1
|
Benitz S, Steep A, Nasser MM, Preall J, Mahajan UM, McQuithey H, Loveless I, Davis ET, Wen HJ, Long DW, Metzler T, Zwernik S, Louw M, Rempinski D, Salas-Escabillas DJ, Brender SM, Song L, Huang L, Theisen BK, Zhang Z, Steele NG, Regel I, Bednar F, Crawford HC. ROR2 Regulates Cellular Plasticity in Pancreatic Neoplasia and Adenocarcinoma. Cancer Discov 2024; 14:2162-2182. [PMID: 38975886 PMCID: PMC11528200 DOI: 10.1158/2159-8290.cd-24-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions, to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor PDX1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in a mouse and human. We identified the receptor tyrosine kinase ROR2 as marker of a gastric metaplasia-like identity in pancreas neoplasms. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition. Significance: We discovered the receptor tyrosine kinase ROR2 as an important regulator of cellular identity in pancreatic precancerous lesions and pancreatic cancer. ROR2 drives an aggressive PDAC phenotype and confers resistance to KRAS inhibitors, suggesting that targeting ROR2 will enhance sensitivity to this new generation of targeted therapies. See related commentary by Marasco and Misale, p. 2018.
Collapse
Affiliation(s)
- Simone Benitz
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Alec Steep
- Center of Translational Data Science, University of Chicago, Chicago, Illinois
| | | | - Jonathan Preall
- Cold Spring Harbor Laboratory Cancer Center, Cold Spring Harbor, New York
| | | | | | - Ian Loveless
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan
| | - Erick T. Davis
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Daniel W. Long
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Samuel Zwernik
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Michaela Louw
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | | | | | | | - Linghao Song
- Center of Translational Data Science, University of Chicago, Chicago, Illinois
| | - Ling Huang
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | | | - Zhenyu Zhang
- Center of Translational Data Science, University of Chicago, Chicago, Illinois
| | - Nina G. Steele
- Department of Surgery, Henry Ford Health, Detroit, Michigan
- Department of Pathology, Wayne State University, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| |
Collapse
|
2
|
Chuang WY, Lee CW, Fan WL, Liu TT, Lin ZH, Wang KC, Huang PJ, Yeh YM, Lin TC. Wnt-5a-Receptor Tyrosine Kinase-Like Orphan Receptor 2 Signaling Provokes Metastatic Colonization and Angiogenesis in Renal Cell Carcinoma, and Prunetin Supresses the Axis Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1967-1985. [PMID: 39069169 DOI: 10.1016/j.ajpath.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Wnt-5a is a protein encoded by the WNT5A gene and is a ligand for the receptor tyrosine kinase-like orphan receptor 2 (ROR2). However, its biological impact on clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, the prognostic significance of concurrent WNT5A and ROR2 expression levels was observed to predict unfavorable overall survival and disease-specific survival. High Wnt-5a expression was detected in a ccRCC cell line panel but not in HK-2 cells, a normal proximal tubular cell line. Inhibition of DNA methyltransferase by 5-azacytidine in 786-O and Caki-2 cells resulted in Wnt-5a up-regulation, indicating potential epigenetic modification. Furthermore, there was a repression of cell movement in vitro and metastatic colonization in vivo on WNT5A and ROR2 knockdown. Suppressions of angiogenesis in vivo and tubular-like structure formation in endothelial cells in vitro were also observed after silencing WNT5A and ROR2 expression. In addition, alteration in the downstream gene signature of the Wnt-5a-ROR2 signaling was similar to that in metastasis-associated gene 1-β-catenin axis. Moreover, prunetin treatment reversed the gene signature derived from Wnt-5a-ROR2 signaling activation and to abolish ccRCC cell migration and proliferation. Overall, this study demonstrates the clinical and functional significance of the Wnt-5a-ROR2 axis and identifies prunetin as a potential precision medicine for patients with ccRCC harboring aberrant Wnt-5a-ROR2 signaling pathways.
Collapse
Affiliation(s)
- Wen-Yu Chuang
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chao-Wei Lee
- Division of General Surgery, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Ta Liu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Zih-Han Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Kuo-Chih Wang
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Po-Jung Huang
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Wang C, Fu R, Wang Y, Wei J, Yu Y, Hu L, Zhang C. miR-124-3p and miR-194-5p regulation of the PI3K/AKT pathway via ROR2 in medulloblastoma progression. Cancer Gene Ther 2024; 31:941-954. [PMID: 38632356 PMCID: PMC11192632 DOI: 10.1038/s41417-024-00762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Medulloblastoma (MB), a prevalent pediatric central nervous system tumor, is influenced by microRNAs (miRNAs) that impact tumor initiation and progression. However, the specific involvement of miRNAs in MB tumorigenesis remains unclear. Using single-cell RNA sequencing, we identified ROR2 expression in normal human fetal cerebellum. Subsequent analyses, including immunofluorescence, quantitative real-time PCR (qRT-PCR), and Western blot, assessed ROR2 expression in MB tissues and cell lines. We investigated miR-124-3p and miR-194-5p and their regulatory role in ROR2 expression through the dual-luciferase reporter, qRT-PCR, and western blot assays. Mechanistic insights were gained through functional assays exploring the impact of miR-124-3p, miR-194-5p, and ROR2 on MB growth in vitro and in vivo. We observed significantly reduced miR-124-3p and miR-194-5p expression and elevated ROR2 expression in MB tissues and cell lines. High ROR2 expression inversely correlated with overall survival in WNT and SHH subgroups of MB patients. Functionally, overexpressing miR-124-3p and miR-194-5p and inhibiting ROR2 suppressed in vitro malignant transformation and in vivo tumorigenicity. Mechanistically, miR-124-3p and miR-194-5p synergistically regulated the ROR2/PI3K/Akt pathway, influencing MB progression. Our findings indicate that miR-124-3p and miR-194-5p function as tumor suppressors, inhibiting MB progression via the ROR2/PI3K/Akt axis, suggesting a key mechanism and therapeutic targets for MB patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Wei
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuhua Hu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Benitz S, Steep A, Nasser M, Preall J, Mahajan UM, McQuithey H, Loveless I, Davis ET, Wen HJ, Long DW, Metzler T, Zwernik S, Louw M, Rempinski D, Salas-Escabillas D, Brender S, Song L, Huang L, Zhang Z, Steele NG, Regel I, Bednar F, Crawford HC. ROR2 regulates cellular plasticity in pancreatic neoplasia and adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571566. [PMID: 38168289 PMCID: PMC10760092 DOI: 10.1101/2023.12.13.571566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor Pdx1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in mouse and human. We have identified the receptor tyrosine kinase Ror2 as marker of a gastric metaplasia (SPEM)-like identity in the pancreas. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition.
Collapse
Affiliation(s)
- Simone Benitz
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Alec Steep
- Center of Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | - Malak Nasser
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Jonathan Preall
- Cold Spring Harbor Laboratory Cancer Center, Cold Spring Harbor, New York, USA
| | - Ujjwal M. Mahajan
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Holly McQuithey
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Ian Loveless
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Erick T. Davis
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Daniel W. Long
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Samuel Zwernik
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Michaela Louw
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Donald Rempinski
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | | | - Sydney Brender
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Linghao Song
- Center of Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | - Ling Huang
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Zhenyu Zhang
- Center of Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | - Nina G. Steele
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan, USA
- Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan, USA
- Department of Oncology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
5
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
6
|
Castro MV, Lopez-Bergami P. Cellular and molecular mechanisms implicated in the dual role of ROR2 in cancer. Crit Rev Oncol Hematol 2022; 170:103595. [PMID: 35032666 DOI: 10.1016/j.critrevonc.2022.103595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
ROR1 and ROR2 are Wnt receptors that are critical for β-catenin-independent Wnt pathways and have been linked to processes driving tumor progression, such as cell proliferation, survival, invasion, and therapy resistance. Both receptors have garnered interest as potential therapeutic targets since they are largely absent in adult tissue, are overexpressed in several cancers, and, as members of the receptor tyrosine kinase family, are easier to target than all other components of the pathway. Unlike ROR1 which always promotes tumorigenesis, ROR2 has a very complex role in cancer acting either to promote or inhibit tumor progression in different tumor types. In the present article, we summarize the findings on ROR2 expression in cancer patients and its impact on clinical outcome. Further, we review the biological processes and signaling pathways regulated by ROR2 that explain its dual role in cancer. Finally, we describe the ongoing strategies to target ROR2 in cancer.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina.
| |
Collapse
|
7
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
8
|
Castro MV, Barbero GA, Villanueva MB, Grumolato L, Nsengimana J, Newton-Bishop J, Illescas E, Quezada MJ, Lopez-Bergami P. ROR2 has a protective role in melanoma by inhibiting Akt activity, cell-cycle progression, and proliferation. J Biomed Sci 2021; 28:76. [PMID: 34774050 PMCID: PMC8590781 DOI: 10.1186/s12929-021-00776-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a Wnt5a receptor aberrantly expressed in cancer that was shown to either suppress or promote carcinogenesis in different tumor types. Our goal was to study the role of ROR2 in melanoma. METHODS Gain and loss-of-function strategies were applied to study the biological function of ROR2 in melanoma. Proliferation assays, flow cytometry, and western blotting were used to evaluate cell proliferation and changes in expression levels of cell-cycle and proliferation markers. The role of ROR2 in tumor growth was assessed in xenotransplantation experiments followed by immunohistochemistry analysis of the tumors. The role of ROR2 in melanoma patients was assessed by analysis of clinical data from the Leeds Melanoma Cohort. RESULTS Unlike previous findings describing ROR2 as an oncogene in melanoma, we describe that ROR2 prevents tumor growth by inhibiting cell-cycle progression and the proliferation of melanoma cells. The effect of ROR2 is mediated by inhibition of Akt phosphorylation and activity which, in turn, regulates the expression, phosphorylation, and localization of major cell-cycle regulators including cyclins (A, B, D, and E), CDK1, CDK4, RB, p21, and p27. Xenotransplantation experiments demonstrated that ROR2 also reduces proliferation in vivo, resulting in inhibition of tumor growth. In agreement with these findings, a higher ROR2 level favors thin and non-ulcerated primary melanomas with reduced mitotic rate and better prognosis. CONCLUSION We conclude that the expression of ROR2 slows down the growth of primary tumors and contributes to prolonging melanoma survival. Our results demonstrate that ROR2 has a far more complex role than originally described.
Collapse
Affiliation(s)
- María Victoria Castro
- grid.440480.c0000 0000 9361 4204Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405 Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| | - Gastón Alexis Barbero
- grid.440480.c0000 0000 9361 4204Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405 Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| | - María Belén Villanueva
- grid.440480.c0000 0000 9361 4204Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405 Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| | - Luca Grumolato
- grid.10400.350000 0001 2108 3034INSERM U982, Institute for Research and Innovation in Biomedicine, University of Rouen, 76183 Rouen, France
| | - Jérémie Nsengimana
- grid.1006.70000 0001 0462 7212Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | | | - Edith Illescas
- grid.440480.c0000 0000 9361 4204Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405 Buenos Aires, Argentina
| | - María Josefina Quezada
- grid.440480.c0000 0000 9361 4204Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405 Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina. .,Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimonides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Nema R, Patel P, Kumar A. Prognostic Role of Receptor Tyrosine Kinase-Like Orphan Receptors in Intestinal-Type Gastric Cancer. Asian Pac J Cancer Prev 2021; 22:2125-2134. [PMID: 34319035 PMCID: PMC8607102 DOI: 10.31557/apjcp.2021.22.7.2125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is diagnosed at advanced stages and has high mortality rates. Surgical resection and adjuvant chemotherapy are the main therapeutic approaches for GC. Despite curative resection, recurrence and metastasis contribute to a high mortality rate in patients with GC. The receptor-tyrosine-kinase-like orphan receptors 1/2 (ROR1/2) are transmembrane proteins belonging to the receptor tyrosine kinase (RTK) family. ROR1 and ROR2 are known to overexpress in the tumor tissues from several types of cancer patients. However, the role of RORs in the prognosis has not been understood. METHODS This study aimed to determine the association of mRNA expression of ROR1, ROR2, and their signaling components WNT5A, NKX2-1, and FOXF1, with the survival outcome of GC patients. We performed Kaplan-Meir survival analysis on publicly available 'The Cancer Genome Atlas (TCGA)' data sets using 'Kaplan-Meir Plotter.' RESULTS High mRNA expression of ROR1, ROR2, NKX2-1, and FOXF1 was significantly correlated with worse overall survival (OS) of GC patients. Interestingly ROR1 and ROR showed a prognostic role in the intestinal subtype, but not in the diffuse subtype of GC. Furthermore, ROR1 was positively correlated with regulatory T cells and M2-type macrophages and negatively correlated with Th17 and natural killer T cells in the tumor stroma of patients with GC. CONCLUSION We conclude that the expression of ROR1, ROR2, and their associated genes correlate with worst prognosis of GC patients, particularly in the intestinal type. .
Collapse
Affiliation(s)
| | | | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, India.
| |
Collapse
|
10
|
Menck K, Heinrichs S, Baden C, Bleckmann A. The WNT/ROR Pathway in Cancer: From Signaling to Therapeutic Intervention. Cells 2021; 10:cells10010142. [PMID: 33445713 PMCID: PMC7828172 DOI: 10.3390/cells10010142] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT pathway is one of the major signaling cascades frequently deregulated in human cancer. While research had initially focused on signal transduction centered on β-catenin as a key effector activating a pro-tumorigenic transcriptional response, nowadays it is known that WNT ligands can also induce a multitude of β-catenin-independent cellular pathways. Traditionally, these comprise WNT/planar cell polarity (PCP) and WNT/Ca2+ signaling. In addition, signaling via the receptor tyrosine kinase-like orphan receptors (RORs) has gained increasing attention in cancer research due to their overexpression in a multitude of tumor entities. Active WNT/ROR signaling has been linked to processes driving tumor development and progression, such as cell proliferation, survival, invasion, or therapy resistance. In adult tissue, the RORs are largely absent, which has spiked the interest in them for targeted cancer therapy. Promising results in preclinical and initial clinical studies are beginning to unravel the great potential of such treatment approaches. In this review, we summarize seminal findings on the structure and expression of the RORs in cancer, their downstream signaling, and its output in regard to tumor cell function. Furthermore, we present the current clinical anti-ROR treatment strategies and discuss the state-of-the-art, as well as the challenges of the different approaches.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Saskia Heinrichs
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Cornelia Baden
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Correspondence: ; Tel.: +49-0251-8352712
| |
Collapse
|
11
|
Endo M, Tanaka Y, Otsuka M, Minami Y. E2F1-Ror2 signaling mediates coordinated transcriptional regulation to promote G1/S phase transition in bFGF-stimulated NIH/3T3 fibroblasts. FASEB J 2020; 34:3413-3428. [PMID: 31922321 DOI: 10.1096/fj.201902849r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/18/2023]
Abstract
Ror2 signaling has been shown to regulate the cell cycle progression in normal and cancer cells. However, the molecular mechanism of the cell cycle progression upon activation of Ror2 signaling still remains unknown. Here, we found that the expression levels of Ror2 in G1-arrested NIH/3T3 fibroblasts are low and are rapidly increased following the cell cycle progression induced by basic fibroblast growth factor (bFGF) stimulation. By expressing wild-type or a dominant negative mutant of E2F1, we show that E2F1 mediates bFGF-induced expression of Ror2, and that E2F1 binds to the promoter of the Ror2 gene to activate its expression. We also found that G1/S phase transition of bFGF-stimulated NIH/3T3 cells is delayed by the suppressed expression of Ror2. RNA-seq analysis revealed that the suppressed expression of Ror2 results in the decreased expression of various E2F target genes concomitantly with increased expression of Forkhead box O (FoxO) target genes, including p21Cip1 , and p27Kip1 . Moreover, the inhibitory effect of Ror2 knockdown on the cell cycle progression can be restored by suppressed expression of p21Cip1 , p27Kip1 ,or FoxO3a. Collectively, these findings indicate that E2F1-Ror2 signaling mediates the transcriptional activation and inhibition of E2F1-driven and FoxO3a-driven cell cycle-regulated genes, respectively, thereby promoting G1/S phase transition of bFGF-stimulated NIH/3T3 cells.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mako Otsuka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Li R, Liu T, Shi J, Luan W, Wei X, Yu J, Mao H, Liu P. ROR2 induces cell apoptosis via activating IRE1α/JNK/CHOP pathway in high-grade serous ovarian carcinoma in vitro and in vivo. J Transl Med 2019; 17:428. [PMID: 31878941 PMCID: PMC6933631 DOI: 10.1186/s12967-019-02178-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is the most lethal cancer in female genital tumors. New disease markers and novel therapeutic strategies are urgent to identify considering the current status of treatment. Receptor tyrosine kinases family plays critical roles in embryo development and disease progression. However, ambivalent research conclusions of ROR2 make its role in tumor confused and the underlying mechanism is far from being understood. In this study, we sought to clarify the effects of ROR2 on high-grade serous ovarian carcinoma (HGSOC) cells and reveal the mechanism. Methods Immunohistochemistry assay and western-blot assay were used to detect proteins expression. ROR2 overexpression adenovirus and Lentivirus were used to create ROR2 overexpression model in vitro and in vivo, respectively. MTT assay, colony formation assay and transwell assay were used to measure the proliferation, invasion and migration ability of cancer cells. Flow cytometry assay was used to detect cell apoptosis rate. Whole transcriptome analysis was used to explore the differentially expressed genes between ROR2 overexpression group and negative control group. SiRNA targeted IRE1α was used to knockdown IRE1α. Kira6 was used to inhibit phosphorylation of IRE1α. Results Expression of ROR2 was significantly lower in HGSOC tissues compared to normal fallopian tube epithelium or ovarian surface epithelium tissues. In HGSOC cohort, patients with advanced stages or positive lymph nodes were prone to express lower ROR2. Overexpression of ROR2 could repress the proliferation of HGSOC cells and induce cell apoptosis. RNA sequencing analysis indicated that ROR2 overexpression could induce unfold protein response. The results were also confirmed by upregulation of BIP and phosphorylated IRE1α. Furthermore, pro-death factors like CHOP, phosphorylated JNK and phosphorylated c-Jun were also upregulated. IRE1α knockdown or Kira6 treatment could reverse the apoptosis induced by ROR2 overexpression. Finally, tumor xenograft experiment showed ROR2 overexpression could significantly repress the growth rate and volume of transplanted tumors. Conclusions Taken together, ROR2 downregulation was associated with HGSOC development and progression. ROR2 overexpression could repress cell proliferation and induce cell apoptosis in HGSOC cells. And the underlying mechanism might be the activation of IRE1α/JNK/CHOP pathway induced by ROR2.
Collapse
Affiliation(s)
- Rui Li
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Tianfeng Liu
- Department of Gynecology and Obstetrics, Linyi People's Hospital, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Juanjuan Shi
- Department of Gynecology and Obstetrics, Affiliated Tengzhou Center People's Hospital of Jining Medical University, 181 Xing Tan Road, Tengzhou, 277599, Shandong, People's Republic of China
| | - Wenqing Luan
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xuan Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jiangtao Yu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Hongluan Mao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Peishu Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Wu X, Yan T, Hao L, Zhu Y. Wnt5a induces ROR1 and ROR2 to activate RhoA in esophageal squamous cell carcinoma cells. Cancer Manag Res 2019; 11:2803-2815. [PMID: 31114334 PMCID: PMC6497886 DOI: 10.2147/cmar.s190999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Wnt5a is a nontransforming Wnt family member and identified as an oncogenic role on cell motility of breast cancer and glioblastoma. However, Wnt5a signaling in esophageal squamous cell carcinoma (ESCC) progression remains poorly defined. Materials and methods: Immunohistochemistry assays were used to measure the Wnt5a expression in ESCC sections. We evaluated the role of receptor tyrosine kinase-like orphan receptor (ROR)1/2 and RhoA on the invasion of ESCC cells by using cell invasion assay, immunoprecipitation, immunofluorescence, and Rho activation assay. Results: Wnt5a was highly expressed in invasive ESCC tissues compared with that in noninvasive and nonmalignant tissues. In vitro assay showed that sfrp2 (Wnt5a antagonist) largely blocked the invasion but not the colony formation of KYSE410 and KYSE520 ESCC cells. Anti-ROR1 mAb and ROR2-shRNA markedly inhibited the disheveled-associated activator of morphogenesis 1 (DAAM1) activity, RhoA activity, microfilament formation and the invasion of ESCC cells. Fluorescent phalloidin staining experiment showed ROR1/ROR2, receptors of Wnt5a signaling, and regulated the reassembly of actin filaments in ESCC cells. Further experiments showed that ROR1 was strongly associated with ROR2 in KYSE410 cells. The activation of RhoA, not Rac1 or Rac2, was involved in ROR1/ROR2 signaling pathway. By using DAAM1 shRNA, we found that RhoA was downstream of DAAM1, which could be rescued by the overexpression of wild-type DAAM1. This could be further proved by a RhoA inhibitor CCG-1423 which could inhibit the invasion of ESCC cells but not DAAM1 activity. Conclusions: Wnt5a promotes ESCC cell invasion via ROR1 and ROR2 receptors and DAAM1/RhoA signaling pathway.
Collapse
Affiliation(s)
- Xuping Wu
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, People's Republic of China
| | - Ting Yan
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Leiyu Hao
- Department of Physiology, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, People's Republic of China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
14
|
Nevenzal H, Noach-Hirsh M, Skornik-Bustan O, Brio L, Barbiro-Michaely E, Glick Y, Avrahami D, Lahmi R, Tzur A, Gerber D. A high-throughput integrated microfluidics method enables tyrosine autophosphorylation discovery. Commun Biol 2019; 2:42. [PMID: 30729180 PMCID: PMC6353932 DOI: 10.1038/s42003-019-0286-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 12/21/2018] [Indexed: 01/22/2023] Open
Abstract
Autophosphorylation of receptor and non-receptor tyrosine kinases is a common molecular switch with broad implications for pathogeneses and therapy of cancer and other human diseases. Technologies for large-scale discovery and analysis of autophosphorylation are limited by the inherent difficulty to distinguish between phosphorylation and autophosphorylation in vivo and by the complexity associated with functional assays of receptors kinases in vitro. Here, we report a method for the direct detection and analysis of tyrosine autophosphorylation using integrated microfluidics and freshly synthesized protein arrays. We demonstrate the efficacy of our platform in detecting autophosphorylation activity of soluble and transmembrane tyrosine kinases, and the dependency of in vitro autophosphorylation assays on membranes. Our method, Integrated Microfluidics for Autophosphorylation Discovery (IMAD), is high-throughput, requires low reaction volumes and can be applied in basic and translational research settings. To our knowledge, it is the first demonstration of posttranslational modification analysis of membrane protein arrays.
Collapse
Affiliation(s)
- Hadas Nevenzal
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Meirav Noach-Hirsh
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Or Skornik-Bustan
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Lev Brio
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Efrat Barbiro-Michaely
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Yair Glick
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Dorit Avrahami
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Roxane Lahmi
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Amit Tzur
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| |
Collapse
|
15
|
Roy JP, Halford MM, Stacker SA. The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases. Growth Factors 2018; 36:15-40. [PMID: 29806777 DOI: 10.1080/08977194.2018.1472089] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The receptor tyrosine kinases (RTKs) are a well-characterized family of growth factor receptors that have central roles in human disease and are frequently therapeutically targeted. The RYK, ROR, PTK7 and MuSK subfamilies make up an understudied subset of WNT-binding RTKs. Numerous developmental, stem cell and pathological roles of WNTs, in particular WNT5A, involve signalling via these WNT receptors. The WNT-binding RTKs have highly context-dependent signalling outputs and stimulate the β-catenin-dependent, planar cell polarity and/or WNT/Ca2+ pathways. RYK, ROR and PTK7 members have a pseudokinase domain in their intracellular regions. Alternative signalling mechanisms, including proteolytic cleavage and protein scaffolding functions, have been identified for these receptors. This review explores the structure, signalling, physiological and pathological roles of RYK, with particular attention paid to cancer and the possibility of therapeutically targeting RYK. The other WNT-binding RTKs are compared with RYK throughout to highlight the similarities and differences within this subset of WNT receptors.
Collapse
Affiliation(s)
- James P Roy
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Steven A Stacker
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| |
Collapse
|