICPs, the T cell costimulatory molecules are required for T cell activation, expansion, and effector function. However, the abrupt expression of these costimulatory molecules in tumors presents a concern for T cell-mediated antitumor response. One of the T cell costimulatory molecules, the cluster of differentiation 70 (CD70), has emerged as a druggable target in various hematological and solid malignancies due to its role in T cell effector function and immune evasion. The present review describes the expression of CD70, factors affecting the CD70 expression, the physiological and clinical relevance of CD70, and the current approaches to target CD70 in hematological and solid malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA.
| | - Sowdhamini Mahendiran
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Harsh Vyas
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Yang Y, Zhou Y, Wang J, Zhou Y, Watowich SS, Kleinerman ES. CD103 + cDC1 Dendritic Cell Vaccine Therapy for Osteosarcoma Lung Metastases. Cancers (Basel) 2024; 16:3251. [PMID: 39409873 PMCID: PMC11482638 DOI: 10.3390/cancers16193251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND We generated a CD103+DC vaccine using K7M3 OS cell lysates (cDCV) and investigated its ability to induce regression of primary tumors, established lung metastases, and a systemic immune response. METHODS A bilateral tumor model was used to assess cDCV therapy efficacy and systemic immunity induction. K7M3 cells were injected into mice bilaterally. Right-sided tumors received PBS (control) or cDCV. Left-sided tumors were untreated. Tumor growth was compared between the vaccine-treated and untreated tumor on the contralateral side and compared to the control group. The immune cell profiles of the tumors, and tumor-draining lymph nodes (TdLNs) and spleen were evaluated. To determine the efficacy of systemic cDCV therapy against established lung metastases, K7M3 cells were injected intratibially. Leg amputation was performed 5 weeks later. Mice were treated intravenously with PBS or cDCV and euthanized 6 weeks later. Lungs, TdLNs and spleen were collected. The number and size of the lung nodules were quantified. The immune cell profile of tumor, and lymph nodes and spleen were also evaluated. Using this same model, we evaluated the effect of cDCV + anti-CTLA-4. RESULTS cDCV therapy inhibited the treated and untreated tumors and increased the number of T-cells in these tumors and the lymph nodes compared to control-treated mice. Systemic cDCV therapy administered following amputation decreased the size and number of lung metastases, and increased T-cell numbers in the tumor and lymph nodes. Combining anti-CTLA-4 with cDCV therapy increased cDCV efficacy against lung metastases. CONCLUSIONS Intratumor cDCV generated a systemic immune response inhibiting the growth of both the treated and untreated tumors, with increased T-cells in the tumor and lymph nodes. Systemic cDCV was effective against established lung metastases. Efficacy was increased by anti-CTLA4. cDCVs may provide a novel therapeutic approach for relapsed/metastatic OS patients.
Collapse
Affiliation(s)
- Yuanzheng Yang
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Y.); (Y.Z.)
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Z.); (S.S.W.)
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - You Zhou
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Y.); (Y.Z.)
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Z.); (S.S.W.)
| | - Eugenie S. Kleinerman
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (Y.Y.); (Y.Z.)
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
3
|
Xiong Q, Wang H, Shen Q, Wang Y, Yuan X, Lin G, Jiang P. The development of chimeric antigen receptor T-cells against CD70 for renal cell carcinoma treatment. J Transl Med 2024; 22:368. [PMID: 38637886 PMCID: PMC11025280 DOI: 10.1186/s12967-024-05101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-ɑ during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.
Collapse
Affiliation(s)
- Qinghui Xiong
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China.
| | - Haiying Wang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China.
| | - Qiushuang Shen
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Yan Wang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Xiujie Yuan
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Guangyao Lin
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Pengfei Jiang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| |
Collapse
|
4
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdaisat S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Gregory Sawyer W. Bioconjugated liquid-like solid enhances characterization of solid tumor - chimeric antigen receptor T cell interactions. Acta Biomater 2023; 172:466-479. [PMID: 37788737 DOI: 10.1016/j.actbio.2023.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.
Collapse
Affiliation(s)
- Duy T Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ruixuan Liu
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elizabeth Ogando-Rivas
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alfonso Pepe
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Diego Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Sadeem Qdaisat
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Nhi Tran Yen Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Julia M Lavrador
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Griffin R Golde
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ryan A Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - John Ligon
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Haipeng Tao
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alex Webber
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Simon Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States.
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States.
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
5
|
Rav E, Maegawa S, Gopalakrishnan V, Gordon N. Overview of CD70 as a Potential Therapeutic Target for Osteosarcoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1067-1072. [PMID: 37722095 DOI: 10.4049/jimmunol.2200591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/25/2023] [Indexed: 09/20/2023]
Abstract
Osteosarcoma is a primary malignant bone tumor. Effective chemotherapy regimens for refractory disease are scarce, accounting for no improvement in survival. Immune-based cell therapies have emerged as novel alternatives. However, advancements with these therapies have been seen mostly when immune cells are armed to target specific tumor Ags. Recent studies identified cluster of differentiation 70 (CD70) as a promising target to osteosarcoma particularly because CD70 is highly expressed in osteosarcoma lung metastases (Pahl et al. 2015. Cancer Cell Int. 15: 31), and its overexpression by tumors has been correlated with immune evasion and tumor proliferation (Yang et al. 2007. Blood 110: 2537-2544). However, the limited knowledge of the overall CD70 expression within normal tissues and the potential for off-target effect pose several challenges (Flieswasser et al. 2022. J. Exp. Clin. Cancer Res. 41: 12). Nonetheless, CD70-based clinical trials are currently ongoing and are preliminarily showing promising results for patients with osteosarcoma. The present review sheds light on the recent literature on CD70 as it relates to osteosarcoma and highlights the benefits and challenges of targeting this pathway.
Collapse
Affiliation(s)
- Emily Rav
- Division of Pediatrics, Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shinji Maegawa
- Division of Pediatrics, Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vidya Gopalakrishnan
- Division of Pediatrics, Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nancy Gordon
- Division of Pediatrics, Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Ji Y, Lin Z, Li G, Tian X, Wu Y, Wan J, Liu T, Xu M. Identification and validation of novel biomarkers associated with immune infiltration for the diagnosis of osteosarcoma based on machine learning. Front Genet 2023; 14:1136783. [PMID: 37732314 PMCID: PMC10507254 DOI: 10.3389/fgene.2023.1136783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Objectives: Osteosarcoma is the most common primary malignant tumor in children and adolescents, and the 5-year survival of osteosarcoma patients gained no substantial improvement over the past decades. Effective biomarkers in diagnosing osteosarcoma are warranted to be developed. This study aims to explore novel biomarkers correlated with immune cell infiltration in the development and diagnosis of osteosarcoma. Methods: Three datasets (GSE19276, GSE36001, GSE126209) comprising osteosarcoma samples were extracted from Gene Expression Omnibus (GEO) database and merged to obtain the gene expression. Then, differentially expressed genes (DEGs) were identified by limma and potential biological functions and downstream pathways enrichment analysis of DEGs was performed. The machine learning algorithms LASSO regression model and SVM-RFE (support vector machine-recursive feature elimination) analysis were employed to identify candidate hub genes for diagnosing patients with osteosarcoma. Receiver operating characteristic (ROC) curves were developed to evaluate the discriminatory abilities of these candidates in both training and test sets. Furthermore, the characteristics of immune cell infiltration in osteosarcoma, and the correlations between these potential genes and immune cell abundance were illustrated using CIBERSORT. qRT-PCR and western blots were conducted to validate the expression of diagnostic candidates. Results: GEO datasets were divided into the training (merged GSE19276, GSE36001) and test (GSE126209) groups. A total of 71 DEGs were screened out in the training set, including 10 upregulated genes and 61 downregulated genes. These DEGs were primarily enriched in immune-related biological functions and signaling pathways. After machine learning by SVM-RFE and LASSO regression model, four biomarkers were chosen for the diagnostic nomogram for osteosarcoma, including ASNS, CD70, SRGN, and TRIB3. These diagnostic biomarkers all possessed high diagnostic values (AUC ranging from 0.900 to 0.955). Furthermore, these genes were significantly correlated with the infiltration of several immune cells, such as monocytes, macrophages M0, and neutrophils. Conclusion: Four immune-related candidate hub genes (ASNS, CD70, SRGN, TRIB3) with high diagnostic value were confirmed for osteosarcoma patients. These diagnostic genes were significantly connected with the immune cell abundance, suggesting their critical roles in the osteosarcoma tumor immune microenvironment. Our study provides highlights on novel diagnostic candidate genes with high accuracy for diagnosing osteosarcoma patients.
Collapse
Affiliation(s)
- Yuqiao Ji
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyu Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanlin Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Xu
- Department of Critical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Liu C, Li J, Hu Q, Xu X, Zhang X. Generation of a CD70-Specific Fusion Nanobody with IgG Recruiting Capacity for Tumor Killing. Int J Nanomedicine 2023; 18:3325-3338. [PMID: 37361386 PMCID: PMC10289098 DOI: 10.2147/ijn.s410281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose Due to its competitive advantages such as small size, high stability, easy production, and good tissue penetration compared with monoclonal antibodies (mAb), nanobodies (Nbs) were considered the next generation of therapeutics. However, the absence of Fc fragments and Fc-triggered immune effectors limits their clinical applications. In order to overcome these limitations, we develop a novel approach by attaching an IgG binding domain (IgBD) to Nbs for recruiting endogenous IgG and recovering the immune effectors for tumor killing. Material and Methods We linked a Streptococcal Protein G-derived IgBD, termed C3Fab, at the C-terminus of a CD70-specific Nb 3B6 to construct an endogenous IgG recruitment antibody (termed EIR). The recombinant Nb3B6-C3Fab was expressed in E. coli BL21 (DE3) and purified by nickel affinity chromatography. We further evaluated the binding, recruitment of IgG, and the serum half-life of Nb3B6-C3Fab. The tumor-killing effects on CD70 positive cells mediated by antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity were also detected. Results We successfully constructed a IgBD fused Nb3B6-C3Fab with high affinity for CD70 and mouse IgG (mIgG). Nb3B6-C3Fab can specifically bind to CD70 positive tumor cells and recruit mIgG on the cell surface. Ligating of Nb3B6 with C3Fab increased its serum half-life in mice almost 39-fold from 0.96 h to 37.67 h. Moreover, we demonstrated remarkable cytotoxicity of Nb3B6-C3Fab to CD70 positive tumor cells via C3Fab by immune effector cells. Conclusion Our study demonstrates that IgBD fusion endows Nbs with the ability for endogenous IgG recruitment and half-life promotion. Linking IgBD to Nbs is an effective strategy to recovering immune effectors for tumor killing.
Collapse
Affiliation(s)
- Chang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Jiangwei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Qianqian Hu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Xinlan Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Xin Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| |
Collapse
|
8
|
Huang L, Sun F, Liu Z, Jin W, Zhang Y, Chen J, Zhong C, Liang W, Peng H. Probing the Potential of Defense Response-Associated Genes for Predicting the Progression, Prognosis, and Immune Microenvironment of Osteosarcoma. Cancers (Basel) 2023; 15:cancers15082405. [PMID: 37190333 DOI: 10.3390/cancers15082405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The defense response is a type of self-protective response of the body that protects it from damage by pathogenic factors. Although these reactions make important contributions to the occurrence and development of tumors, the role they play in osteosarcoma (OS), particularly in the immune microenvironment, remains unpredictable. METHODS This study included the clinical information and transcriptomic data of 84 osteosarcoma samples and the microarray data of 12 mesenchymal stem cell samples and 84 osteosarcoma samples. We obtained 129 differentially expressed genes related to the defense response (DRGs) by taking the intersection of differentially expressed genes with genes involved in the defense response pathway, and prognostic genes were screened using univariate Cox regression. Least absolute shrinkage and selection operator (LASSO) penalized Cox regression and multivariate Cox regression were then used to establish a DRG prognostic signature (DGPS) via the stepwise method. DGPS performance was examined using independent prognostic analysis, survival curves, and receiver operating characteristic (ROC) curves. In addition, the molecular and immune mechanisms of adverse prognosis in high-risk populations identified by DGPS were elucidated. The results were well verified by experiments. RESULT BNIP3, PTGIS, and ZYX were identified as the most important DRGs for OS progression (hazard ratios of 2.044, 1.485, and 0.189, respectively). DGPS demonstrated outstanding performance in the prediction of OS prognosis (area under the curve (AUC) values of 0.842 and 0.787 in the training and test sets, respectively, adj-p < 0.05 in the survival curve). DGPS also performed better than a recent clinical prognostic approach with an AUC value of only 0.674 [metastasis], which was certified in the subsequent experimental results. These three genes regulate several key biological processes, including immune receptor activity and T cell activation, and they also reduce the infiltration of some immune cells, such as B cells, CD8+ T cells, and macrophages. Encouragingly, we found that DGPS was associated with sensitivity to chemotherapeutic drugs including JNK Inhibitor VIII, TGX221, MP470, and SB52334. Finally, we verified the effect of BNIP3 on apoptosis, proliferation, and migration of osteosarcoma cells through experiments. CONCLUSIONS This study elucidated the role and mechanism of BNIP3, PTGIS, and ZYX in OS progression and was well verified by the experimental results, enabling reliable prognostic means and treatment strategies to be proposed for OS patients.
Collapse
Affiliation(s)
- Liangkun Huang
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fei Sun
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zilin Liu
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenyi Jin
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yubiao Zhang
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Junwen Chen
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Changheng Zhong
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wanting Liang
- Department of Clinical Medicine, Xianyue Hospital of Xiamen Medical College, Xiamen 310058, China
| | - Hao Peng
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
9
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdasait S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Sawyer WG. Three-Dimensional Bioconjugated Liquid-Like Solid (LLS) Enhance Characterization of Solid Tumor - Chimeric Antigen Receptor T cell interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529033. [PMID: 36865164 PMCID: PMC9980005 DOI: 10.1101/2023.02.17.529033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Cancer immunotherapy offers lifesaving treatments for cancers, but the lack of reliable preclinical models that could enable the mechanistic studies of tumor-immune interactions hampers the identification of new therapeutic strategies. We hypothesized 3D confined microchannels, formed by interstitial space between bio-conjugated liquid-like solids (LLS), enable CAR T dynamic locomotion within an immunosuppressive TME to carry out anti-tumor function. Murine CD70-specific CAR T cells cocultured with the CD70-expressing glioblastoma and osteosarcoma demonstrated efficient trafficking, infiltration, and killing of cancer cells. The anti-tumor activity was clearly captured via longterm in situ imaging and supported by upregulation of cytokines and chemokines including IFNg, CXCL9, CXCL10, CCL2, CCL3, and CCL4. Interestingly, target cancer cells, upon an immune attack, initiated an "immune escape" response by frantically invading the surrounding microenvironment. This phenomenon however was not observed for the wild-type tumor samples which remained intact and produced no relevant cytokine response. Single cells collection and transcriptomic profiling of CAR T cells at regions of interest revealed feasibility of identifying differential gene expression amongst the immune subpopulations. Complimentary 3D in vitro platforms are necessary to uncover cancer immune biology mechanisms, as emphasized by the significant roles of the TME and its heterogeneity.
Collapse
Affiliation(s)
- Duy T. Nguyen
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Ruixuan Liu
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elizabeth Ogando-Rivas
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Alfonso Pepe
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Diego Pedro
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Sadeem Qdasait
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Nhi Tran Yen Nguyen
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Julia M. Lavrador
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Griffin R. Golde
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | | | - John Ligon
- UF Department of Pediatrics, Division of Pediatric Hematology Oncology, Gainesville, FL, 32610
| | - Linchun Jin
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Haipeng Tao
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | | | | | - Duane A. Mitchell
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elias J Sayour
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Jianping Huang
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Paul Castillo
- UF Department of Pediatrics, Division of Pediatric Hematology Oncology, Gainesville, FL, 32610
| | - W. Gregory Sawyer
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| |
Collapse
|
10
|
Mixed lineage kinase 3 and CD70 cooperation sensitize trastuzumab-resistant HER2 + breast cancer by ceramide-loaded nanoparticles. Proc Natl Acad Sci U S A 2022; 119:e2205454119. [PMID: 36095190 PMCID: PMC9499572 DOI: 10.1073/pnas.2205454119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trastuzumab is the first-line therapy for human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but often patients develop acquired resistance. Although other agents are in clinical use to treat trastuzumab-resistant (TR) breast cancer; still, the patients develop recurrent metastatic disease. One of the primary mechanisms of acquired resistance is the shedding/loss of the HER2 extracellular domain, where trastuzumab binds. We envisioned any new agent acting downstream of the HER2 should overcome trastuzumab resistance. The mixed lineage kinase 3 (MLK3) activation by trastuzumab is necessary for promoting cell death in HER2+ breast cancer. We designed nanoparticles loaded with MLK3 agonist ceramide (PPP-CNP) and tested their efficacy in sensitizing TR cell lines, patient-derived organoids, and patient-derived xenograft (PDX). The PPP-CNP activated MLK3, its downstream JNK kinase activity, and down-regulated AKT pathway signaling in TR cell lines and PDX. The activation of MLK3 and down-regulation of AKT signaling by PPP-CNP induced cell death and inhibited cellular proliferation in TR cells and PDX. The apoptosis in TR cells was dependent on increased CD70 protein expression and caspase-9 and caspase-3 activities by PPP-CNP. The PPP-CNP treatment alike increased the expression of CD70, CD27, cleaved caspase-9, and caspase-3 with a concurrent tumor burden reduction of TR PDX. Moreover, the expressions of CD70 and ceramide levels were lower in TR than sensitive HER2+ human breast tumors. Our in vitro and preclinical animal models suggest that activating the MLK3-CD70 axis by the PPP-CNP could sensitize/overcome trastuzumab resistance in HER2+ breast cancer.
Collapse
|
11
|
Kashima J, Hishima T, Okuma Y, Horio H, Ogawa M, Hayashi Y, Horiguchi SI, Motoi T, Ushiku T, Fukayama M. CD70 in Thymic Squamous Cell Carcinoma: Potential Diagnostic Markers and Immunotherapeutic Targets. Front Oncol 2022; 11:808396. [PMID: 35145909 PMCID: PMC8821901 DOI: 10.3389/fonc.2021.808396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
CD70 – a ligand protein of CD27 on lymphocytes – is expressed in a large spectrum of malignancies. It is an attractive target for antibody-based therapy and several clinical trials are currently being conducted. However, there is no evidence regarding the expression of CD70 and its relationship with expression of programmed death ligand-1 (PD-L1) and CD27+ tumor-infiltrating lymphocytes (TIL) in formalin-fixed paraffin-embedded (FFPE) tissues of thymic tumors. FFPE tissues of thymic squamous cell carcinoma (TSCC) (operative specimens, n = 31; biopsy specimens, n = 11), thymoma (n = 60), thymic carcinoid (n = 3), and lung squamous cell carcinoma (LSCC) (n = 30) were analyzed immunohistochemically. Immunoreactivity for CD70 was semi-quantitatively scored according to the proportion of positive tumor cells. Moreover, the densities of CD27-positive intratumoral TIL (iTIL) and stromal TIL of TSCC were assessed and survival was compared. Most TSCC cases (87%; 27/31) were CD70-positive. In contrast, all thymoma and thymic carcinoid cases were CD70-negative. In LSCC cases, CD70-positivity was significantly lower than TSCC cases (20%; 6/30). Biopsy and resected specimens obtained from the same patients demonstrated a consistent staining pattern (6/6 patients). The proportion of CD70-positive TSCC was comparable with those of CD5 (87%) and CD117 (90%). Correlation between CD70 and PD-L1 expression score was observed. There was no significant difference in survival between the CD70-high and CD70-low expression groups. Meanwhile, patients with CD27-positive iTIL-high tumors exhibited better survival than those with iTIL-low tumors. This tendency was weaker in the CD70-high subset. CD70 immunohistochemistry is useful in diagnosing TSCC. CD70 may prevent anti-tumor immunity via CD27. Immunotherapy targeting the CD70–CD27 axis may be a promising option for the treatment of TSCC.
Collapse
Affiliation(s)
- Jumpei Kashima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
- *Correspondence: Tsunekazu Hishima,
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, National Cancer Center, Tokyo, Japan
| | - Hirotoshi Horio
- Department of Thoracic Surgery, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Masumi Ogawa
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Yukiko Hayashi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Shin-ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Toru Motoi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Seyfrid M, Maich WT, Shaikh VM, Tatari N, Upreti D, Piyasena D, Subapanditha M, Savage N, McKenna D, Mikolajewicz N, Han H, Chokshi C, Kuhlmann L, Khoo A, Salim SK, Archibong-Bassey B, Gwynne W, Brown K, Murtaza N, Bakhshinyan D, Vora P, Venugopal C, Moffat J, Kislinger T, Singh S. CD70 as an actionable immunotherapeutic target in recurrent glioblastoma and its microenvironment. J Immunother Cancer 2022; 10:e003289. [PMID: 35017149 PMCID: PMC8753449 DOI: 10.1136/jitc-2021-003289] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Glioblastoma (GBM) patients suffer from a dismal prognosis, with standard of care therapy inevitably leading to therapy-resistant recurrent tumors. The presence of cancer stem cells (CSCs) drives the extensive heterogeneity seen in GBM, prompting the need for novel therapies specifically targeting this subset of tumor-driving cells. Here, we identify CD70 as a potential therapeutic target for recurrent GBM CSCs. EXPERIMENTAL DESIGN In the current study, we identified the relevance and functional influence of CD70 on primary and recurrent GBM cells, and further define its function using established stem cell assays. We use CD70 knockdown studies, subsequent RNAseq pathway analysis, and in vivo xenotransplantation to validate CD70's role in GBM. Next, we developed and tested an anti-CD70 chimeric antigen receptor (CAR)-T therapy, which we validated in vitro and in vivo using our established preclinical model of human GBM. Lastly, we explored the importance of CD70 in the tumor immune microenvironment (TIME) by assessing the presence of its receptor, CD27, in immune infiltrates derived from freshly resected GBM tumor samples. RESULTS CD70 expression is elevated in recurrent GBM and CD70 knockdown reduces tumorigenicity in vitro and in vivo. CD70 CAR-T therapy significantly improves prognosis in vivo. We also found CD27 to be present on the cell surface of multiple relevant GBM TIME cell populations, notably putative M1 macrophages and CD4 T cells. CONCLUSION CD70 plays a key role in recurrent GBM cell aggressiveness and maintenance. Immunotherapeutic targeting of CD70 significantly improves survival in animal models and the CD70/CD27 axis may be a viable polytherapeutic avenue to co-target both GBM and its TIME.
Collapse
Affiliation(s)
- Mathieu Seyfrid
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - William Thomas Maich
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Deepak Upreti
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Deween Piyasena
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Minomi Subapanditha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Dillon McKenna
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicholas Mikolajewicz
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hong Han
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chirayu Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Laura Kuhlmann
- Department of Medical Biophysics, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Amanda Khoo
- Department of Medical Biophysics, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Sabra Khalid Salim
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - William Gwynne
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Kevin Brown
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Nadeem Murtaza
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Parvez Vora
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Sheila Singh
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Pestana RC, Roszik J, Groisberg R, Sen S, Van Tine BA, Conley AP, Subbiah V. Discovery of targeted expression data for novel antibody-based and chimeric antigen receptor-based therapeutics in soft tissue sarcomas using RNA-sequencing: clinical implications. Curr Probl Cancer 2021; 45:100794. [PMID: 34656365 DOI: 10.1016/j.currproblcancer.2021.100794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/11/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
Recent failure of phase 3 trials and paucity of druggable oncogenic drivers hamper developmental therapeutics in sarcomas. Antibody-based therapeutics, like antibody-drug conjugates (ADCs) and chimeric antigen receptor (CAR)-based therapeutics, have emerged as promising strategies for anticancer drug delivery. The efficacy of these novel therapies is highly dependent on expression of the antibody target. We used RNA sequencing data from Cancer Genome Atlas (TCGA) to analyze expression of target antigens in sarcoma subtypes including dedifferentiated liposarcoma (DDLPS; n = 50), uterine leiomyosarcoma (ULMS; n = 27), leiomyosarcoma (STLMS; n = 53), undifferentiated pleomorphic sarcoma (UPS; n = 44), myxofibrosarcoma (MFS; n = 17), synovial sarcoma (SS; n = 10), and malignant peripheral nerve sheath tumor (MPNST; n = 5). We searched published literature and clinicaltrial.gov for ADC targets, bispecific antibodies, immunotoxins, radioimmunoconjugates, SPEAR T-cells, and CAR's that are in clinical trials. CD70 expression was significantly higher in DDLPS, UPS, and MFS than SS and STLMS. CDH3 expression was greater in LMS and ULMS than UPS (P < 0.001), MFS (P < 0.001), and DDLPS (P < 0.001). ERBB2 expression was low; however, it was overexpressed in MPNST when compared with UPS (P < 0.001), and MFS (P < 0.01). GPNMB was highly expressed in most sarcomas, with the exception of SS. LRRC15 also appeared to be a relevant target, especially in UPS. MSLN expression was relatively low except in SS and MPNST. PDGFRA was also highly expressed in most sarcomas with the exception of ULMS and STLMS. TNFRSF8 seems to be most appropriate in DDLPS, as well as MFS. AXL was expressed especially in MFS and STLMS. Sarcoma subtypes express multiple target genes relevant for ADCs, SPEAR T-cells and CAR's, warranting further clinical validation and evaluation.
Collapse
Affiliation(s)
- Roberto Carmagnani Pestana
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas; Centro de Oncologia e Hematologia Einstein Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jason Roszik
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roman Groisberg
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas; Rutgers Cancer Institute of New Jersey, New Jersey
| | - Shiraj Sen
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas; Sarah Cannon Research Institute at HealthONE, Denver, Colorado
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St Louis, Missouri; Division of Pediatric Hematology and Oncology, St. Louis Children's Hospital, St Louis, Missouri; Siteman Cancer Center, St Louis, Missouri
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
14
|
Ren EH, Deng YJ, Yuan WH, Zhang GZ, Wu ZL, Li CY, Xie QQ. An Immune-Related Long Non-Coding RNA Signature to Predict the Prognosis of Ewing's Sarcoma Based on a Machine Learning Iterative Lasso Regression. Front Cell Dev Biol 2021; 9:651593. [PMID: 34124041 PMCID: PMC8187926 DOI: 10.3389/fcell.2021.651593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to construct a new immune-associated long non-coding RNA (lncRNA) signature to predict the prognosis of Ewing sarcoma (ES) and explore its molecular mechanisms. We downloaded transcriptome and clinical prognosis data from the Gene Expression Omnibus (GSE17679, which included 88 ES samples and 18 matched normal skeletal muscle samples), and used it as a training set to identify immune-related lncRNAs with different expression levels in ES. Univariable Cox regression was used to screen immune-related lncRNAs related to ES prognosis, and an immune-related lncRNA signature was constructed based on machine learning iterative lasso regression. An external verification set was used to confirm the predictive ability of the signature. Clinical feature subgroup analysis was used to explore whether the signature was an independent prognostic factor. In addition, CIBERSORT was used to explore immune cell infiltration in the high- and low-risk groups, and to analyze the correlations between the lncRNA signature and immune cell levels. Gene set enrichment and variation analyses were used to explore the possible regulatory mechanisms of the immune-related lncRNAs in ES. We also analyzed the expression of 17 common immunotherapy targets in the high- and low-risk groups to identify any that may be regulated by immune-related lncRNAs. We screened 35 immune-related lncRNAs by univariate Cox regression. Based on this, an immune-related 11-lncRNA signature was generated by machine learning iterative lasso regression. Analysis of the external validation set confirmed its high predictive ability. DPP10 antisense RNA 3 was negatively correlated with resting dendritic cell, neutrophil, and γδ T cell infiltration, and long intergenic non-protein coding RNA 1398 was positively correlated with resting dendritic cells and M2 macrophages. These lncRNAs may affect ES prognosis by regulating GSE17721_CTRL_VS_PAM3CSK4_12H_BMDC_UP, GSE2770_IL4_ACT_VS_ACT_CD4_TCELL_48H_UP, GSE29615_CTRL_VS_DAY3_ LAIV_IFLU_VACCINE_PBMC_UP, complement signaling, interleukin 2-signal transducer and activator of transcription 5 signaling, and protein secretion. The immune-related 11-lncRNA signature may also have regulatory effects on the immunotherapy targets CD40 molecule, CD70 molecule, and CD276 molecule. In conclusion, we constructed a new immune-related 11-lncRNA signature that can stratify the prognoses of patients with ES.
Collapse
Affiliation(s)
- En-Hui Ren
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Ya-Jun Deng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen-Hua Yuan
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Guang-Zhi Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Zuo-Long Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chun-Ying Li
- The Fourth People's Hospital of Qinghai Province, Xining, China
| | - Qi-Qi Xie
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
15
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
16
|
Yang M, Tang X, Zhang Z, Gu L, Wei H, Zhao S, Zhong K, Mu M, Huang C, Jiang C, Xu J, Guo G, Zhou L, Tong A. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors. Am J Cancer Res 2020; 10:7622-7634. [PMID: 32685008 PMCID: PMC7359081 DOI: 10.7150/thno.43991] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose: Given that heterogeneous expression and variants of antigens on solid tumors are responsible for relapse after chimeric antigen receptor (CAR)-T cell therapy, we hypothesized that combinatorial targeting two tumor-associated antigens would lessen this problem and enhance the antitumor activity of T cells. Methods: The co-expression level of CD70 and B7-H3 was analyzed in multiple tumor tissue samples. Further, two putative antigens were identified in The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis database. Two CD70 targeted CARs with different antigen binding domain, truncated CD27 and CD70 specific single-chain antibody fragment (scFv), were designed to screen a more suitable target-antigen binding moiety. Accordingly, we designed a bivalent tandem CAR (TanCAR) and further assessed the anti-tumor efficacy of TanCAR-T cells in vitro and in vivo. Results: Our results indicated that co-expression of CD70 and B7-H3 was observed on multiple tumor types including kidney, breast, esophageal, liver, colon cancer, glioma as well as melanoma. The CD70 targeted CAR-T cells with binding moiety of CD70 specific scFv exhibit a higher affinity and antitumor effect against CD70+ tumor cells. TanCAR-T cells induced enhanced ability of cytolysis and cytokine release over unispecific CAR-T cells when encountering tumor cells expressing two target-antigens. Further, low doses of TanCAR-T cells could also effectively control the lung cancer and melanoma xenografts and improved overall survival of the treated animals. Conclusion: TanCAR-T cells targeting CD70 and B7-H3 exhibit enhanced antitumor functionality and improve the problem of antigenic heterogeneity and variant in the treatment against solid tumor and melanoma.
Collapse
|
17
|
Screening a Broad Range of Solid and Haematological Tumour Types for CD70 Expression Using a Uniform IHC Methodology as Potential Patient Stratification Method. Cancers (Basel) 2019; 11:cancers11101611. [PMID: 31652572 PMCID: PMC6826714 DOI: 10.3390/cancers11101611] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/18/2023] Open
Abstract
The constitutive expression of CD70 has been described in various haematological and solid tumour types. In addition, the co-expression of its receptor in tumours has been demonstrated, mediating tumour cell proliferation. Although CD70 expression is a prerequisite to enrol patients in solid tumour clinical trials using anti-CD70 immunotherapy, there is currently no standardised test to evaluate CD70 expression. These differences in immunohistochemistry (IHC) protocols make it challenging to compare the expression levels that were obtained in different studies, pointing out the need for one uniform methodology. In this retrospective study, over 600 tumour samples from different solid and haematological malignancies were analysed while using one validated IHC method. CD70 and CD27 expression was demonstrated in a broad range of tumour types. In solid tumours, 43% demonstrated CD70 positivity with the highest degree in renal cell carcinoma (79.5%). Kaposi sarcoma showed no CD70 expression on the tumour cells. In lymphoma samples, 58% demonstrated CD70 positivity. Moreover, the co-expression of CD70 and CD27 was observed in 39% of lymphoma samples. These findings highlight the need to further explore anti-CD70 therapies in a broad range of CD70 expressing tumour types and in doing so, implementing one standardised protocol to define CD70 overexpression to use it as a diagnostic tool.
Collapse
|
18
|
Kashima J, Okuma Y, Hosomi Y, Hishima T. High Serum Soluble CD27 Level Correlates with Poor Performance Status and Reduced Survival in Patients with Advanced Lung Cancer. Oncology 2019; 97:365-372. [PMID: 31533124 DOI: 10.1159/000502441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/28/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Soluble CD27 (sCD27) is associated with somatic immune reaction status. Moreover, sCD27 level is associated with the prognosis of patients with prostate cancer who receive immunotherapy. OBJECTIVE In this study, we assessed sCD27 levels in patients with advanced lung cancer and determined their correlation with survival and clinicopathologic parameters. METHODS Serum samples were collected from patients with advanced lung cancer, and sCD27 was quantified via enzyme-linked immunosorbent assay. The association between sCD27 levels and clinicopathologic status and patient survival was retrospectively analyzed. RESULTS Of 96 patients analyzed, 73 had adenocarcinoma, 7 had squamous cell carcinoma, and 15 had small cell carcinoma. Median serum sCD27 level was 36.54 U/mL (range, undetectable-104.47); this is lower than that previously reported for patients with lung cancer, including those with localized stages. Patients with squamous cell carcinoma had higher sCD27 levels (p = 0.010). Age, performance status, and serum albumin levels were significantly correlated with serum sCD27 level. Patients with high serum sCD27 levels (≥32.52 U/mL; n = 58) had poorer prognosis than those with low serum sCD27 levels (<32.52 U/mL, n = 38; median survival, 7.3 vs. 21.8 months, respectively, p< 0.0001). CONCLUSIONS High sCD27 level is associated with poor prognosis and may reflect the immune-exhausted status of patients with advanced lung cancer.
Collapse
Affiliation(s)
- Jumpei Kashima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan, .,Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan,
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| |
Collapse
|
19
|
Pratt D, Pittaluga S, Palisoc M, Fetsch P, Xi L, Raffeld M, Gilbert MR, Quezado M. Expression of CD70 (CD27L) Is Associated With Epithelioid and Sarcomatous Features in IDH-Wild-Type Glioblastoma. J Neuropathol Exp Neurol 2017; 76:697-708. [PMID: 28789475 DOI: 10.1093/jnen/nlx051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is an aggressive, often recalcitrant disease. In the majority of cases, prognosis is dismal and current therapies only moderately prolong survival. Immunotherapy is increasingly being recognized as an effective treatment modality. CD70 is a transmembrane protein that shows restricted expression in tissue but has been described in various malignancies. Therapeutic targeting of CD70 has demonstrated antitumor efficacy and is in clinical trials. Here, we sought to characterize CD70 expression in a large cohort of gliomas (n = 205) using tissue microarrays. We identified a subset of tumors (n = 18, 8.8% of high-grade gliomas) exhibiting moderate-to-strong immunoreactivity that enriched for the IDH-wild-type glioblastoma variants gliosarcoma (n = 10) and the newly described epithelioid glioblastoma (n = 4). CD70 expression was associated with prolonged survival in gliosarcoma. Analysis of TCGA datasets showed significantly increased CD70 expression in mesenchymal tumors and prolonged survival in recurrent non-G-CIMP high-expressing tumors. In CD70+ gliomas, there was a significant increase in CD68/CD163/HLA-DR+ tumor-associated macrophages, but not CD27+ TIL. These results confirm prior in vitro studies and demonstrate expression in a clinical cohort. The absence of CD70 expression in the post-treatment setting may portend more clinically aggressive disease in gliosarcoma. However, larger-scale studies will be needed to characterize and validate this relationship.
Collapse
Affiliation(s)
- Drew Pratt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (DP,SP,MP,PF,LX,MR,MQ); and Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland (MRG)
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (DP,SP,MP,PF,LX,MR,MQ); and Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland (MRG)
| | - Maryknoll Palisoc
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (DP,SP,MP,PF,LX,MR,MQ); and Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland (MRG)
| | - Patricia Fetsch
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (DP,SP,MP,PF,LX,MR,MQ); and Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland (MRG)
| | - Liqiang Xi
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (DP,SP,MP,PF,LX,MR,MQ); and Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland (MRG)
| | - Mark Raffeld
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (DP,SP,MP,PF,LX,MR,MQ); and Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland (MRG)
| | - Mark R Gilbert
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (DP,SP,MP,PF,LX,MR,MQ); and Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland (MRG)
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (DP,SP,MP,PF,LX,MR,MQ); and Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland (MRG)
| |
Collapse
|
20
|
Chan RCF, Kotner JS, Chuang CMH, Gaur A. Stabilization of pre-optimized multicolor antibody cocktails for flow cytometry applications. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:508-524. [DOI: 10.1002/cyto.b.21371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/13/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Amitabh Gaur
- Custom Technology Team, BD Biosciences; San Diego California
| |
Collapse
|
21
|
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Yang Y, Jin Y, Du W. Programmed cell death 2 functions as a tumor suppressor in osteosarcoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10894-10900. [PMID: 26617804 PMCID: PMC4637619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/21/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES To investigate the role of programmed cell death 2 (PDCD2) in osteosarcoma (OS), along with correlations between PDCD2 and CD4(+)/CD8(+). METHODS Sprague-Dawley (SD) rats were randomly assigned to control group and OS group. The OS group rats were subjected to induce models of OS by transplantation with UMR106 cells. Peripheral blood was collected to test the percentages of the CD4(+) and CD8(+) cell subsets using flow cytometry (FCM). Western blotting was performed to determine the PDCD2 protein level. The correlations between PDCD2 and CD4(+)/CD8(+) were analyzed by Pearson correlation coefficient. Besides, specific small interfering RNAs (siRNA) against PDCD2 and nonspecific (NS)-siRNA were transfected into UMR106 cells. Cell viability and invasive ability were determined after transfection. RESULTS CD4(+) cells percentages were significantly decreased in the OS group, while CD8(+) cells were significantly increased (P < 0.05). The PDCD2 protein levels were markedly lower than that in the control group (P < 0.05). Additionally, PDCD2 was positively correlated with CD4(+) (R(2) = 0.66, P < 0.05), but was negatively correlated with CD8(+) (R(2) = -0.94, P < 0.05). Moreover, the cell viability and invasion ability were significantly higher than that in the control group and the NS siRNA group after transfection with PDCD2 siRNA (P < 0.05). CONCLUSION These results suggest that PDCD2 is involved in the pathogenesis of OS, and PDCD2 may play an important role in tumor suppression. These mechanisms might be related to immune response induced by CD4(+) and CD8(+) T cells.
Collapse
Affiliation(s)
- Yuanxun Yang
- Department of Orthopedics, First People’s Hospital of JinanJinan 250013, Shandong, China
| | - Yan Jin
- Jinan Center for Disease Control and PreventionJinan 250021, Shandong, China
| | - Wenxi Du
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, China
| |
Collapse
|