1
|
Rismanchi H, Malek Mohammadi M, Mafi A, Khalilzadeh P, Farahani N, Mirzaei S, Khorramdelazad H, Mahmoodieh B, Rahimzadeh P, Alimohammadi M, Makvandi P. The role of curcumin in modulating circular RNAs and long non-coding RNAs in cancer. Clin Transl Oncol 2025; 27:2416-2436. [PMID: 39623194 DOI: 10.1007/s12094-024-03782-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 05/17/2025]
Abstract
Cancer is one of the primary causes of human disease and death, with high morbidity and mortality rates. Chemotherapy, one of the most common therapeutic techniques, functions through a variety of mechanisms, including the production of apoptosis and the prevention of tumor development. Herbal medicine has been the subject of numerous investigations due to its potential as a valuable source of innovative anti-cancer products that target multiple protein targets and cancer cell genomes. Curcumin, a polyphenol that is the major bioactive ingredient of turmeric, exhibits pharmacological and biological efficacy with antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, and hypoglycemic activity in humans and animals. Recent research suggests that curcumin changes noncoding RNA (ncRNA), such as long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in various types of cancers. Both circRNAs and lncRNAs are ncRNAs that can epigenetically modulate the expression of multiple genes via post-transcriptional regulation. In this study, we outline curcumin's activities in modulating signaling pathways and ncRNAs in various malignancies. We also described curcumin's regulatory function, which involves blocking carcinogenic lncRNAs and circRNAs while increasing tumor-suppressive ones. Furthermore, we intend to demonstrate how ncRNAs and signaling pathways interact with each other across regulatory boundaries to gain a better understanding of how curcumin fights cancer and create a framework for its potential future therapeutic uses.
Collapse
Affiliation(s)
- Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Khalilzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| |
Collapse
|
2
|
Zhang C, Zhang F, Li Y, Yang P, Liu Y, Yang W. The Circular RNA Circ_0043947 Promoted Gastric Cancer Progression by Sponging miR-384 to Regulate CREB1 Expression. Gut Liver 2024; 18:977-991. [PMID: 38638101 PMCID: PMC11565005 DOI: 10.5009/gnl230173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 04/20/2024] Open
Abstract
Background/Aims : The occurrence and development of circular RNAs in gastric cancer (GC) has attracted increasing attention. This study focused on investigating the biological role and molecular mechanism of circ_0043947 in GC. Methods : The expression levels of circ_0043947, miR-384 and CAMP response element binding protein (CREB1) were determined by quantitative real-time polymerase chain reaction or Western blotting. Cell proliferation, migration, and invasion, the cell cycle and apoptosis were determined using a cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry assay. The interaction between miR-384 and circ_0043947 or CREB1 was verified by dual-luciferase reporter assay and RNA pull-down assay. The in vivo assay was conducted using a xenograft mouse model. Results : Circ_0043947 and CREB1 expression levels were significantly upregulated, whereas miR-384 expression levels were downregulated in GC tissues and cells. Functionally, knockdown of circ_0043947 inhibited cell proliferation, migration and invasion and induced G0/G1 phase arrest and apoptosis in vitro. Circ_0043947 could upregulate CREB1 expression by directly sponging miR-384. Rescue experiments showed that a miR-384 inhibitor significantly reversed the inhibitory effect of si-circ_0043947 on GC progression, and CREB1 overexpression significantly reversed the inhibitory effect of miR-384 mimics on the progression of GC cells. Furthermore, silencing of circ_0043947 inhibited tumor growth in vivo. Conclusions : Circ_0043947 acted as an oncogenic factor in GC to mediate GC cell proliferation, migration, and invasion, the cell cycle and apoptosis by regulating the miR-384/CREB1 axis. Circ_0043947 may be a potential target for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Chongxin Zhang
- The First Department of General Surgery, Xiangxi Autonomous Prefecture People’s Hospital, The First Affiliated Hospital of Jishou University, Jishou, China
| | - Fan Zhang
- The First Department of General Surgery, Xiangxi Autonomous Prefecture People’s Hospital, The First Affiliated Hospital of Jishou University, Jishou, China
| | - Yukun Li
- The First Department of General Surgery, Xiangxi Autonomous Prefecture People’s Hospital, The First Affiliated Hospital of Jishou University, Jishou, China
| | - Pengfei Yang
- The First Department of General Surgery, Xiangxi Autonomous Prefecture People’s Hospital, The First Affiliated Hospital of Jishou University, Jishou, China
| | - Yang Liu
- Department of Hemodialysis, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wenxiao Yang
- The First Department of General Surgery, Xiangxi Autonomous Prefecture People’s Hospital, The First Affiliated Hospital of Jishou University, Jishou, China
| |
Collapse
|
3
|
Sun Y, Wang J, Qiu M, Zhao J, Zou F, Meng M, Jiang X, Yuan Z, Mi Z, Wu Z. MicroRNA-384 radiosensitizes human non-small cell lung cancer by impairing DNA damage response and repair signaling, which is inhibited by NF-κB. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0146. [PMID: 38940672 PMCID: PMC11667777 DOI: 10.20892/j.issn.2095-3941.2024.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE Radiotherapy has achieved remarkable effects in treating non-small cell lung cancer (NSCLC). However, radioresistance remains the major obstacle to achieving good outcomes. This study aims at identifying potential targets for radiosensitizing NSCLC and elucidating the underlying mechanisms. METHODS Lentivirus-based infection and CRISPR/Cas9 technology were used to modulate the expression of microRNA-384 (miR-384). Cell clonogenic formation assays and a xenograft tumor model were used to analyze radiosensitivity in NSCLC cells. Fluorescence-activated cell sorting was used to assess the cell cycle and cell death. Immunofluorescence staining, Comet assays, and homologous recombination or non-homologous end-joining I-SceI/GFP reporter assays were used to study DNA damage and repair. Western blotting and quantitative real-time polymerase chain reaction were used to identify the targets of miR-384. Chromatin immunoprecipitation and polymerase chain reaction were performed to evaluate upstream regulators of miR-384. RESULTS MiR-384 was downregulated in NSCLC. Overexpression of miR-384 increased the radiosensitivity of NSCLC cells in vitro and in vivo, whereas knockout of miR-384 led to radioresistance. Upregulation of miR-384 radiosensitized NSCLC cells by decreasing G2/M cell cycle arrest, inhibiting DNA damage repair, and consequently increasing cell death; miR-384 depletion had the opposite effects. Further investigation revealed that ATM, Ku70, and Ku80 were direct targets of miR-384. Moreover, miR-384 was repressed by NF-κB. CONCLUSIONS MiR-384 is an ionizing radiation-responsive gene repressed by NF-κB. MiR-384 enhances the radiosensitivity of NSCLC cells via targeting ATM, Ku80, and Ku70, which impairs DNA damage repair. Therefore, miR-384 may serve as a novel radiosensitizer for NSCLC.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jing Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Jinlin Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fangdi Zou
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Maobin Meng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiangli Jiang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zeyun Mi
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin 300060, China
| | - Zhiqiang Wu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin 300060, China
| |
Collapse
|
4
|
Yang C, Hardy P. The Multifunctional Nature of the MicroRNA/AKT3 Regulatory Axis in Human Cancers. Cells 2023; 12:2594. [PMID: 37998329 PMCID: PMC10670075 DOI: 10.3390/cells12222594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Serine/threonine kinase (AKT) signaling regulates diverse cellular processes and is one of the most important aberrant cell survival mechanisms associated with tumorigenesis, metastasis, and chemoresistance. Targeting AKT has become an effective therapeutic strategy for the treatment of many cancers. AKT3 (PKBγ), the least studied isoform of the AKT family, has emerged as a major contributor to malignancy. AKT3 is frequently overexpressed in human cancers, and many regulatory oncogenic or tumor suppressor small non-coding RNAs (ncRNAs), including microRNAs (miRNAs), have recently been identified to be involved in regulating AKT3 expression. Therefore, a better understanding of regulatory miRNA/AKT3 networks may reveal novel biomarkers for the diagnosis of patients with cancer and may provide invaluable information for developing more effective therapeutic strategies. The aim of this review was to summarize current research progress in the isoform-specific functions of AKT3 in human cancers and the roles of dysregulated miRNA/AKT3 in specific types of human cancers.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, Montreal, QC H3T 1C5, Canada;
- Department of Pharmacology and Physiology, Department of Pediatrics, University of Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
5
|
Lee CC, Lee AW, Wei PL, Liu YS, Chang YJ, Huang CY. In silico analysis to identify miR-1271-5p/PLCB4 (phospholipase C Beta 4) axis mediated oxaliplatin resistance in metastatic colorectal cancer. Sci Rep 2023; 13:4366. [PMID: 36927770 PMCID: PMC10020571 DOI: 10.1038/s41598-023-31331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Oxaliplatin (OXA) is the first-line chemotherapy drug for metastatic colorectal cancer (mCRC), and the emergence of drug resistance is a major clinical challenge. Although there have been numerous studies on OXA resistance, but its underlying molecular mechanisms are still unclear. This study aims to identify key regulatory genes and pathways associated with OXA resistance. The Gene Expression Omnibus (GEO) GSE42387 dataset containing gene expression profiles of parental and OXA-resistant LoVo cells was applied to explore potential targets. GEO2R, STRING, CytoNCA (a plug-in of Cytoscape), and DAVID were used to analyze differentially expressed genes (DEGs), protein-protein interactions (PPIs), hub genes in PPIs, and gene ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. R2 online platform was used to run a survival analysis of validated hub genes enriched in KEGG pathways. The ENCORI database predicted microRNAs for candidate genes. A survival analysis of those genes was performed, and validated using the OncoLnc database. In addition, the 'clusterProfiler' package in R was used to perform gene set enrichment analysis (GSEA). We identified 395 DEGs, among which 155 were upregulated and 240 were downregulated. In total, 95 DEGs were screened as hub genes after constructing the PPI networks. Twelve GO terms and three KEGG pathways (steroid hormone biosynthesis, malaria, and pathways in cancer) were identified as being significant in the enrichment analysis of hub genes. Twenty-one hub genes enriched in KEGG pathways were defined as key genes. Among them AKT3, phospholipase C Beta 4 (PLCB4), and TGFB1 were identified as OXA-resistance genes through the survival analysis. High expressions of AKT3 and TGFB1 were each associated with a poor prognosis, and lower expression of PLCB4 was correlated with worse survival. Further, high levels of hsa-miR-1271-5p, which potentially targets PLCB4, were associated with poor overall survival in patients with CRC. Finally, we found that PLCB4 low expression was associated with MAPK signaling pathway and VEGF signaling pathway in CRC. Our results demonstrated that hsa-miR-1271-5p/PLCB4 in the pathway in cancer could be a new potential therapeutic target for mCRC with OXA resistance.
Collapse
Affiliation(s)
- Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ai-Wei Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.,Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC.,Cancer Research Center and Translational Laboratory, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yi-Shin Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC. .,Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
| |
Collapse
|
6
|
Zhang H, Ma M. Circ_0101692 knockdown retards the development of clear cell renal cell carcinoma through miR-384/FN1 pathway. Transl Oncol 2023; 28:101612. [PMID: 36608542 PMCID: PMC9813697 DOI: 10.1016/j.tranon.2022.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/13/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Circular RNA_0101692 (circ_0101692) is overexpressed in clear cell renal cell carcinoma (ccRCC) by microarray analyses. However, its function and action mechanism in ccRCC tumorigenesis is still elusive. METHODS Western blotting and qRT-PCR were executed to assess the circ_0101692, miR-384 and FN1 expression in ccRCC cells and tissues. Target relationships among them were determined via dual luciferase reporter and/or RNA immunoprecipitation assays. Cell proliferation was evaluated by CCK-8 assay. Caspase-3 activity assay was utilized to analyze cell apoptosis. To find out whether ccRCC cells might migrate, a transwell assay was performed. To assess the effects of circ_0101692 on tumor development in vivo, a mouse xenograft model was used. RESULTS High expression of circ_0101692 and FN1, and decreased miR-384 were determined in ccRCC. Cell growth, migration and viability were decreased whereas cell apoptosis was stimulated when circ_0101692 was knockdown. miR-384 inhibitor transfection attenuated the inhibiting impacts of circ_0101692 silencing on ccRCC cell progression. FN1 deletion further inverted the cancer-promoting effect of miR-384 downregulation on cell viability and migration. In addition, circ_0101692 could sponge miR-384 to relieve the inhibition of miR-384 on FN1 in ccRCC. CONCLUSIONS Circ_0101692 targeted miR-384/FN1 axis to facilitate cell proliferation, migration and repress apoptosis, thereby accelerating the development of ccRCC. This points out that circ_0101692/miR-384/FN1 axis might be a prospective target implemented for the future treatment of ccRCC.
Collapse
|
7
|
Xu J, Fang X, Qin L, Wu Q, Zhan X. LncRNA PVT1 regulates biological function of osteoarthritis cells by regulating miR-497/AKT3 axis. Medicine (Baltimore) 2022; 101:e31725. [PMID: 36397317 PMCID: PMC10662890 DOI: 10.1097/md.0000000000031725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growing evidence indicates that lncRNAs are involved in the progression of several diseases, including osteoarthritis (OA). However, the role of the lncRNA PVT1 in OA is still unclear. The present study was aimed at exploring the impact of PVT1 on OA progression, along with potential underlying mechanisms. PVT1 expression levels in articular cartilage tissue of OA patients and non-OA patients were evaluated. To assess the proliferation and apoptosis of chondrocytes subject to treatment, PVT1, miR-497, and AKT3 were either knocked down or upregulated in IL-1β-induced chondrocytes. The variables detected were changes in levels of AKT3 and extracellular matrix (ECM)-related factors (including aggrecan, collagen Type II, and MMP-9). Elevated PVT1 levels were found in cartilage tissue of OA patients and IL-1β-induced chondrocytes. It was also observed that PVT1 knockdown and miR-497 upregulation led to enhanced cell proliferation and suppressed apoptosis. In addition, a decrease in aggrecan and collagen type II levels and an increase in MMP-9 levels were observed in IL-1β-induced chondrocytes. A dual luciferase reporter assay was performed to identify the factors that interacted with miR-497, PVT1, and AKT3. It was observed through rescue experiments that enhancing AKT3 expression or knocking down miR-497 could reverse the impacts of PVT1 knockdown in IL-1β-induced chondrocytes. An upregulation of PVT1 is observed in OA patients. On the other hand, PVT1 knockdown can decrease the effects of IL-1β on the proliferation, apoptosis, and expression of ECM-related proteins of chondrocytes through the regulation of the miR-497/AKT3 axis. PVT1 levels are elevated in the cartilage tissue of OA patients and IL-1β-induced chondrocytes. PVT1 knockdown alleviates the effects of IL-1β treatment on the proliferation and apoptosis of chondrocytes and ECM degradation in chondrocytes by regulating the miR-497/AKT3 axis.
Collapse
Affiliation(s)
- Jinming Xu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopedics, Yuebei People's Hospital Affiliated to the Medical College of Shantou University, Shaoguan, China
| | - Xiang Fang
- Department of Orthopedics, Yuebei People's Hospital Affiliated to the Medical College of Shantou University, Shaoguan, China
| | - Ling Qin
- Department of Orthopedics, Yuebei People's Hospital Affiliated to the Medical College of Shantou University, Shaoguan, China
| | - Qiang Wu
- Department of Orthopedics, Yuebei People's Hospital Affiliated to the Medical College of Shantou University, Shaoguan, China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Hua T, Luo Y. Circular RNA PVT1 promotes progression of thyroid cancer by competitively binding miR-384. Exp Ther Med 2022; 24:629. [PMID: 36185502 PMCID: PMC9520360 DOI: 10.3892/etm.2022.11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
Plasmacytoma variant translocation 1 circular RNA (circPVT1) is involved in the initiation and development of several types of cancer. However, the underlying molecular role of circPVT1 in tumorigenesis of thyroid cancer remains to be elucidated. In the present study, relative expression of circPVT1 was markedly upregulated in thyroid cancer compared with adjacent normal tissue. circPVT1 expression was associated with clinical stage and lymph node metastasis. Furthermore, Cell Counting Kit-8, colony formation and Transwell chamber assays demonstrated that knockdown of circPVT1 decreased proliferation, migration and invasion of thyroid cancer cells in vitro. Moreover, circPVT1 directly interacted with microRNA (miR)-384, as shown by bioinformatics prediction and dual luciferase and RNA pull-down assay. miR-384 inhibition partially reversed the circPVT1 knockdown-mediated inhibitory effect on proliferation, migration and invasion of thyroid cancer cells. In summary, these findings demonstrated that circPVT1 may be a potential therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Tebo Hua
- Department of Thyroid Breast Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yong Luo
- Department of Thyroid Breast Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
9
|
Zou L, Zhan N, Wu H, Huang B, Cui D, Chai H. Circ_0000467 modulates malignant characteristics of colorectal cancer via sponging miR-651-5p and up-regulating DNMT3B. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:134-150. [PMID: 36067529 DOI: 10.1080/15257770.2022.2112050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Circular RNAs (circRNAs) are widely expressed in cancer tissues and participate in modulating the progression of malignant tumors, playing a pro- or anti-cancer role. This work is conducted to probe the precise role of circ_0000467 in colorectal cancer (CRC) and its regulatory mechanism. The differentially expressed circRNAs in CRC tissues and paracancerous tissues were screened by bioinformatics analysis. The expression levels of circ_0000467, miR-651-5p and DNA methyltransferases 3B (DNMT3B) mRNA in CRC tissues and cells were detected by qRT-PCR. circ_0000467 knockdown cell model was constructed to investigate the effects of circ_0000467 on CRC cell growth, migration and invasion by CCK-8 and Transwell experiments. Western blot was performed to examine DNMT3B protein expression in CRC cells. Dual-luciferase reporter gene experiment was executed to validate the targeting relationship between circ_0000467 and miR-651-5p, miR-651-5p and DNMT3B. Circ_0000467 expression and DNMT3B mRNA expression were increased and miR-651-5p expression was down-regulated in CRC tissues and cell lines. Knockdown of circ_0000467 repressed CRC cell growth, migration and invasion. Dual-luciferase reporter gene experiments validated that miR-651-5p was a direct target of circ_0000467 and miR-651-5p could specifically bind with DNMT3B 3'UTR. Functional compensation experiments showed that the regulatory effect of circ_0000467 on CRC cells' behaviors could be partially counteracted by miR-651-5p. Circ_0000467 may enhance the growth and metastasis of CRC cells by targeting miR-651-5p and up-regulating DNMT3B expression. Circ_0000467 may be a potential diagnostic biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Liping Zou
- Teaching Office, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Na Zhan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hong Wu
- Out-Patient Office, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bo Huang
- Department of Gastroenterology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, China
| | - Dejun Cui
- Department of Gastroenterology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, China
| | - Hong Chai
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
10
|
Angre T, Kumar A, Singh AK, Thareja S, Kumar P. Role of collagen regulators in cancer treatment: A comprehensive review. Anticancer Agents Med Chem 2022; 22:2956-2984. [DOI: 10.2174/1871520622666220501162351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Abstract:
Collagen is the most important structural protein and also a main component of extra-cellular matrix (ECM). It plays a role in tumor progression. Collagen can be regulated by altering it’s biosynthesis pathway through various signaling pathways, receptors and genes. Activity of cancer cells can also be regulated by other ECM components like metalloproteinases, hyaluronic acid, fibronectin and so on. Hypoxia is also one of the condition which leads to cancer progression by stimulating the expression of procollagen lysine as a collagen crosslinker, which increases the size of collagen fibres promoting cancer spread. The collagen content in cancerous cells leads to resistance in chemotherapy. So, to reduce this resistance, some of the collagen regulating therapies are introduced, which include inhibiting its biosynthesis, disturbing cancer cell signaling pathway, mediating ECM components and directly utilizing collagenase. This study is an effort to compile the strategies reported to control the collagen level and different collagen inhibitors reported so far. More research is needed in this area, growing understandings of collagen’s structural features and its role in cancer progression will aid in the advancement of newer chemotherapies.
Collapse
Affiliation(s)
- Tanuja Angre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
11
|
Luo Y, Zhou Q, Zhu F, Fan L, Bo H, Wang X. Hypomethylation-driven AKT Serine/Threonine Kinase 3 promotes testicular germ cell tumors proliferation and negatively correlates to immune infiltration. Bioengineered 2021; 12:11288-11302. [PMID: 34882061 PMCID: PMC8810072 DOI: 10.1080/21655979.2021.2002621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AKT Serine/Threonine Kinase 3 (AKT3) has been reported to play an important role in different tumors. However, its clinical value, biological function, and molecular mechanism in testicular germ cell tumors (TGCT) remains unclear. In the current study, we applied the Gene Set Cancer Analysis (GSCA), UCSC XENA, Gene Expression Omnibus (GEO), the Human Protein Atlas (HPA), LinkedOmics, DiseaseMeth version 2.0, TISIDB, and other databases for TGCT data mining. Then, we investigated AKT3’s mechanism of action and clinical survival significance via bioinformatics followed by in vitro experiments. We found that AKT3 was upregulated and had frequent copy number amplifications in TGCT, which were associated with poor survival outcomes of patients. On the other hand, mutations that led to AKT3 loss-of-function were correlated to a better prognosis in patients. Moreover, AKT3 silencing significantly inhibited the proliferation, DNA synthesis and colony formation of NCCIT cells (a TGCT cell line). AKT3 might participate in TGCT progression through multiple signaling pathways, such as ErbB, oxidative phosphorylation, and affecting tumor immune infiltration. Also, the upregulation of AKT3 mRNA expression might be driven by the hypomethylation of its promoter region. Overall, AKT3 is a potential TGCT oncogene and can be further used as a therapeutic target.
Collapse
Affiliation(s)
- Yang Luo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qianyin Zhou
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Xingming Wang
- Department of Nuclear Medicine (Pet Center), Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227:153618. [PMID: 34649056 DOI: 10.1016/j.prp.2021.153618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a drastic renal complication of type 1 and type 2 diabetes mellitus (DM). Poorly controlled DM over the years, may disrupt kidneys' blood vessels, leading to the hypertension (HTN) and DN onset. During DN, kidneys' waste filtering ability becomes disturbed. Being on a healthy lifestyle and controlling both DM and HTN are now the best proceedings to prevent or at least delay DN occurrence. Unfortunately, about one-fourth of diabetic individuals eventually experience the corresponding renal failure, and thus it is critical to discover effective diagnostic biomarkers and therapeutic strategies to combat DN. In the past few years, circular RNAs (circRNAs), as covalently closed endogenous non-coding RNAs (ncRNAs), are believed to affect DN pathogenesis in a positive manner. CircRNAs are able to impact different cellular processes and signaling pathways by targeting biological molecules or various molecular mechanisms. Still, as a key regulatory axis, circRNAs can select miRNAs as their molecular targets, in which they are considered as miRNA sponges. In this way, circRNA-induced suppression of particular miRNAs may prevent from DN progression or promotes the DN elimination. Since the expression of circRNAs has also been reported to be increased in DN-associated cells and tissues, they can be employed as either diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marziyeh Salami
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran; Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Tian YH, Jia LW, Liu ZF, Chen YH. LINC01087 inhibits glioma cell proliferation and migration, and increases cell apoptosis via miR-384/Bcl-2 axis. Aging (Albany NY) 2021; 13:20808-20819. [PMID: 34459789 PMCID: PMC8436897 DOI: 10.18632/aging.203478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/02/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Long non-coding RNA (LncRNA) is associated with disease progression. It is reported that LINC01087 is highly expressed in cancer and participates in tumorigenesis. However, whether it regulates the development of glioma has not been studied. So, the goal of this research is to determine the role of LINC01087 in gliomas and to provide potential targets for clinical treatment. METHODS The gene expression was detected by quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) and Western blotting (WB). Cell proliferation was analyzed by CCK8 and colony formation test, and apoptosis was detected by flow cytometry. Luciferase report experiment and RNA Binding Protein Immunoprecipitation confirmed the interaction between LINC01087, miR-384 and Bcl-2. The effect of regulating LINC01087 on the growth of glioma was confirmed in vitro. RESULTS The LINC01087 expression was up-regulated in clinical glioma samples (n = 35). Furthermore, LINC01087 silencing can obviously suppress the proliferation of glioma cells and induce apoptosis. Mechanically, we found that LINC01087 was the molecular sponge of miR-384. LINC01087 could inhibit the miR-384 expression and boost the Bcl-2 expression through sponge expression of miR-384. The repair of Bcl-2 effectively saved the proliferation and apoptosis of glioma cells lacking LINC01087. CONCLUSION LINC01087 is highly expressed in glioma and can participate in the growth of glioma through miR-384/Bcl-2 axis. So, it is a potential therapeutic target.
Collapse
Affiliation(s)
- Yao-Hui Tian
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Lin-Wei Jia
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Zhi-Feng Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yong-Han Chen
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| |
Collapse
|
14
|
Transcriptome Profiling and Metagenomic Analysis Help to Elucidate Interactions in an Inflammation-Associated Cancer Mouse Model. Cancers (Basel) 2021; 13:cancers13153683. [PMID: 34359585 PMCID: PMC8345192 DOI: 10.3390/cancers13153683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Colitis-associated colorectal cancer is the third most significant condition that increases the overall risk of developing colorectal cancer. In this study, we examined normal colonic mucosa of tumor-bearing mice in the DSS/AOM mouse model by gene expression profiling and fecal samples by 16s rDNA amplicon sequencing. Gene set enrichment analysis revealed that genes associated with fatty acid metabolism, oxidative phosphorylation, and the PI3K-Akt-mTOR pathways were enriched colonic mucosa of DSS/AOM mice. Additionally, enrichment of the sphingolipid signal and lipoarabinomannan biosynthetic pathways were inferred from fecal microbial composition. Our findings provide insights into altered transcriptome and microbiome in a mouse model of colitis-induced carcinogenesis. Abstract Colitis is a risk factor for colorectal cancer (CRC) and can change the dynamics of gut microbiota, leading to dysbiosis and contributing to carcinogenesis. The functional interactions between colitis-associated CRC and microbiota remain unknown. In this study, colitis and CRC were induced in BALB/c mice by the administration of dextran sodium sulfate (DSS) and/or azoxymethane (AOM). Whole transcriptome profiling of normal colon was then performed, and gene set enrichment analysis (GSEA) revealed enriched fatty acid metabolism, oxidative phosphorylation, and PI3K-Akt-mTOR signaling in the tissues from DSS/AOM mice. Additionally, immunohistochemical staining showed increased expression levels of phosphorylated S6 ribosomal protein, a downstream target of the PI3K-Akt-mTOR pathway in the inflamed mucosa of DSS/AOM mice. Fecal microbes were characterized using 16S rDNA gene sequencing. Redundancy analysis demonstrated a significant dissimilarity between the DSS/AOM group and the others. Functional analysis inferred from microbial composition showed enrichments of the sphingolipid signal and lipoarabinomannan biosynthetic pathways. This study provides additional insights into alterations associated with DSS/AOM-induced colitis and associates PI3K-Akt-mTOR, sphingolipid-signaling and lipoarabinomannan biosynthetic pathways in mouse DSS/AOM-induced colitis.
Collapse
|
15
|
Li K, Zhu X, Yuan C. Inhibition of miR-185-3p Confers Erlotinib Resistance Through Upregulation of PFKL/MET in Lung Cancers. Front Cell Dev Biol 2021; 9:677860. [PMID: 34368128 PMCID: PMC8335405 DOI: 10.3389/fcell.2021.677860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 01/20/2023] Open
Abstract
Erlotinib (ER), as an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), has a significant therapeutic effect in lung cancers. However, EGFR TKI resistance inevitably occurs after treatment for approximately 12 months, which weakens its antitumor effect. Here, we identified miR-185-3p as a significantly downregulated microRNA responsible for acquired EGFR TKI resistance in cells and patients with lung cancer. qRT-PCR and Western Blot were performed to determine the relative expression of miR-185-3p in ER-resistant tumor tissues and cells. The viability and apoptosis of lung cancer cells were evaluated by Cell Counting Kit-8 (CCK8) assay and flow cytometry, respectively. The binding between miR-185-3p and liver-type phosphofructokinase (PFKL) was verified by dual luciferase assay. It was found that overexpression of miR-185-3p conferred ER sensitivity in lung cancer cell lines. MiR-185-3p was downregulated in ER-resistant lung cancer cells (H1299/ER and A549/ER). MiR-185-3p inhibited proliferation and induced cell apoptosis in ER-resistant cells. Mechanistically, miR-185-3p downregulation contributed to ER resistance through upregulating the PFKL. Moreover, Mesenchymal to epithelial transition (MET) oncoprotein promoted EGFR-TKI resistance by regulating miR-185-3p and PFKL. These findings revealed a novel mechanism in which downregulation of miR-185-3p may induce overexpression of PFKL and MET and confer ER resistance in lung cells. Combination of PFKL/MET inhibitors and EGFR TKIs could be a rational therapeutic approach for lung cancer patients with EGFR mutation.
Collapse
Affiliation(s)
- Ke Li
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xinling Zhu
- Department of Operating Room, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Conghu Yuan
- Department of Anesthesiology, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| |
Collapse
|
16
|
Liu J, Wang F, Song H, Weng Z, Bao Y, Fang Y, Tang X, Shen X. Soybean-derived gma-miR159a alleviates colon tumorigenesis by suppressing TCF7/MYC in mice. J Nutr Biochem 2021; 92:108627. [PMID: 33705946 DOI: 10.1016/j.jnutbio.2021.108627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/10/2020] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Previous reports have shown that plant-derived microRNAs (miRNAs) regulate mammalian gene expression through dietary intake. Our prior study found that gma-miR159a, which is abundant in soybean, significantly inhibited the proliferation of colon cancer cells. In the current study, dietary gma-miR159a was utilized to study its anti-colon cancer function in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer mice. Under processing conditions, gma-miR159a exhibited excellent stability in cooked soybean. In vitro, gma-miR159a suppressed the expression of the oncogene MYC downstream of the Wnt signaling pathway by targeting the TCF7 gene, significantly inhibiting the growth of colon cancer cells. The in vivo experiments showed that gma-miR159a and soybean RNA (total RNA extracted from soybean) significantly reduced tumor growth in AOM/DSS-induced colon cancer mice by gavage. This effect disappeared when anti-miR159a was present. In addition, gma-miR159a and soybean RNA significantly attenuated inflammation in colon cancer mice. These results showed that long-term dietary intake of soybean-derived gma-miR159a effectively prevented the occurrence of colon cancer and colitis, which provides novel evidence for the prevention function of soybean.
Collapse
Affiliation(s)
- Juncheng Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Zebin Weng
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China.
| |
Collapse
|
17
|
Chen D, Wang K, Zheng Y, Wang G, Jiang M. Exosomes-Mediated LncRNA ZEB1-AS1 Facilitates Cell Injuries by miR-590-5p/ETS1 Axis Through the TGF-β/Smad Pathway in Oxidized Low-density Lipoprotein-induced Human Umbilical Vein Endothelial Cells. J Cardiovasc Pharmacol 2021; 77:480-490. [PMID: 33818551 DOI: 10.1097/fjc.0000000000000974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Atherosclerosis is a chronic lipid-induced inflammation of the vessel wall. Oxidized low-density lipoprotein was confirmed to drive the onset of atherogenesis. Zinc finger e-box-binding homeobox 1 antisense 1 (ZEB1-AS1) is a long noncoding RNA that is involved in human diseases, including atherosclerosis. In this study, the role of exosomes-mediated ZEB1-AS1 and its underlying mechanisms in atherosclerosis were explored in oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). Exosomes were extracted from HUVECs. Quantitative real-time polymerase chain reaction was conducted to measure the expression of ZEB1-AS1, microRNA-590-5p (miR-590-5p), or erythroblastosis virus E26 oncogene homolog 1 (ETS1) in cells or exosomes. Cell proliferation and apoptosis were assessed by MTT assay and flow cytometry analysis, respectively. Western blot was performed to detect apoptosis-related factors, ETS1, and TGF-β/Smad pathway protein levels. The secretion of inflammatory factors in supernatant was detected by ELISA assay. Oxidative stress damage indicators were used to assess cellular damage. Relationship between miR-590-5p and ZEB1-AS1 or ETS1 was analyzed. Our data indicated that ox-LDL-induced exosomes-mediated ZEB1-AS1 in HUVECs. Ox-LDL treatment resulted in limited proliferation, proapoptosis, inflammation, and oxidative stress damage, whereas knockdown of ZEB1-AS1 could reverse these effects. Mechanically, ZEB1-AS1 sponged miR-590-5p to regulate ETS1 expression. MiR-590-5p knockdown inverted effects above of si-ZEB1-AS1 on HUVECs under ox-LDL exposure. Moreover, ETS1 reversed miR-590-5p-induced effects and activated the TGF-β/Smad pathway in ox-LDL-treated HUVECs. Taken together, our findings demonstrated that exosomes-mediated ZEB1-AS1 enhanced cell injuries by miR-590-5p/ETS1 axis through the TGF-β/Smad pathway in ox-LDL-induced HUVECs, suggesting that inhibiting ZEB1-AS1 might be an effective way for atherosclerosis treatment.
Collapse
Affiliation(s)
- Difang Chen
- Department of Cardiology, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Kunwei Wang
- Department of Endocrinology, Shanghai Tianyou Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Zheng
- Emergency Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China ; and
| | - Guangyu Wang
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai, China
| | - Mei Jiang
- Emergency Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China ; and
| |
Collapse
|
18
|
Xu X, Zhang X, Zhang Y, Wang Z. Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the circ-PRKCA/miR-384/ITGB1 pathway. Biomed Pharmacother 2021; 138:111439. [PMID: 33684690 DOI: 10.1016/j.biopha.2021.111439] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Curcumin exerts a suppressive effect in tumor growth by acting as a modulator of multiple molecular targets. Circular RNA hsa_circ_0007580 (circ-PRKCA) accelerates the tumorigenesis of non-small cell lung cancer (NSCLC). However, whether curcumin can regulate circ-PRKCA to inhibit NSCLC progression is unclear. METHODS Cell viability, colony formation, apoptosis, migration, and invasion were analyzed using Cell Counting Kit-8 (CCK-8), plate clone, flow cytometry, or transwell assay. Expression of circ-PRKCA, microRNA (miR)-384, and ITGB1 mRNA (integrin subunit beta 1) mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Curcumin repressed NSCLC growth through regulating circ-PRKCA expression was validated by xenograft assay. The targeting relationship between circ-PRKCA or ITGB1 and miR-384 was verified by dual-luciferase reporter assay. The level of ITGB1 protein was measured by western blotting. RESULTS Circ-PRKCA and ITGB1 expression were elevated in NSCLC tissues and cells, but miR-384 had an opposing tendency. After curcumin treatment, the expression tendency of circ-PRKCA, miR-384, and ITGB1 in NSCLC cells was overturned. Furthermore, curcumin impeded viability, colony formation, migration, invasion, and accelerated apoptosis of NSCLC cells, but these impacts were partially reversed by circ-PRKCA elevation, miR-384 downregulation, or ITGB1 overexpression. Also, the inhibitory effect of curcumin on xenograft tumor was further enhanced after circ-PRKCA knockdown. Notably, circ-PRKCA regulated ITGB1 expression through sponging miR-384 in curcumin-treated NSCLC cells. CONCLUSIONS Curcumin inhibited NSCLC growth through downregulating circ-PRKCA, which regulated ITGB1 expression by adsorbing miR-384. This study provided a new mechanism to understand how curcumin inhibited the progression of NSCLC.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Department of Clinical Oncology, The Affiliated Hospital of Shandong University of TCM, Jinan, Shandong, China
| | - Xinyue Zhang
- Department of Respiratory Diseases, The First Clinical Medical College of Shandong University of TCM, Jinan, Shandong, China
| | - Yang Zhang
- Department of Respiratory Diseases, The Affiliated Hospital of Shandong University of TCM, Jinan, Shandong, China
| | - Zhipeng Wang
- Department of Clinical Oncology, The Affiliated Hospital of Shandong University of TCM, Jinan, Shandong, China.
| |
Collapse
|
19
|
Wang Y, Li Y, Zhou H, Qian X, Hu Y. Syntaxin 2 promotes colorectal cancer growth by increasing the secretion of exosomes. J Cancer 2021; 12:2050-2058. [PMID: 33754003 PMCID: PMC7974533 DOI: 10.7150/jca.51494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most common cancers with high mortality worldwide. Uncontrolled growth is an important hallmark of CRC. However, the mechanisms are poorly understood. Methods: Syntaxin 2 (STX2) expression was analyzed in 160 cases of paraffin-embedded CRC tissue by immunohistochemistry, in 10 cases of fresh CRC tissue by western blot, and in 2 public databases. Gain- and loss-of-function analyses were used to investigate the biological function of STX2 in CRC growth. Exosomes isolation, characterization, Co-immunoprecipitation (Co-IP), flow cytometry and fluorescence were conducted to study the molecular mechanism of STX2 in CRC growth. Results: The expression of STX2 was obviously up-regulated in human CRC tissues. Overexpression of STX2 increased the growth of CRC cells in vitro and in vivo. Downregulation of STX2 repressed the growth of CRC. STX2 modulated exosomes secretion of CRC cells which might correlated with Rab8a expression. The secreted exosomes could be ingested by CRC cells, and ultimately promoted the growth of CRC by arresting the tumor cells at S phase. Conclusions: Our data provide evidence that STX2 promotes CRC growth by increasing exosomes secretion of CRC cells; And the modulation of STX2 in exosomes secretion correlates with Rab8a. Thus, our study identified a new mechanism of STX2 in CRC growth and may provide a possible strategy for CRC therapy.
Collapse
Affiliation(s)
- Yongxia Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Provincial Key Laboratory of Molecular Tumor Pathology, Henan, Xinxiang, China
| | - Yongzhen Li
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Provincial Key Laboratory of Molecular Tumor Pathology, Henan, Xinxiang, China
| | - Hong Zhou
- Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xinlai Qian
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Provincial Key Laboratory of Molecular Tumor Pathology, Henan, Xinxiang, China
| | - Yuhan Hu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Provincial Key Laboratory of Molecular Tumor Pathology, Henan, Xinxiang, China
| |
Collapse
|
20
|
Zhang Q, Feng Z, Shi S, Zhang Y, Ren S. Comprehensive analysis of lncRNA-associated ceRNA network reveals the novel potential of lncRNA, miRNA and mRNA biomarkers in human rectosigmoid junction cancer. Oncol Lett 2020; 21:144. [PMID: 33552263 PMCID: PMC7798100 DOI: 10.3892/ol.2020.12405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Although accumulating evidence has confirmed the potential biological functions of long non-coding RNAs (lncRNAs) as competitive endogenous RNAs (ceRNAs) in colorectal tumorigenesis and progression, few studies have focused on rectosigmoid junction cancer. In the present study, a comprehensive analysis was conducted to explore lncRNA-mediated ceRNA implications and their potential value for prognosis. lncRNA, microRNA (miR/miRNA) and mRNA expression profiles were downloaded from The Cancer Genome Atlas database. Subsequently, a lncRNA-miRNA-mRNA regulatory network was constructed to evaluate the functions of these differentially expressed genes on overall survival (OS) for rectosigmoid junction cancer. As a result, a rectosigmoid junction cancer-specific ceRNA network was successfully constructed with 7 differentially expressed (DE)lncRNAs, 16 DEmiRNAs and 71 DEmRNAs. Among the network, one DElncRNA (small nucleolar RNA host gene 20) and three mRNAs (sodium- and chloride-dependent taurine transporter, fibroblast growth factor 13 and tubulin polyglutamylase TTLL7) were significantly associated with OS (P<0.05). Additionally, two lncRNAs (KCNQ1OT1 and MIR17HG) interacted with most of the DEmiRNAs. Notably, two top-ranked miRNAs (hsa-miR-374a-5p and hsa-miR-374b-5p) associated networks were identified to be markedly associated with the pathogenesis. Furthermore, four DEmRNAs (caveolin-1, MET, filamin-A and AKT3) were enriched in the Kyoto Encylopedia of Gene and Genomes pathway analysis, as well as being included in the ceRNA network. In summary, the present results revealed that a specific lncRNA-miRNA-mRNA network was associated with rectosigmoid junction cancer, providing several molecules that may be used as novel prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Zhen Feng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Shasha Shi
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yu Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
21
|
Silencing long non-coding RNA CASC9 inhibits colorectal cancer cell proliferation by acting as a competing endogenous RNA of miR-576-5p to regulate AKT3. Cell Death Discov 2020; 6:115. [PMID: 33298846 PMCID: PMC7603495 DOI: 10.1038/s41420-020-00352-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Increasing studies have shown that long non-coding RNAs (lncRNAs) are regarded as important regulators in the occurrence and development of colorectal cancer (CRC). Although lncRNA CASC9 has been studied in CRC, the detailed regulatory mechanism of CASC9 in CRC is still unclear. In this study, we found that CASC9 was significantly upregulated in CRC tissues and cell lines compared to normal controls and that aberrant expression was associated with the tumor-node-metastasis (TNM) stage of CRC. Functionally, CASC9 depletion efficiently inhibited the proliferation of CRC cells and induced cell apoptosis in vitro. Mechanistically, CASC9 was mainly enriched in the cytoplasm of CRC cells and interacted directly with miR-576-5p. Downregulation of miR-576-5p reversed the inhibitory effect of CASC9 siRNA on CRC cell progression. Furthermore, AKT3 has been identified as a downstream target of miR-576-5p. Spearman’s correlation analysis revealed that AKT3 was negatively correlated with miR-576-5p but positively correlated with CASC9. Downregulation of miR-576-5p restored the effect of CASC9 silencing on AKT3 expression. Therefore, silencing CASC9 could downregulate the expression of AKT3 by reducing the competitive binding of CASC9 to miR-576-5p, thus suppressing CRC cell proliferation and promoting cell apoptosis. In summary, we identified CASC9 as an oncogenic lncRNA in CRC and defined the CASC9/miR-576-5p/AKT3 axis, which might be considered a potential therapeutic target for CRC patients, as a novel molecular mechanism implicated in the proliferation and apoptosis of CRC.
Collapse
|
22
|
Hu M, Yang J. Down-regulation of lncRNA UCA1 enhances radiosensitivity in prostate cancer by suppressing EIF4G1 expression via sponging miR-331-3p. Cancer Cell Int 2020; 20:449. [PMID: 32943997 PMCID: PMC7488500 DOI: 10.1186/s12935-020-01538-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We aimed to explore the role of long noncoding RNA urothelial carcinoma-associated 1 (lncRNA UCA1) and its underlying mechanism in the radioresistance of prostate cancer (PCa). METHODS QRT-PCR was conducted to measure the expression of UCA1, microRNA-331-3p (miR-331-3p) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) in PCa tissues and cells. The relative protein level was determined by western blot assay. Cell proliferation and apoptosis were detected by MTT, colony formation assay, and flow cytometry, respectively. The target interaction between miR-331-3p and UCA1 or EIF4G1 was predicted through bioinformatics analysis, and verified by dual-luciferase reporter gene assay system. RESULTS The high levels of UCA1 and EIF4G1 as well as the low level of miR-331-3p were observed in PCa tissues and cell lines. UCA1 and EIF4G1 expression were significantly upregulated by Gy radiation treatement. UCA1 or EIF4G1 knockdown repressed cell growth and enhanced cell apoptosis in 22RV1 and DU145 cells under radiation. Moreover, overexpression of EIF4G1 abolished UCA1 knockdown-induced effect on 6 Gy irradiated PCa cells. UCA1 sponged miR-331-3p to regulate EIF4G1 expression. CONCLUSIONS LncRNA UCA1 deletion suppressed the radioresistance to PCa by suppressing EIF4G1 expression via miR-331-3p. UCA1 acted as a potential regulator of radioresistance of PCa, providing a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Minhua Hu
- Department of Nursing College, Xi’an Medical University, Xi’an, 710021 Shaanxi Province China
| | - Jincheng Yang
- Department of Urology Surgery, The First People’s Hospital of Yinchuan, No. 4, Liqun West Street, Xingqing District, Yinchuan, 750004 Ningxia China
| |
Collapse
|
23
|
Fu J, Cai H, Wu Y, Fang S, Wang D. Elevation of FGD5-AS1 contributes to cell progression by improving cisplatin resistance against non-small cell lung cancer cells through regulating miR-140-5p/WEE1 axis. Gene 2020; 755:144886. [DOI: 10.1016/j.gene.2020.144886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
|
24
|
Liu J, Wang F, Weng Z, Sui X, Fang Y, Tang X, Shen X. Soybean-derived miRNAs specifically inhibit proliferation and stimulate apoptosis of human colonic Caco-2 cancer cells but not normal mucosal cells in culture. Genomics 2020; 112:2949-2958. [PMID: 32407773 DOI: 10.1016/j.ygeno.2020.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 03/12/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression in eukaryotes. Studies have shown that plant-derived miRNAs can be absorbed through diets and regulate gene expression in mammals. Although soybean-derived miRNAs have been reported, their biological functions are still unclear. In this study, we found that soybean-derived small RNAs (sRNAs) significantly inhibited the proliferation and stimulated the apoptosis of Caco-2 cells. Bioinformatics analysis indicated that the target gene set of soybean miRNAs was extensively enriched in cancer pathways. Besides, we obtained 8 target genes, including Transcription factor 7 (TCF7), associated with colon cancer through prediction. Further studies showed that gma-miR159a inhibited the proliferation of Caco-2 cells and played an important role in the inhibitory effect of sRNAs by inhibiting TCF7 protein, which are upregulated in colon cancer cells but not normal mucosal cells in culture. These findings provide a novel molecular mechanism of soybean-derived miRNAs for potential application in tumor prevention.
Collapse
Affiliation(s)
- Juncheng Liu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Fang Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Zebin Weng
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xinchun Shen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| |
Collapse
|
25
|
Wang Q, Cang Z, Shen L, Peng W, Xi L, Jiang X, Ge X, Xu B, Huang S. circ_0037128/miR-17-3p/AKT3 axis promotes the development of diabetic nephropathy. Gene 2020; 765:145076. [PMID: 32860899 DOI: 10.1016/j.gene.2020.145076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022]
Abstract
Circular RNAs (circRNAs) play vital roles in the development of diabetic nephropathy (DN). In this study, we investigated the function of circ_0037128 and molecular mechanism via which it regulates diabetic nephropathy development. It was found that expression of circ_0037128 was significantly increased in mouse DN model and high glucose treated mesangial cells (MCs), and circ_0037128 loss-of-function led to reduced cell proliferation and fibrosis in vitro. Moreover, miR-17-3p acts as competitive endogenous RNA (ceRNA) that directly interacts with circ_0037128 through its miRNA response elements (MREs). Consistently, expression of miR-17-3p was remarkably down-regulated in DN model, and negatively regulated cell proliferation and fibrosis. Further investigations revealed that AKT3 was the putative target of miR-17-3p, whose expression was elevated in DN model. In conclusion, we have characterized the function of a novel circ_0037128 and illustrated the significance of circ_0037128-miR-17-3p-AKT3 axis in DN pathogenesis.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Zheng Cang
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Lisha Shen
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Wenfang Peng
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Liuqing Xi
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xiaohong Jiang
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xiaoxu Ge
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Bojin Xu
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Shan Huang
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
26
|
Liu P, Cai S, Li N. Circular RNA-hsa-circ-0000670 promotes gastric cancer progression through the microRNA-384/SIX4 axis. Exp Cell Res 2020; 394:112141. [PMID: 32535033 DOI: 10.1016/j.yexcr.2020.112141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 01/19/2023]
Abstract
Circular RNAs (circRNAs), a special type of non-coding RNA molecules, have been addressed to be implicated in gastric cancer progression. The GSE93541 and GSE83521 microarrays found hsa-circRNA-000670 (hsa-circ-0000670) as an up-regulated circRNAin gastric cancer. We mainly investigated the function and molecular mechanisms of hsa-circ-0000670 involved in gastric cancer. The expression of hsa-circ-0000670 was determined by RT-qPCR to be highly expressed in gastric cancer tissues relative to corresponding adjacent normal tissues, as well as in gastric cancer cell lines relative to normal gastric mucosal epithelial cell line. By conducting EdU, scratch test and Transwell assays, hsa-circ-000670 was found to be a tumor promoter by potentiating the proliferative, invasive and migrating capabilities of gastric cancer cells. Consistently, a tumor-promotive role of hsa-circ-000670 was validated in vivo. Dual-luciferase reporter gene and RIP assays identified the binding of hsa-circ-0000670 to microRNA-384 (miR-384) and the binding of miR-384 to sine oculis-related homeobox 4 (SIX4). The oncogenic potential of hsa-circ-0000670 in gastric cancer cells were inhibited by overexpressed miR-384. Mechanistically, SIX4 was targeted by miR-384 and was upregulated in gastric cancer. High SIX4 expression was suggested to correlate with the poor prognosis of gastric cancer patients. Additionally, silencing of SIX4 delayed tumor growth and progression, which were reversed by overexpression of hsa-circ-0000670. Taken together, hsa-circ-0000670 acts as a tumor promotor in gastric cancer progression and might be a potential target for gastric cancer treatment.
Collapse
Affiliation(s)
- Pengliang Liu
- Department of Gastroenterology and Endoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Shuang Cai
- Department of Gastroenterology and Endoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Nuo Li
- Department of Gastroenterology and Endoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
27
|
Zhao J, Yang T, Ji J, Zhao F, Li C, Han X. RHPN1-AS1 promotes cell proliferation and migration via miR-665/Akt3 in ovarian cancer. Cancer Gene Ther 2020; 28:33-41. [PMID: 32457485 DOI: 10.1038/s41417-020-0180-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/09/2022]
Abstract
Recent efforts have revealed that long non-coding RNAs exert crucial roles in cancer initiation and progression. RHPN1-AS1 is a 2030 bp transcript from human chromosome 8q24, and involved in tumorigenesis in uveal melanoma and non-small cell lung cancer, but it remains unknown in ovarian cancer. This study focused on the role of RHPN1-AS1 in ovarian cancer and found that RHPN1-AS1 was up-regulated in ovarian cancer tissues and cell lines. Overexpression of RHPN1-AS1 promoted ovarian cancer cell proliferation, migration, and invasion. Mechanistically, overexpression of RHPN1-AS1 decreased the expression of miR-665 and subsequently promoted the expression of Akt3 at posttranscriptional level. Taken together, RHPN1-AS1 positively regulated the expression of Akt3 through sponging miR-665, and exerted an oncogenic role in ovarian cancer progression, and indicates that RHPN1-AS1 may be a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China
| | - Ting Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China
| | - Jing Ji
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China
| | - Fan Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China
| | - Chen Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China
| | - Xiaobing Han
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China.
| |
Collapse
|
28
|
Li B, Sun H, Zhang J. LncRNA DSCAM-AS1 promotes colorectal cancer progression by acting as a molecular sponge of miR-384 to modulate AKT3 expression. Aging (Albany NY) 2020; 12:9781-9792. [PMID: 32453706 PMCID: PMC7288937 DOI: 10.18632/aging.103243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Down Syndrome Cell Adhesion Molecule antisense1 (DSCAM-AS1), a novel long non-coding RNA (lncRNA), reportedly contributes to the development and progression of several cancers. There is a lack of information on its biological role and regulatory mechanism with respect to colorectal cancer (CRC). Here, we discovered that the expression of DSCAM-AS1 exhibited a significant upregulation in CRC tissues and cell lines in comparison with the corresponding control. Increased DSCAM-AS1 expression was associated with poor prognosis for those diagnosed with CRC. Loss-of function assay illustrated that knockdown of DSCAM-AS1 resulted in significant inhibition of cell proliferation, invasion and migration in vitro, and impaired tumor growth in vivo. MicroRNA-384(miR-384) was directly targeted by DSCAM-AS1 in CRC cells, and repression of DSCAM-AS1 inhibited the expression of AKT3, a known target of miR-384 in CRC. In addition, repression of miR-384 or overexpression of AKT3 could partially rescue the inhibitory effect of DSCAM-AS1 knockdown on CRC progression. In summary, DSCAM-AS1 exerted an oncogenic role in CRC by functioning as a competing endogenous RNA of miR-384 to bring about regulation of AKT3 expression. These results implied that DSCAM-AS1 might be a novel therapeutic target for patients suffering from CRC.
Collapse
Affiliation(s)
- Bo Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, P.R. China
| | - Hai Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130021, P.R. China
| | - Jiayu Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
29
|
Zhou F, Tang D, Xu Y, He H, Wu Y, Lin L, Dong J, Tan W, Dai Y. Identification of microRNAs and their Endonucleolytic Cleavaged target mRNAs in colorectal cancer. BMC Cancer 2020; 20:242. [PMID: 32293320 PMCID: PMC7092451 DOI: 10.1186/s12885-020-06717-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal cancer (CRC) ranks the third among the most common malignancies globally. It is well known that microRNAs (miRNAs) play vital roles in destabilizing mRNAs and repressing their translations in this disease. However, the mechanism of miRNA-induced mRNA cleavage remains to be investigated. Method In this study, high-throughput small RNA (sRNA) sequencing was utilized to identify and profile miRNAs from six pairs of colorectal cancer tissues (CTs) and adjacent tissues (CNs). Degradome sequencing (DS) was employed to detect the cleaved target genes. The Database for Annotation, Visualization and Integrated Discovery (DAVID) software was used for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Results In total, 1278 known miRNAs (clustered into 337 families) and 131 novel miRNAs were characterized in the CT and CN libraries, respectively. Of those, 420 known and eight novel miRNAs were defined as differentially expressed miRNAs (DEmiRNAs) by comparing the expression levels observed in the CT and CN libraries. Furthermore, through DS, 9685 and 202 potential target transcripts were characterized as target genes for 268 known and 33 novel miRNAs, respectively. It was further predicted that a total of 264 targeted genes for the 85 DEmiRNAs are involved in proteoglycans in cancer and the AMP-activated protein kinase signaling pathway. After systemic analysis of prognosis-related miRNA targets in those cancer-related signal pathways, we found that two targets ezrin (EZR) and hematopoietic cell-specific Lyn substrate 1 (HCLS1) had the potential prognostic characteristics with CRC regarding over survival (OS) or recurrence. Conclusion In total, we found that endonucleolytic miRNA-directed mRNA cleavage occurs in CRC. A number of potential genes targeted by CRC-related miRNAs were identified and some may have the potential as prognosis markers of CRC. The present findings may lead to an improved better appreciation of the novel interaction mode between miRNAs and target genes in CRC.
Collapse
Affiliation(s)
- Fangbin Zhou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Yong Xu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Huiyan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Yan Wu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Liewen Lin
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, China
| | - Wenyong Tan
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China. .,Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), 1017 North Rd Dongmen, Luohu District, Shenzhen, China.
| |
Collapse
|
30
|
MicroRNA-384 Inhibits the Progression of Papillary Thyroid Cancer by Targeting PRKACB. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4983420. [PMID: 31998791 PMCID: PMC6973191 DOI: 10.1155/2020/4983420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/08/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
Abstract
Background Growing evidence shows that dysregulation of miRNAs plays a significant role in papillary thyroid cancer (PTC) tumorigenesis and development. The abnormal expression of miR-384 has been acknowledged in the proliferation or metastasis of some cancers. However, the function and the underlying mechanism of miR-384 in PTC progression remain largely unknown. Methods Real-time PCR was conducted to detect miR-384 expression in 58 cases of PTC and their adjacent noncancerous tissues. MTT, soft agar assay Transwell assay, and wound-healing assay were carried out to explore the biological function of miR-384 in PTC cell lines of BCPAP and K1. Bioinformatics analysis, dual-luciferase reporter assay, western blot, and functional complementation analysis were conducted to explore the target gene of miR-384. Moreover, Spearman's correlation analysis was conducted to reveal the correlation between miR-384 and PRKACB mRNA in PTC. Results The expression of miR-384 decreased obviously in PTC, especially in the tumors with lymph node metastasis or larger tumor size. The ectopic upregulation of miR-384 significantly suppressed PTC progression, and the inhibition of miR-384 had the opposite effects. Moreover, PRKACB gene was confirmed as the target of miR-384. Conclusion The study suggests that miR-384 serves as a tumor suppressor in PTC progression by directly targeting the 3′-UTR of PRKACB gene.
Collapse
|
31
|
Kong B, Li M, Gao B, Han B, Zhao W, Wang F. Retracted Article: Overexpression of circ_0034642 contributes to hypoxia-induced glycolysis, cell proliferation, migration and invasion in gliomas by facilitating TAGLN2 expression via sponging miR-625-5p. RSC Adv 2020; 10:897-908. [PMID: 35494452 PMCID: PMC9048227 DOI: 10.1039/c9ra08600e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022] Open
Abstract
Glioma is an aggressive brain cancer with poor prognosis and high invasiveness. Dysregulation of circular RNAs (circRNAs) has been widely discovered in various cancers, including glioma. However, the molecular mechanism of circ_0034642 in glioma is still unclear. The expression of circ_0034642, microRNA (miR)-625-5p and transgelin-2 (TAGLN2) in glioma tumors and cells was detected by performing a quantitative real-time polymerase chain reaction (qRT-PCR). The stability of circ_0034642 was determined by carrying out RNase R treatment. Cell proliferation was evaluated by performing the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Glycolysis was analyzed by measuring the extracellular acidification rate (ECAR) using glucose detection and lactic acid detection kits. Cell migration and invasion were determined by performing the transwell assay. Protein expression levels of the proteins hexokinase 2 (HK2), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9) and TAGLN2 were analyzed using western blots. The interaction between miR-625-5p and circ_0034642 or TAGLN2 was proved using a dual-luciferase reporter system. Animal models were established by subcutaneously injecting glioma cells stably transfected with sh-NC or sh-circ_0034642. Circ_0034642 and TAGLN2 were overexpressed whereas miR-625-5p was expressed at low levels in glioma tumors and cells. Moreover, circ_0034642 and TAGLN2 were upregulated while miR-625-5p was downregulated under hypoxic conditions in a time-dependent manner. Next, elimination of circ_0034642 was shown to inhibit cell glycolysis, proliferation, migration and invasion under hypoxic conditions in gliomas. Then, we found that circ_0034642 acted as a “sponge” of miR-625-5p while TAGLN2 acted as a target of miR-625-5p. In addition, recovery of circ_0034642 attenuated the repression mediated by miR-625-5p on glioma cell glycolysis and progression under hypoxic conditions. Meanwhile, an inhibitor of miR-625-5p alleviated TAGLN2 deficiency-induced inhibition of glioma cell development under hypoxic conditions. We also discovered that circ_0034642 could interact with miR-625-5p and further alter the expression of TAGLN2. Lastly, a circ_0034642 knockdown hindered tumor growth in vivo by regulating the miR-625-5p/TAGLN2 axis. Enhanced expression of circ_0034642 was found to promote cell glycolysis, proliferation, migration and invasion under hypoxic conditions in gliomas by sponging miR-625-5p to improve TAGLN2 expression, providing prospective biomarkers for the diagnosis of glioma. Circ_0034642 was upregulated under hypoxic conditions in gliomas.![]()
Collapse
Affiliation(s)
- Bo Kong
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| | - Mingxuan Li
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| | - Bo Gao
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| | - Bin Han
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| | - Wanju Zhao
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| | - Fujun Wang
- Department of Neurosurgery
- Affiliated Hospital of Jining Medical University
- Jining
- China
| |
Collapse
|
32
|
Li Y, Dong W, Yang H, Xiao G. Propofol suppresses proliferation and metastasis of colorectal cancer cells by regulating miR-124-3p.1/AKT3. Biotechnol Lett 2020; 42:493-504. [PMID: 31894425 DOI: 10.1007/s10529-019-02787-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Propofol, an extensively used intravenous anesthetic agents during cancer resection surgery, has been confirmed to execute anti-tumor effect on multiple cancers, including colorectal cancer (CRC). Although the role of propofol in CRC has been previously reported, its action mechanism remains poorly understood. This study further explored the biological function and underlying mechanism of propofol in CRC cells. METHODS The cell proliferation, migration and invasion were assessed by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, wound healing assay and transwell assay, respectively. The expression levels microRNA-124-3p.1 (miR-124-3p.1) and AKT serine/threonine kinase 3 (AKT3) was analyzed by quantitative real-time polymerase chain reaction. Western blot assay was employed to measure the protein expression of MMP-9, Vimentin and Cyclin D1. The interaction between miR-124-3p.1 and AKT3 was predicted by TargetScan and confirmed by dual-luciferase reporter assay. RESULTS Propofol inhibited CRC cell proliferation, migration and invasion. Knockdown of miR-124-3p.1 or AKT3 upregulation reversed the inhibitory effects of propofol on CRC cell proliferation and metastasis. Besides, AKT3 was a direct target of miR-124-3p.1 and its overexpression abated the anti-tumor effect of miR-124-3p.1 on CRC cell proliferation and metastasis. CONCLUSION Propofol inhibited CRC cell proliferation, migration and invasion by upregulating miR-124-3p.1 and downregulating AKT3, providing a new sight for propofol treatment of CRC.
Collapse
Affiliation(s)
- Yujin Li
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Jin Bi Road, Xishan District, Kunming, 650000, Yunnan, China
| | - Wangjun Dong
- Department of Anesthesiology, Yongping County People's Hospital, Dali, 672600, Yunnan, China
| | - Hao Yang
- Department of Anesthesiology, The Second People's Hospital of Kunming, Kunming, 650000, Yunnan, China
| | - Gaopeng Xiao
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Jin Bi Road, Xishan District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
33
|
Kang Y, Jia Y, Wang Q, Zhao Q, Song M, Ni R, Wang J. Long Noncoding RNA KCNQ1OT1 Promotes the Progression of Non-Small Cell Lung Cancer via Regulating miR-204-5p/ATG3 Axis. Onco Targets Ther 2019; 12:10787-10797. [PMID: 31849486 PMCID: PMC6911321 DOI: 10.2147/ott.s226044] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose Non-small cell lung cancer (NSCLC) is the first leading cause of cancer-related death globally. Long noncoding RNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) was involved in the progression of multiple cancers by sponging target miRNA. We aimed to explore the pathological mechanism of KCNQ1OT1 in NSCLC progression. Methods The expression of KCNQ1OT1, miR-204-5p and autophagy-related gene 3 (ATG3) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry assay were conducted for the detection of cell proliferation and apoptosis, respectively. Western blot assay was performed to examine the protein levels of B-cell lymphoma-2 (BCL-2), BCL2-Associated X (Bax), cleaved caspase-3, cleaved caspase-9 and LC3Ⅱ/LC3Ⅰ and P62. The interaction between miR-204-5p and KCNQ1OT1 or ATG3 was validated by dual-luciferase reporter system and RNA immunoprecipitation (RIP) assay. Murine xenograft assay was conducted to explore the function of KCNQ1OT1 in vivo. Immunohistochemistry (IHC) staining assay was used for the analysis of ki67-positive cell percentage. Results The expression of KCNQ1OT1 and ATG3 was up-regulated whereas miR-204-5p was down-regulated in NSCLC tumors and cells. MiR-204-5p was inversely correlated with KCNQ1OT1 or ATG3. In addition, KCNQ1OT1 knockdown facilitated apoptosis, inhibited autophagy and proliferation of NSCLC cells in vitro and blocked tumor growth in vivo. However, the miR-204-5p inhibitor reversed the effects. More importantly, ATG3 was a target gene of miR-204-5p and ATG3 overexpression restored the effect of miR-204-5p on NSCLC cell progression. Conclusion KCNQ1OT1 promotes cell proliferation and autophagy and inhibits cell apoptosis via regulating miR-204-5p/ATG3 axis, providing a promising target for NSCLC therapy.
Collapse
Affiliation(s)
- Yan Kang
- Department Two of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaoli Jia
- Department of Respiratory Medicine, Xuchang Central Hospital, Xuchang, Henan, People's Republic of China
| | - Qilong Wang
- Department Two of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qianru Zhao
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Meng Song
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ran Ni
- Department Two of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jing Wang
- Department Two of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
34
|
Han J, Liu Y, Zhen F, Yuan W, Zhang W, Song X, Dong F, Yao R, Qu X. STAT3 Regulates miR-384 Transcription During Th17 Polarization. Front Cell Dev Biol 2019; 7:253. [PMID: 31737624 PMCID: PMC6838002 DOI: 10.3389/fcell.2019.00253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are powerful regulators of gene expression in physiological and pathological conditions. We previously showed that the dysregulation of miR-384 resulted in a T helper cell 17 (Th17) imbalance and contributed to the pathogenesis of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. In this study, we evaluated the molecular mechanisms underlying the abnormal increase in miR-384. We did not detect typical CpG islands in the Mir384 promoter. Based on a bioinformatics analysis of the promoter, we identified three conserved transcription factor binding regions (RI, RII, and RIII), two of which (RII and RIII) were cis-regulatory elements. Furthermore, we showed that signal transducer and activator of transcription 3 (STAT3) bound to specific sites in RII and RIII based on chromatin immunoprecipitation, electrophoretic mobility shift assays, and site-specific mutagenesis. During Th17 polarization in vitro, STAT3 activation up-regulated miR-384, while a STAT3 phosphorylation inhibitor decreased miR-384 levels and reduced the percentage of IL-17+ cells, IL-17 secretion, and expression of the Th17 lineage marker Rorγt. Moreover, the simultaneous inhibition of STAT3 and miR-384 could further block Th17 polarization. These results indicate that STAT3, rather than DNA methylation, contributes to the regulation of miR-384 during Th17 polarization.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yaping Liu
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Fei Zhen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Wen Yuan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Wei Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xiaotao Song
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
35
|
Yang Y, Wu F, Zhang J, Sun R, Li F, Li Y, Chang S, Wang L, Wang X, Liu L, Huang C. EGR1 interacts with DNMT3L to inhibit the transcription of miR-195 and plays an anti-apoptotic role in the development of gastric cancer. J Cell Mol Med 2019; 23:7372-7381. [PMID: 31515938 PMCID: PMC6815817 DOI: 10.1111/jcmm.14597] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
EGR1 regulates the expression of its downstream target genes and may exert different biological effects in different tumours. We found that the expression of EGR1 was increased in gastric cancer (GC), and silencing the expression of EGR1 promoted the apoptosis of GC cells. Moreover, overexpression of EGR1 repressed the apoptosis of GC cells. Bioinformatics analysis showed that EGR1 had binding sites at the upstream promoter region of miR‐195; ChIP assays were applied to determine EGR1 occupancy of the miR‐195 promoter. The RT‐PCR results showed that EGR1 suppressed the expression of miR‐195. The mechanism by which EGR1 acts as a transcriptional repressor is still unclear. Bioinformatics analysis showed that EGR1 may interact with DNMT3L. We confirmed that EGR1 and DNMT3L formed a complex, and EGR1 was an important player in the transcriptional control of miR‐195. Overexpression of miR‐195 inhibited proliferation and promoted apoptosis in GC cells. We found a well‐matched miR‐195 binding site at the AKT3 3′‐UTR. Double luciferase reporter assays showed that AKT3 was a target of miR‐195, and silencing AKT3 repressed cell proliferation and promoted apoptosis. Our results indicated EGR1 may interact with DNMT3L to inhibit the miR‐195‐AKT3 axis and regulate the GC cell apoptosis.
Collapse
Affiliation(s)
- Yang Yang
- School of Public Health, Xi'anJiaotong University Health Science Center, Xi'an, China
| | - Fei Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi, China
| | - Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yulong Li
- Department of gastroenterology, Shaanxi provincial people's hospital, Xi'an, China
| | - Su'e Chang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lumin Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Liying Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'anJiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Wang L, Su K, Wu H, Li J, Song D. LncRNA SNHG3 regulates laryngeal carcinoma proliferation and migration by modulating the miR-384/WEE1 axis. Life Sci 2019; 232:116597. [DOI: 10.1016/j.lfs.2019.116597] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
|