1
|
Fang X, Huang X, Liu W, Lv W, Ying Y, Huang J. Overexpression of FMOD in Thyroid Carcinoma Triggers M1-Like Tumor-Associated Macrophage Polarization by Targeting Rap1B. FASEB J 2025; 39:e70581. [PMID: 40297936 DOI: 10.1096/fj.202403290rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Thyroid carcinoma, with limited efficacy of current treatment, influences the lives and health of many people. It is important to explore potential therapeutic targets for thyroid carcinoma. Fibromodulin (FMOD) has been indicated to be connected with the progression of different kinds of tumors, with unknown functions in thyroid carcinoma. In this study, the potential candidate therapeutic targets for thyroid carcinoma were identified by bioinformatics methods, and FMOD was screened out for verification. Cell counting kit-8, wound healing, transwell, and flow cytometry assays were conducted to determine the role of FMOD overexpression in cell viability, migration, invasion, and apoptotic rate of thyroid carcinoma cells, respectively. Subcutaneous tumor growth was monitored in nude mice. Tumor-associated macrophages (TAMs) were co-cultured with thyroid carcinoma cells, and the surface marker of M1-like TAMs, CD80, was identified by flow cytometry. Ras-association proximate 1B (Rap1B), the downstream target of FMOD, was predicted by bioinformatic techniques and validated by Rap1B overexpression rescue. FMOD was identified as a tumor suppressor gene in thyroid carcinoma through bioinformatic techniques. FMOD overexpression inhibited cell viability, migration, and invasion and stimulated apoptosis of thyroid carcinoma cells. In vivo, FMOD upregulation could suppress the growth of solid tumors. Moreover, FMOD overexpression in thyroid carcinoma cells promoted M1-like TAM polarization. FMOD downregulated Rap1B expression in thyroid carcinoma cells, and Rap1B overexpression rescue reversed the impact of FMOD on tumor progression and TAM polarization. In conclusion, FMOD exhibited an inhibitory effect on thyroid carcinoma by stimulating M1-like TAM polarization via targeting Rap1B.
Collapse
Affiliation(s)
- Xiangnan Fang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xuemei Huang
- Department of Endocrinology and Metabolism, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenfeng Liu
- Department of Endocrinology and Metabolism, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weiming Lv
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yong Ying
- Department of Thyroid Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinchang Huang
- Department of Pathology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Li Y, Chen H, Zhang H, Lin Z, Song L, Zhao C. Identification of oxidative stress-related biomarkers in uterine leiomyoma: a transcriptome-combined Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1373011. [PMID: 39640883 PMCID: PMC11617171 DOI: 10.3389/fendo.2024.1373011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background Oxidative stress has been implicated in the pathogenesis of uterine leiomyoma (ULM) with an increasing incidence. This study aimed to identify potential oxidative stress-related biomarkers in ULM using transcriptome data integrated with Mendelian randomization (MR) analysis. Methods Data from GSE64763 and GSE31699 in the Gene Expression Omnibus (GEO) were included in the analysis. Oxidative stress-related genes (OSRGs) were identified, and the intersection of differentially expressed genes (DEGs), Weighted Gene Co-expression Network Analysis (WGCNA) genes, and OSRGs was used to derive differentially expressed oxidative stress-related genes (DE-OSRGs). Biomarkers were subsequently identified via MR analysis, followed by Gene Set Enrichment Analysis (GSEA) and immune infiltration analysis. Nomograms, regulatory networks, and gene-drug interaction networks were constructed based on the identified biomarkers. Results A total of 883 DEGs were identified between ULM and control samples, from which 42 DE-OSRGs were screened. MR analysis revealed four biomarkers: ANXA1, CD36, MICB, and PRDX6. Predictive nomograms were generated based on these biomarkers. ANXA1, CD36, and MICB were significantly enriched in chemokine signaling and other pathways. Notably, ANXA1 showed strong associations with follicular helper T cells, resting mast cells, and M0 macrophages. CD36 was positively correlated with resting mast cells, while MICB was negatively correlated with macrophages. Additionally, ANXA1 displayed strong binding energy with amcinonide, and MICB with ribavirin. Conclusion This study identified oxidative stress-related biomarkers (ANXA1, CD36, MICB, and PRDX6) in ULM through transcriptomic and MR analysis, providing valuable insights for ULM therapeutic research.
Collapse
Affiliation(s)
- Yingxiao Li
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Haoyue Chen
- Department of Rehabilitation Medical Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Hao Zhang
- Department of Rehabilitation Medical Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Zhaochen Lin
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Liang Song
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Chuanliang Zhao
- Department of Orthopedics, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, Shandong, China
- Medical Integration and Practice Center, Shandong University School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Hong J, Jin HJ, Choi MR, Lim DWT, Park JE, Kim YS, Lim SB. Matrisomics: Beyond the extracellular matrix for unveiling tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189178. [PMID: 39241895 DOI: 10.1016/j.bbcan.2024.189178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The matrisome, a group of proteins constituting or interacting with the extracellular matrix (ECM), has garnered attention as a potent regulator of cancer progression. An increasing number of studies have focused on cancer matrisome utilizing diverse -omics approaches. Here, we present diverse patterns of matrisomal populations within cancer tissues, exploring recent -omics studies spanning different '-omics' levels (epigenomics, genomics, transcriptomics, and proteomics), as well as newly developed sequencing techniques such as single-cell RNA sequencing and spatial transcriptomics. Some matrisome genes showed uniform patterns of upregulated or downregulated expression across various cancers, while others displayed different expression patterns according to the cancer types. This matrisomal dysregulation in cancer was further examined according to their originating cell type and spatial location in the tumor tissue. Experimental studies were also collected to demonstrate the identified roles of matrisome genes during cancer progression. Interestingly, many studies on cancer matrisome have suggested matrisome genes as effective biomarkers in cancer research. Although the specific mechanisms and clinical applications of cancer matrisome have not yet been fully elucidated, recent techniques and analyses on cancer matrisomics have emphasized their biological importance in cancer progression and their clinical implications in deciding the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Jiwon Hong
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Hyo Joon Jin
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Mi Ran Choi
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre, Singapore 168583, Singapore
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
4
|
Han X, Zhou H, Ge X, Hou L, Li H, Zhang D, Wang Y, Xue X. Identification of an Immune signature assisted prognosis, and immunotherapy prediction for IDH wildtype glioblastoma. J Cancer 2024; 15:6452-6467. [PMID: 39513108 PMCID: PMC11540507 DOI: 10.7150/jca.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
IDH-wildtype glioblastoma (GBM) is the most common and malignant primary brain tumor. The purpose of this study is to establish a prognostic gene signature for IDH-wildtype GBM. RNA sequencing data of normal brain tissue and GBM patients were obtained from TCGA, CGGA, GEO and the GTEx databases. Identification of prognostic differentially expressed genes (DEGs) with | log2 fold change | > 0.5 and adjust p < 0.05 in TCGA and CGGA databases by "limma" method. By LASSO regression analysis and multivariate Cox analysis, a 3-gene prognostic signature composed of FMOD, MXRA5 and RAB36 was established. The 3-gene prognostic risk model is validated by TCGA and GSE43378 datasets. The expression of FMOD, MXRA5 and RAB36 in GBM patients was significantly higher than that in normal brain tissues in CCGA, TCGA and GSE29796 data sets. In order to further verify this result, total RNA was extracted from tumors and paracancerous tissues of 9 GBM patients. RT-PCR results showed that the expression of FMOD, MXRA5 and RAB36 in tumor tissues of most patients was higher than that in paracancerous tissues. The results of GSEA showed that the pathway enrichment of the 3-gene signature was mainly related to tumor immunity. Immune cell infiltration analyzed by ssGSEA showed that there were significant differences in macrophages between high- and low-risk groups. Immune checkpoint genes correlation analysis showed that PD-L1 gene expression is closely related to risk score. Our study identifies a prognostic-associated risk model and provides a potential effective immunotherapy target for IDH-wildtype GBM patients.
Collapse
Affiliation(s)
- Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiaohui Ge
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Liubing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Dongdong Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Yu Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
5
|
He JY, Li ZM, Chen YT, Zhao BH, Yu C. Development and validation of a prognostic prediction model for cervical cancer patients treated with radical radiotherapy: a study based on TCGA database. Transl Cancer Res 2024; 13:1721-1736. [PMID: 38737688 PMCID: PMC11082820 DOI: 10.21037/tcr-23-1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/22/2024] [Indexed: 05/14/2024]
Abstract
Background Radiotherapy or concurrent chemoradiotherapy is the standard treatment for patients with locally advanced or inoperable cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, treatment failure for CESC patients treated with radical radiotherapy still occurs due to local recurrence and distant metastasis. The previous prediction models were focused on all CESC patients, neglecting the prognostic differences under different treatment modalities. Therefore, there is a pressing demand to explore novel biomarkers for the prognosis and sensitivity of radiotherapy in CESC patients treated with radical radiotherapy. As a single biomarker has limited effect in stratifying these patients, our objective was to identify radioresponse-related mRNAs to ameliorate forecast of the prognosis for CESC patients treated with radical radiotherapy. Methods Sample data on CESC patients treated with radical radiotherapy were obtained from The Cancer Genome Atlas (TCGA) database. We randomly separated these patients into a training and test cohorts using a 1:1 ratio. Differential expression analysis was carried out to identify radioresponse-related mRNA sets that were significantly dysregulated between complete response (CR) and radiographic progressive disease (RPD) groups, and univariate Cox regression analyses, least absolute shrinkage and selection operator (LASSO) method and multivariate Cox regression were performed to identify the radioresponse-related signature in the training cohort. we adopted survival analysis to measure the predictive value of the radioresponse-related signature both in the test and entire cohorts. Moreover, we developed a novel nomogram to predict the overall survival (OS) of CESC patients treated with radical radiotherapy. In addition, immune infiltration analysis and Gene Set Enrichment Analysis (GSEA) were conducted to preliminarily explore possible mechanisms. Results This study included a total of 92 CESC patients subjected to radical radiotherapy. We developed and verified a risk score model based on radioresponse-related mRNA. The radioresponse-related mRNA signature and International Federation of Gynecology and Obstetrics (FIGO) stage were served as independent prognostic factors for CESC patients treated with radical radiotherapy. Moreover, a nomogram integrating radioresponse-related mRNA signature with FIGO stage was established to perform better for predicting 1-, 3-, and 5-year survival rates. Mechanically, the low-risk group under the risk score of this model had a better survival status, and the distribution of CD4 T cells was potentially involved in the regulation of radiotherapy response in CESC, leading to a better survival outcome in the low-risk group. Conclusions This study presents a new radioresponse-related mRNA signature that shows promising clinical efficacy in predicting the prognosis of CESC patients treated with radical radiotherapy.
Collapse
Affiliation(s)
- Jun-Yan He
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Min Li
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ya-Ting Chen
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bi-Huan Zhao
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chang Yu
- Preventive Medicine Clinic, Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| |
Collapse
|
6
|
Xu W, Goreczny GJ, Forsythe I, Brennan G, Stowell T, Brock K, Capella B, Turner CE. Hic-5 regulates extracellular matrix-associated gene expression and cytokine secretion in cancer associated fibroblasts. Exp Cell Res 2024; 435:113930. [PMID: 38237846 PMCID: PMC10923124 DOI: 10.1016/j.yexcr.2024.113930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The focal adhesion protein, Hic-5 plays a key role in promoting extracellular matrix deposition and remodeling by cancer associated fibroblasts within the tumor stroma to promote breast tumor cell invasion. However, whether stromal matrix gene expression is regulated by Hic-5 is still unknown. Utilizing a constitutive Hic-5 knockout, Mouse Mammary Tumor Virus-Polyoma Middle T-Antigen spontaneous breast tumor mouse model, bulk RNAseq analysis was performed on cancer associated fibroblasts isolated from Hic-5 knockout mammary tumors. Functional network analysis highlighted a key role for Hic-5 in extracellular matrix organization, with both structural matrix genes, as well as matrix remodeling genes being differentially expressed in relation to Hic-5 expression. The subcellular distribution of the MRTF-A transcription factor and expression of a subset of MRTF-A responsive genes was also impacted by Hic-5 expression. Additionally, cytokine array analysis of conditioned media from the Hic-5 and Hic-5 knockout cancer associated fibroblasts revealed that Hic-5 is important for the secretion of several key factors that are associated with matrix remodeling, angiogenesis and immune evasion. Together, these data provide further evidence of a central role for Hic-5 expression in cancer associated fibroblasts in regulating the composition and organization of the tumor stroma microenvironment to promote breast tumor progression.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Jnana Therapeutics, Boston, MA, USA
| | - Ian Forsythe
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Zymo Research Corp, Huntington Beach, CA, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Theresa Stowell
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Benjamin Capella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
7
|
Xia L, Zhang T, Yao J, Lu K, Hu Z, Gu X, Chen Y, Qin S, Leng W. Fibromodulin overexpression drives oral squamous cell carcinoma via activating downstream EGFR signaling. iScience 2023; 26:108201. [PMID: 37965134 PMCID: PMC10641260 DOI: 10.1016/j.isci.2023.108201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence has shown that fibromodulin (FMOD) plays a pivotal role in tumorigenesis and metastasis. However, the biological function of FMOD in oral squamous cell carcinoma (OSCC) remains largely unclear to date. In this study, we confirmed that FMOD was overexpressed and showed a significant association with malignant progression and lymph node metastasis in OSCC. Depletion of FMOD inhibited OSCC proliferation and metastasis in vitro and in vivo. RNA sequencing, western blotting, and rescue assays verified that FMOD exerted oncogenic roles in OSCC via activation of EGFR signaling. In addition, FMOD was proved to be a putative target gene of miR-338-3p. Taken together, FMOD overexpression due to the reduced level of miR-338-3p promotes OSCC by activating EGFR signaling. Our findings provide direct evidence that targeting FMOD could be a promising therapeutic strategy for OSCC patients.
Collapse
Affiliation(s)
- Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, P.R. China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, P.R. China
| | - Tianshu Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, P.R. China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, P.R. China
| | - Juncheng Yao
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, P.R. China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, P.R. China
| | - Kaitian Lu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, P.R. China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, P.R. China
| | - Ziqiu Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, P.R. China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, P.R. China
| | - Xinsheng Gu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yongji Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, P.R. China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, P.R. China
| |
Collapse
|
8
|
Liang Y, Zhou Y, Wang J, He Y. Downregulation of fibromodulin attenuates inflammatory signaling and atrial fibrosis in spontaneously hypertensive rats with atrial fibrillation via inhibiting TLR4/NLRP3 signaling pathway. Immun Inflamm Dis 2023; 11:e1003. [PMID: 37904680 PMCID: PMC10604567 DOI: 10.1002/iid3.1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/05/2023] [Accepted: 08/19/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Myocardial fibrosis is an important factor in the induction and maintenance of atrial fibrillation (AF). Fibromodulin (FMOD) promotes fibrotic gene expression. However, its specific role in spontaneously hypertensive rats (SHR)-AF remains unclear. METHODS We analyzed FMOD mRNA and protein expression in rat atrial tissues using RT-qPCR, Western blot analysis, and immunohistochemistry. Histopathological examination of atrial tissues was performed using hematoxylin and eosin (H&E), Masson's trichrome, and Picrosirius red staining. The levels of inflammatory and fibrosis-related proteins were measured using Western blot analysis. RESULTS FMOD relative mRNA and protein expression levels were notably upregulated in atrial tissues of both AF groups (normal-AF and SHR-AF groups) than that in atrial tissues of the no-AF group (normal and SHR group). This effect was particularly pronounced in the SHR-AF group. Pathological changes revealed that the extracellular matrix, collagen, collagen fibers, and left atrial diameter were notably increased in the atrial tissues from the SHR-AF group compared to those in the atrial tissues from the SHR group, whereas the left ventricular fractional shortening and left ventricular ejection fraction were notably lower. Expression of TLR4, MyD88, NLRP3, TGF-β1, collagen I, and collagen II mRNA were clearly higher in atrial tissues from the SHR-AF group than in those from the SHR group. Protein levels of TLR4, MyD88, NLRP3, Cleavage-Caspase-1, Cleavage-IL-1β, TGF-β1, p-Smad2, collagen I, and collagen II were clearly higher in atrial tissues from the SHR-AF group than in those from the SHR group. FMOD knockdown inhibited atrial fibrosis, collagen accumulation, and the TLR4/MyD88/NLRP3 signaling pathway. CONCLUSION Downregulation of FMOD attenuated inflammatory signaling and atrial fibrosis in SHR-AF by inhibiting the TLR4/NLRP3 signaling pathway. Therefore, FMOD may be a promising therapeutic target in AF.
Collapse
Affiliation(s)
- Yuming Liang
- Department of CardiologyJiangbin Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yun Zhou
- Department of CardiologyJiangbin Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jialin Wang
- Health Management CenterThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yan He
- Department of Geriatrics CardiologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
9
|
Samaržija I, Konjevoda P. Extracellular Matrix- and Integrin Adhesion Complexes-Related Genes in the Prognosis of Prostate Cancer Patients' Progression-Free Survival. Biomedicines 2023; 11:2006. [PMID: 37509645 PMCID: PMC10377098 DOI: 10.3390/biomedicines11072006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is a heterogeneous disease, and one of the main obstacles in its management is the inability to foresee its course. Therefore, novel biomarkers are needed that will guide the treatment options. The extracellular matrix (ECM) is an important part of the tumor microenvironment that largely influences cell behavior. ECM components are ligands for integrin receptors which are involved in every step of tumor progression. An underlying characteristic of integrin activation and ligation is the formation of integrin adhesion complexes (IACs), intracellular structures that carry information conveyed by integrins. By using The Cancer Genome Atlas data, we show that the expression of ECM- and IACs-related genes is changed in prostate cancer. Moreover, machine learning methods revealed that they are a source of biomarkers for progression-free survival of patients that are stratified according to the Gleason score. Namely, low expression of FMOD and high expression of PTPN2 genes are associated with worse survival of patients with a Gleason score lower than 9. The FMOD gene encodes protein that may play a role in the assembly of the ECM and the PTPN2 gene product is a protein tyrosine phosphatase activated by integrins. Our results suggest potential biomarkers of prostate cancer progression.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
11
|
Luan Y, Wu S, Wang M, Pu Y, Zhao Q, Ma Y, Jiang L, He X. Identification of Critical Genes for Ovine Horn Development Based on Transcriptome during the Embryonic Period. BIOLOGY 2023; 12:biology12040591. [PMID: 37106791 PMCID: PMC10136283 DOI: 10.3390/biology12040591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Horns, also known as headgear, are a unique structure of ruminants. As ruminants are globally distributed, the study of horn formation is critical not only for increasing our understanding of natural and sexual selection but also for the breeding of polled sheep breeds to facilitate modern sheep farming. Despite this, a significant number of the underlying genetic pathways in sheep horn remain unclear. In this study, to clarify the gene expression profile of horn buds and investigate the key genes in horn bud formation, RNA-sequencing (RNA-seq) technology was utilized to investigate differential gene expression in the horn buds and adjacent forehead skin of Altay sheep fetuses. There were only 68 differentially expressed genes (DEGs) identified, consisting of 58 up-regulated genes and 10 down-regulated genes. RXFP2 was differentially up-regulated in the horn buds and had the highest significance (p-value = 7.42 × 10-14). In addition, 32 DEGs were horn-related genes identified in previous studies, such as RXFP2, FOXL2, SFRP4, SFRP2, KRT1, KRT10, WNT7B, and WNT3. Further, Gene Ontology (GO) analysis showed that the DEGs were mainly enriched with regard to growth, development, and cell differentiation. Pathway analysis revealed that the Wnt signaling pathway may be responsible for horn development. Further, through combining the protein-protein interaction networks of the DEGs, it was found that the top five hub genes, namely, ACAN, SFRP2, SFRP4, WNT3, and WNT7B, were also associated with horn development. Our results suggest that only a few key genes, including RXFP2, are involved in bud formation. This study not only validates the expression of candidate genes identified at the transcriptome level in previous studies but also provides new possible marker genes for horn development, which may promote our understanding of the genetic mechanisms of horn formation.
Collapse
Affiliation(s)
- Yuanyuan Luan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shangjie Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Mingkun Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yabin Pu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Qianjun Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuehui Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lin Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaohong He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
12
|
Kotsaris G, Qazi TH, Bucher CH, Zahid H, Pöhle-Kronawitter S, Ugorets V, Jarassier W, Börno S, Timmermann B, Giesecke-Thiel C, Economides AN, Le Grand F, Vallecillo-García P, Knaus P, Geissler S, Stricker S. Odd skipped-related 1 controls the pro-regenerative response of fibro-adipogenic progenitors. NPJ Regen Med 2023; 8:19. [PMID: 37019910 PMCID: PMC10076435 DOI: 10.1038/s41536-023-00291-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Skeletal muscle regeneration requires the coordinated interplay of diverse tissue-resident- and infiltrating cells. Fibro-adipogenic progenitors (FAPs) are an interstitial cell population that provides a beneficial microenvironment for muscle stem cells (MuSCs) during muscle regeneration. Here we show that the transcription factor Osr1 is essential for FAPs to communicate with MuSCs and infiltrating macrophages, thus coordinating muscle regeneration. Conditional inactivation of Osr1 impaired muscle regeneration with reduced myofiber growth and formation of excessive fibrotic tissue with reduced stiffness. Osr1-deficient FAPs acquired a fibrogenic identity with altered matrix secretion and cytokine expression resulting in impaired MuSC viability, expansion and differentiation. Immune cell profiling suggested a novel role for Osr1-FAPs in macrophage polarization. In vitro analysis suggested that increased TGFβ signaling and altered matrix deposition by Osr1-deficient FAPs actively suppressed regenerative myogenesis. In conclusion, we show that Osr1 is central to FAP function orchestrating key regenerative events such as inflammation, matrix secretion and myogenesis.
Collapse
Affiliation(s)
- Georgios Kotsaris
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Taimoor H Qazi
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Bioengineering, University of Pennsylvania, 19104, Philadelphia, USA
- Weldon School of Biomedical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Christian H Bucher
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Hafsa Zahid
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- International Max Planck Research School for Biology and Computing IMPRS-BAC, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Sophie Pöhle-Kronawitter
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Vladimir Ugorets
- Institute of Chemistry and Biochemistry, Cell Signaling Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - William Jarassier
- Institut NeuroMyoGène, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Stefan Börno
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | | | | | - Fabien Le Grand
- Institut NeuroMyoGène, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Pedro Vallecillo-García
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Petra Knaus
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Institute of Chemistry and Biochemistry, Cell Signaling Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
- Berlin Center for Advanced Therapies (BECAT), Charité Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
13
|
Li Z, Fu Y, Hu Y, Zhu Y, Hu L, Shi C, Zhang Y, Zhang J, Zhou S. Low-dose arecoline regulates distinct core signaling pathways in oral submucous fibrosis and oral squamous cell carcinoma. BMC Oral Health 2023; 23:171. [PMID: 36966276 PMCID: PMC10039525 DOI: 10.1186/s12903-023-02887-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Betel nut chewing plays a role in the pathogenesis of oral submucous fibrosis (OSF) and oral squamous cell carcinoma (OSCC). As the major active ingredient of the betel nut, the effect of arecoline and its underlying mechanism to OSF and OSCC pathogenesis remain unclear. METHODS Next-generation sequencing-based transcriptome and dRRBS analysis were performed on OSF and OSCC cells under low-dose arecoline exposure. Functional analyses were performed to compare the different roles of arecoline during OSF and OSCC pathogenesis, and key genes were identified. RESULTS In this study, we identified that low-dose arecoline promoted cell proliferation of both NFs and OSCC cells via the acceleration of cell cycle progression, while high-dose arecoline was cytotoxic to both NFs and OSCC cells. We performed for the first time the transcriptome and methylome landscapes of NFs and OSCC cells under low-dose arecoline exposure. We found distinct transcriptome and methylome profiles mediated by low-dose arecoline in OSF and OSCC cells, as well as specific genes and signaling pathways associated with metabolic disorders induced by low-dose arecoline exposure. Additionally, low-dose arecoline displayed different functions at different stages, participating in the modulation of the extracellular matrix via Wnt signaling in NFs and epigenetic regulation in OSCC cells. After exposure to low-dose arecoline, the node roles of FMOD in NFs and histone gene clusters in OSCC cells were found. Meanwhile, some key methylated genes induced by arecoline were also identified, like PTPRM and FOXD3 in NFs, SALL3 and IRF8 in OSCC cells, indicating early molecular events mediated by arecoline during OSF and OSCC pathogenesis. CONCLUSIONS This study elucidated the contribution of low-dose arecoline to OSF and OSCC pathogenesis and identified key molecular events that could be targeted for further functional studies and their potential as biomarkers.
Collapse
Affiliation(s)
- Zhenming Li
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - You Fu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yuhua Hu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Longwei Hu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chaoji Shi
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yi Zhang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jianjun Zhang
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Shanghui Zhou
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
14
|
A Novel Fibromodulin Antagonist Peptide RP4 Exerts Antitumor Effects on Colorectal Cancer. Pharmaceutics 2023; 15:pharmaceutics15030944. [PMID: 36986805 PMCID: PMC10053243 DOI: 10.3390/pharmaceutics15030944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Colorectal cancer (CRC) is the leading cause of cancer-related deaths worldwide. Fibromodulin (FMOD) is the main proteoglycan that contributes to extracellular matrix (ECM) remodeling by binding to matrix molecules, thereby playing an essential role in tumor growth and metastasis. There are still no useful drugs that target FMOD for CRC treatment in clinics. Here, we first used public whole-genome expression datasets to analyze the expression level of FMOD in CRC and found that FMOD was upregulated in CRC and associated with poor patient prognosis. We then used the Ph.D.-12 phage display peptide library to obtain a novel FMOD antagonist peptide, named RP4, and tested its anti-cancer effects of RP4 in vitro and in vivo. These results showed that RP4 inhibited CRC cell growth and metastasis, and promoted apoptosis both in vitro and in vivo by binding to FMOD. In addition, RP4 treatment affected the CRC-associated immune microenvironment in a tumor model by promoting cytotoxic CD8+ T and NKT (natural killer T) cells and inhibiting CD25+ Foxp3+ Treg cells. Mechanistically, RP4 exerted anti-tumor effects by blocking the Akt and Wnt/β-catenin signaling pathways. This study implies that FMOD is a potential target for CRC treatment, and the novel FMOD antagonist peptide RP4 can be developed as a clinical drug for CRC treatment.
Collapse
|
15
|
Denervation during mandibular distraction osteogenesis results in impaired bone formation. Sci Rep 2023; 13:2097. [PMID: 36747028 PMCID: PMC9902545 DOI: 10.1038/s41598-023-27921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Mandibular distraction osteogenesis (DO) is mediated by skeletal stem cells (SSCs) in mice, which enact bone regeneration via neural crest re-activation. As peripheral nerves are essential to progenitor function during development and in response to injury, we questioned if denervation impairs mandibular DO. C57Bl6 mice were divided into two groups: DO with a segmental defect in the inferior alveolar nerve (IAN) at the time of mandibular osteotomy ("DO Den") and DO with IAN intact ("DO Inn"). DO Den demonstrated significantly reduced histological and radiological osteogenesis relative to DO Inn. Denervation preceding DO results in reduced SSC amplification and osteogenic potential in mice. Single cell RNA sequencing analysis revealed that there was a predominance of innervated SSCs in clusters dominated by pathways related to bone formation. A rare human patient specimen was also analyzed and suggested that histological, radiological, and transcriptional alterations seen in mouse DO may be conserved in the setting of denervated human mandible distraction. Fibromodulin (FMOD) transcriptional and protein expression were reduced in denervated relative to innervated mouse and human mandible regenerate. Finally, when exogenous FMOD was added to DO-Den and DO-Inn SSCs undergoing in vitro osteogenic differentiation, the osteogenic potential of DO-Den SSCs was increased in comparison to control untreated DO-Den SSCs, modeling the superior osteogenic potential of DO-Inn SSCs.
Collapse
|
16
|
Abstract
Fibromodulin (FMOD) is an archetypal member of the class II small leucine-rich proteoglycan family. By directly binding to extracellular matrix structural components, such as collagen and lysyl oxidase, FMOD regulates collagen cross-linking, packing, assembly, and fibril architecture via a multivalent interaction. Meanwhile, as a pluripotent molecule, FMOD acts as a ligand of various cytokines and growth factors, especially those belonging to the transforming growth factor (TGF) β superfamily, by interacting with the corresponding signaling molecules involved in cell adhesion, spreading, proliferation, migration, invasion, differentiation, and metastasis. Consequently, FMOD exhibits promigratory, proangiogenic, anti-inflammatory, and antifibrogenic properties and plays essential roles in cell fate determination and maturation, progenitor cell recruitment, and tissue regeneration. The multifunctional nature of FMOD thus enables it to be a promising therapeutic agent for a broad repertoire of diseases, including but not limited to arthritis, temporomandibular joint disorders, caries, and fibrotic diseases among different organs, as well as to be a regenerative medicine candidate for skin, muscle, and tendon injuries. Moreover, FMOD is also considered a marker for tumor diagnosis and prognosis prediction and a potential target for cancer treatment. Furthermore, FMOD itself is sufficient to reprogram somatic cells into a multipotent state, creating a safe and efficient cell source for various tissue reconstructions and thus opening a new avenue for regenerative medicine. This review focuses on the recent preclinical efforts bringing FMOD research and therapies to the forefront. In addition, a contemporary understanding of the mechanism underlying FMOD's function, particularly its interaction with TGFβ superfamily members, is also discussed at the molecular level to aid the discovery of novel FMOD-based treatments.
Collapse
Affiliation(s)
- Z. Zheng
- David Geffen School of Medicine,
University of California, Los Angeles, CA, USA
- School of Dentistry, University of
California, Los Angeles, CA, USA
| | - H.S. Granado
- Department of Orthodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C. Li
- Department of Orthodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Xu X, Zhang Y, Ha P, Chen Y, Li C, Yen E, Bai Y, Chen R, Wu BM, Da Lio A, Ting K, Soo C, Zheng Z. A novel injectable fibromodulin-releasing granular hydrogel for tendon healing and functional recovery. Bioeng Transl Med 2023; 8:e10355. [PMID: 36684085 PMCID: PMC9842059 DOI: 10.1002/btm2.10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/25/2023] Open
Abstract
A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yulong Zhang
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Pin Ha
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Chen
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chenshuang Li
- Department of OrthodonticsSchool of Dental Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emily Yen
- Arcadia High SchoolArcadiaCaliforniaUSA
| | - Yuxing Bai
- Department of OrthodonticsBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Renji Chen
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Benjamin M. Wu
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Andrew Da Lio
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Kang Ting
- Forsyth Research InstituteHarvard UniversityCambridgeMassachusettsUSA
- Samueli School of EngineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic SurgeryThe Orthopaedic Hospital Research Center, University of CaliforniaLos AngelesCaliforniaUSA
| | - Zhong Zheng
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
18
|
Kyriakopoulou K, Piperigkou Z, Tzaferi K, Karamanos NK. Trends in extracellular matrix biology. Mol Biol Rep 2023; 50:853-863. [PMID: 36342580 PMCID: PMC9884264 DOI: 10.1007/s11033-022-07931-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Extracellular matrixes (ECMs) are intricate 3-dimensional macromolecular networks of unique architectures with regulatory roles in cell morphology and functionality. As a dynamic native biomaterial, ECM undergoes constant but tightly controlled remodeling that is crucial for the maintenance of normal cellular behavior. Under pathological conditions like cancer, ECM remodeling ceases to be subjected to control resulting in disease initiation and progression. ECM is comprised of a staggering number of molecules that interact not only with one another, but also with neighboring cells via cell surface receptors. Such interactions, too many to tally, are of paramount importance for the identification of novel disease biomarkers and more personalized therapeutic intervention. Recent advances in big data analytics have allowed the development of online databases where researchers can take advantage of a stochastic evaluation of all the possible interactions and narrow them down to only those of interest for their study, respectively. This novel approach addresses the limitations that currently exist in studies, expands our understanding on ECM interactions, and has the potential to advance the development of targeted therapies. In this article we present the current trends in ECM biology research and highlight its importance in tissue integrity, the main interaction networks, ECM-mediated cell functional properties and issues related to pharmacological targeting.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
| | - Zoi Piperigkou
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 261 10, Patras, Greece
| | - Kyriaki Tzaferi
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
| | - Nikos K Karamanos
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece.
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 261 10, Patras, Greece.
| |
Collapse
|
19
|
Bizarre parosteal osteochondromatous proliferation in pediatric: A case report and literature review. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2022. [DOI: 10.1016/j.phoj.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Oria VO, Zhang H, Zito CR, Rane CK, Ma XY, Provance OK, Tran TT, Adeniran A, Kluger Y, Sznol M, Bosenberg MW, Kluger HM, Jilaveanu LB. Coupled fibromodulin and SOX2 signaling as a critical regulator of metastatic outgrowth in melanoma. Cell Mol Life Sci 2022; 79:377. [PMID: 35737114 PMCID: PMC9226089 DOI: 10.1007/s00018-022-04364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022]
Abstract
We aimed to study mechanisms controlling metastatic outgrowth of melanoma into clinically relevant lesions, a critical process responsible for the majority of melanoma deaths. To this end, we developed novel in vivo models and identified molecular events that can be ascribed to their distinct phenotypes, indolent or highly metastatic. Induction of a proliferative state at distant sites was associated with high levels of the stem-like/progenitor marker, SOX2, and required the upregulation of FMOD, an extracellular matrix component, which modulates tumor-stroma interactions. Functional studies revealed a possible link between FMOD and SOX2; dual FMOD and SOX2 silencing nearly abolished brain metastasis and had a similar effect on distant metastasis to other sites. Our in vitro data suggests that FMOD and SOX2 cooperation plays an important role in tumor vasculogenic mimicry. Furthermore, we found that FMOD and SOX2 functional roles might converge at the activation of transcriptional co-factors YAP and TAZ, possibly via crosstalk with the tumor suppressor Hippo pathway. Finally, high expression of both genes in patient specimens predicted early development of brain metastasis. Thus, our study identifies FMOD and SOX2 cooperation as a novel regulatory mechanism that might be linked functionally to melanoma metastatic competence.
Collapse
Affiliation(s)
- Victor O Oria
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Hongyi Zhang
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Christopher R Zito
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
- Department of Biology, School of Arts, Sciences, Business, and Education, University of Saint Joseph, West Hartford, CT, USA
| | - Chetan K Rane
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
| | - Xian-Yong Ma
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
| | - Olivia K Provance
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
| | - Thuy T Tran
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
| | - Adebowale Adeniran
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Sznol
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
| | - Marcus W Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Harriet M Kluger
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA
| | - Lucia B Jilaveanu
- Section of Medical Oncology, Department of Medicine, Yale University School of Medicine, 333 Cedar Street, SHM234E, New Haven, CT, 06520, USA.
| |
Collapse
|
21
|
Fibromodulin Gene Variants (FMOD) as Potential Biomarkers for Prostate Cancer and Benign Prostatic Hyperplasia. DISEASE MARKERS 2022; 2022:5215247. [PMID: 35686032 PMCID: PMC9173908 DOI: 10.1155/2022/5215247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
By the year 2050, the world's elderly population may increase exponentially, raising the rate of disease characteristic of this group, such as prostate cancer (PCa) and benign prostatic hyperplasia (BPH). Prostate disorders have a multifactorial etiology, especially age and genetic factors. Currently, PCa is the second most frequent neoplasm in the male population worldwide. The fibromodulin gene encodes a small leucine-rich proteoglycan (SLRP) which acts in the collagen fibrillogenesis pathway, cell adhesion, and modulation of TGF-β signaling pathways, which has been recently associated with PCa. The present study sequenced the coding region of the FMOD in a sample of 44 PCa, 90 BPH, and 82 controls from a Brazilian population, and the results identified 6 variants: 2 missenses (p.(Tyr42Ser) and p.(Pro24Ala)); 3 synonymous (p.(His253=), p.(Asn353=), and p.(Glu79=)); and 1 intronic (c.980-114A>G). Of these, p.(Tyr42Ser), p.(Pro24Ala), and p.(Asn353=) are rare variants, and p.(Tyr42Ser) was predicted as potential pathogenic by the algorithms used here, in addition to not being observed in controls, suggesting that may be a potential biomarker for development of PCa and BPH. In conclusion, we identified for the first time, in Brazilian individuals with PCa and BPH, a potentially pathogenic variant in the analysis of FMOD gene. Further studies are needed to investigate the deleterious effect of this variant on the structure and/or function of the FMOD protein.
Collapse
|
22
|
Riedl P, Schricker M, Pompe T. Stiffness Variation of 3D Collagen Networks by Surface Functionalization of Network Fibrils with Sulfonated Polymers. Gels 2021; 7:266. [PMID: 34940326 PMCID: PMC8702206 DOI: 10.3390/gels7040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Fibrillar collagen is the most prominent protein in the mammalian extracellular matrix. Therefore, it is also widely used for cell culture research and clinical therapy as a biomimetic 3D scaffold. Charged biopolymers, such as sulfated glycosaminoglycans, occur in vivo in close contact with collagen fibrils, affecting many functional properties such as mechanics and binding of growth factors. For in vitro application, the functions of sulfated biopolymer decorations of fibrillar collagen materials are hardly understood. Herein, we report new results on the stiffness dependence of 3D collagen I networks by surface functionalization of the network fibrils with synthetic sulfonated polymers, namely, poly(styrene sulfonate) (PSS) and poly(vinyl sulfonate) (PVS). A non-monotonic stiffness dependence on the amount of adsorbed polymer was found for both polymers. The stiffness dependence correlated to a transition from mono- to multilayer adsorption of sulfonated polymers on the fibrils, which was most prominent for PVS. PVS mono- and multilayers caused a network stiffness change by a factor of 0.3 and 2, respectively. A charge-dependent weakening of intrafibrillar salt bridges by the adsorbed sulfonated polymers leading to fibrillar softening is discussed as the mechanism for the stiffness decrease in the monolayer regime. In contrast, multilayer adsorption can be assumed to induce interfibrillar bridging and an increase in network stiffness. Our in vitro results have a strong implication on in vivo characteristics of fibrillar collagen I, as sulfated glycosaminoglycans frequently attach to collagen fibrils in various tissues, calling for an up to now overlooked impact on matrix and tendon mechanics.
Collapse
Affiliation(s)
| | | | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04103 Leipzig, Germany; (P.R.); (M.S.)
| |
Collapse
|
23
|
Deng L, Wang D, Chen S, Hu W, Zhang R. Epiphycan Predicts Poor Outcomes and Promotes Metastasis in Ovarian Cancer. Front Oncol 2021; 11:653782. [PMID: 34888227 PMCID: PMC8650094 DOI: 10.3389/fonc.2021.653782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The small leucine-rich proteoglycan (SLRP) family is widely expressed in extracellular matrix and aggravates tumor progression. However, epiphycan (EPYC), as a member of the SLRPs family, its biological function in cancer has not been confirmed. Thus, we aimed to clarify the role of EPYC in progression of ovarian cancer (OC), and further analyze the molecular mechanisms implicated in tumorigenesis. Here, we analyzed the differential expression genes of GSE38734, including 4 matched primary OC and metastatic tissues. We obtained OC RNAseqs data from the Cancer Genome Atlas (TCGA) and analyzed the correlation between EPYC expression and OC staging, pathological grading, etc. The expression of EPYC in OC and normal ovarian tissues was compared in Oncomine website. We used siRNAs to interfere the expression of EPYC in ovarian cancer cell line SKOV3. Scratch test, transwell-matrigel chamber, CCK8 assay were used to detect the changes of SKOV3 migration, invasion and proliferation ability after EPYC was interfered. We used R software to make GO and KEGG analysis of related genes of EPYC. We used the Hitpredict website to predict interacting proteins. The results showed that the expression of EPYC in metastatic ovarian cancer was higher than primary ovarian cancer, and that in primary cancer was higher than normal ovaries. After siRNA interferes with EPYC expression, the migration, invasion and proliferation of SKOV3 cells were weakened. EPYC mainly played a role in ECM organization, and involved in PI3K/Akt, focal adhesion signaling pathways. EPYC might interact with PLCG2 and CRK, and be involved in signal transduction.
Collapse
Affiliation(s)
- Lu Deng
- Department of Gynaecology, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dandan Wang
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Shouzhen Chen
- Department of Gynaecology, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
| | - Weiguo Hu
- Department of Gynaecology, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Han S, Wang J, Cui C, Yu C, Zhang Y, Li D, Ma M, Du H, Jiang X, Zhu Q, Yang C, Yin H. Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken. Poult Sci 2021; 101:101524. [PMID: 34784514 PMCID: PMC8591502 DOI: 10.1016/j.psj.2021.101524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Follicular atresia is an important cause of reproductive decline in egg-laying hens. Therefore, a better understanding of the regulation mechanism of follicle atresia in poultry is an important measure to maintain persistent high egg performance. However, how the role of the regulatory relationship between autophagy and apoptosis in the intrafollicular environment affects the follicular atresia of chickens is remain unclear. The objective of this study was to explore the regulatory molecular mechanisms in regard to follicular atresia. 20 white leghorn layers (32-wk-old) were equally divided into 2 groups. The control group was fed freely, and the experimental group induced follicular atretic by fasting for 5 d. The results showed that the expression of prolactin (PRL) levels was significantly higher in the fasted hens, while the levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were lower. Most importantly, RNA sequencing, qPCR, and Western blotting detected significantly elevated levels of autophagy and apoptosis markers in atresia follicles. Interestingly, we found that fibromodulin (FMOD) levels was significantly lower in follicles from fasted hens and that this molecule had an important regulatory role in autophagy. FMOD silencing significantly promoted autophagy and apoptosis in granulosa cells, resulting in hormonal imbalance. FMOD was found to regulate autophagy via the transforming growth factor beta (TGF-β) signaling pathway. Our results suggest that the increase in autophagy and the imbalance in internal homeostasis cause granulosa cell apoptosis, leading to follicular atresia in the chicken ovary. This finding could provide further insight into broodiness in chicken and provide avenues for further improvements in poultry production.
Collapse
Affiliation(s)
- Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jianping Wang
- Key Laboratory for Animal Disease Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chunlin Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huarui Du
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chaowu Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
25
|
Interaction of Fibromodulin and Myostatin to Regulate Skeletal Muscle Aging: An Opposite Regulation in Muscle Aging, Diabetes, and Intracellular Lipid Accumulation. Cells 2021; 10:cells10082083. [PMID: 34440852 PMCID: PMC8393414 DOI: 10.3390/cells10082083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to investigate fibromodulin (FMOD) and myostatin (MSTN) gene expressions during skeletal muscle aging and to understand their involvements in this process. The expressions of genes related to muscle aging (Atrogin 1 and Glb1), diabetes (RAGE and CD163), and lipid accumulation (CD36 and PPARγ) and those of FMOD and MSTN were examined in CTX-injected, aged, MSTN−/−, and high-fat diet (HFD) mice and in C2C12 myoblasts treated with ceramide or grown under adipogenic conditions. Results from CTX-injected mice and gene knockdown experiments in C2C12 cells suggested the involvement of FMOD during muscle regeneration and myoblast proliferation and differentiation. Downregulation of the FMOD gene in MSTN−/− mice, and MSTN upregulation and FMOD downregulation in FMOD and MSTN knockdown C2C12 cells, respectively, during their differentiation, suggested FMOD negatively regulates MSTN gene expression, and MSTN positively regulates FMOD gene expression. The results of our in vivo and in vitro experiments indicate FMOD inhibits muscle aging by negatively regulating MSTN gene expression or by suppressing the action of MSTN protein, and that MSTN promotes muscle aging by positively regulating the expressions of Atrogin1, CD36, and PPARγ genes in muscle.
Collapse
|
26
|
Tavakoli F, Khatami SS, Momeni F, Azadbakht J, Ghasemi F. Cervical Cancer Diagnosis: Insights into Biochemical Biomarkers and Imaging Techniques. Comb Chem High Throughput Screen 2021; 24:605-623. [PMID: 32875976 DOI: 10.2174/1386207323666200901101955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Cervical malignancy is known as one of the important cancers which is originated from cervix. This malignancy has been observed in women infected with papillomavirus who had regular oral contraceptives, multiple pregnancies, and sexual relations. Early and fast cervical cancer diagnosis is known as two important aspects of cervical cancer therapy. Several investigations indicated that early and fast detection of cervical cancer could be associated with better treatment process and increasing survival rate of patients with this malignancy. Imaging techniques are very important diagnosis tools that could be employed for diagnosis and following responses to therapy in various cervical cancer stages. Multiple lines of evidence indicated that utilization of imaging techniques is related to some limitations (i.e. high cost, and invasive effects). Hence, it seems that along with using imaging techniques, finding and developing new biomarkers could be useful in the diagnosis and treatment of subjects with cervical cancer. Taken together, many studies showed that a variety of biomarkers including, several proteins, mRNAs, microRNAs, exosomes and polymorphisms might be introduced as prognostic, diagnostic and therapeutic biomarkers in cervical cancer therapy. In this review article, we highlighted imaging techniques as well as novel biomarkers for the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Momeni
- Isfahan Research Committee of Multiple Sclerosis, Alzahra Research Institute, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javid Azadbakht
- Department of Radiology and Imaging, Kashan University of Medical Science, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
27
|
Fathizadeh H, Saffari M, Esmaeili D, Moniri R, Kafil HS. Bacteriocins: New Potential Therapeutic Candidates in Cancer Therapy. Curr Mol Med 2021; 21:211-220. [PMID: 33109060 DOI: 10.2174/1566524020999200817113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Cancer is one of the most important disorders which is associated with high mortality and high costs of treatment for patients. Despite several efforts, finding, designing and developing, new therapeutic platforms in the treatment of cancer patients are still required. Utilization of microorganisms, particularly bacteria has emerged as new therapeutic approaches in the treatment of various cancers. Increasing data indicated that bacteria could be used in the production of a wide range of anti-cancer agents, including bacteriocins, antibiotics, peptides, enzymes, and toxins. Among these anti-cancer agents, bacteriocins have attractive properties, which make them powerful anti-cancer drugs. Multiple lines evidence indicated that several bacteriocins (i.e., colcins, nisins, pediocins, pyocins, and bovocins) via activation/inhibition different cellular and molecular signaling pathways are able to suppress tumor growth in various stages. Hence, identification and using various bacteriocins could lead to improve and introduce them to clinical practices. Here, we summarized various bacteriocins which could be employed as anti-cancer agents in the treatment of many cancers.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical sciences, Tehran, Iran
| | - Rezvan Moniri
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
28
|
Seavey CN, Pobbati AV, Hallett A, Ma S, Reynolds JP, Kanai R, Lamar JM, Rubin BP. WWTR1(TAZ)- CAMTA1 gene fusion is sufficient to dysregulate YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. Genes Dev 2021; 35:512-527. [PMID: 33766982 PMCID: PMC8015722 DOI: 10.1101/gad.348220.120] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Epithelioid hemangioendothelioma (EHE) is a genetically homogenous vascular sarcoma that is a paradigm for TAZ dysregulation in cancer. EHE harbors a WWTR1(TAZ)-CAMTA1 gene fusion in >90% of cases, 45% of which have no other genetic alterations. In this study, we used a first of its kind approach to target the Wwtr1-Camta1 gene fusion to the Wwtr1 locus, to develop a conditional EHE mouse model whereby Wwtr1-Camta1 is controlled by the endogenous transcriptional regulators upon Cre activation. These mice develop EHE tumors that are indistinguishable from human EHE clinically, histologically, immunohistochemically, and genetically. Overall, these results demonstrate unequivocally that TAZ-CAMTA1 is sufficient to drive EHE formation with exquisite specificity, as no other tumor types were observed. Furthermore, we fully credential this unique EHE mouse model as a valid preclinical model for understanding the role of TAZ dysregulation in cancer formation and for testing therapies directed at TAZ-CAMTA1, TAZ, and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Caleb N Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, PRISM Program, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Andrea Hallett
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Jordan P Reynolds
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Ryan Kanai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208, USA
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| |
Collapse
|
29
|
Gurunathan S, Qasim M, Kang MH, Kim JH. Role and Therapeutic Potential of Melatonin in Various Type of Cancers. Onco Targets Ther 2021; 14:2019-2052. [PMID: 33776451 PMCID: PMC7987311 DOI: 10.2147/ott.s298512] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a large group of diseases and the second leading cause of death worldwide. Lung, prostate, colorectal, stomach, and liver cancers are the most common types of cancer in men, whereas breast, colorectal, lung, cervical, and thyroid cancers are the most common among women. Presently, various treatment strategies, including surgical resection combined with chemotherapy, radiotherapy, nanotherapy, and immunotherapy, have been used as conventional treatments for patients with cancer. However, the clinical outcomes of advanced-stage disease remain relatively unfavorable owing to the emergence of chemoresistance, toxicity, and other undesired detrimental side effects. Therefore, new therapies to overcome these limitations are indispensable. Recently, there has been considerable evidence from experimental and clinical studies suggesting that melatonin can be used to prevent and treat cancer. Studies have confirmed that melatonin mitigates the pathogenesis of cancer by directly affecting carcinogenesis and indirectly disrupting the circadian cycle. Melatonin (MLT) is nontoxic and exhibits a range of beneficial effects against cancer via apoptotic, antiangiogenic, antiproliferative, and metastasis-inhibitory pathways. The combination of melatonin with conventional drugs improves the drug sensitivity of cancers, including solid and liquid tumors. In this manuscript, we will comprehensively review some of the cellular, animal, and human studies from the literature that provide evidence that melatonin has oncostatic and anticancer properties. Further, this comprehensive review compiles the available experimental and clinical data analyzing the history, epidemiology, risk factors, therapeutic effect, clinical significance, of melatonin alone or in combination with chemotherapeutic agents or radiotherapy, as well as the underlying molecular mechanisms of its anticancer effect against lung, breast, prostate, colorectal, skin, liver, cervical, and ovarian cancers. Nonetheless, in the interest of readership clarity and ease of reading, we have discussed the overall mechanism of the anticancer activity of melatonin against different types of cancer. We have ended this report with general conclusions and future perspectives.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
30
|
Proteome-wide and matrisome-specific alterations during human pancreas development and maturation. Nat Commun 2021; 12:1020. [PMID: 33589611 PMCID: PMC7884717 DOI: 10.1038/s41467-021-21261-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is unique to each tissue and capable of guiding cell differentiation, migration, morphology, and function. The ECM proteome of different developmental stages has not been systematically studied in the human pancreas. In this study, we apply mass spectrometry-based quantitative proteomics strategies using N,N-dimethyl leucine isobaric tags to delineate proteome-wide and ECM-specific alterations in four age groups: fetal (18-20 weeks gestation), juvenile (5-16 years old), young adults (21-29 years old) and older adults (50-61 years old). We identify 3,523 proteins including 185 ECM proteins and quantify 117 of them. We detect previously unknown proteome and matrisome features during pancreas development and maturation. We also visualize specific ECM proteins of interest using immunofluorescent staining and investigate changes in ECM localization within islet or acinar compartments. This comprehensive proteomics analysis contributes to an improved understanding of the critical roles that ECM plays throughout human pancreas development and maturation.
Collapse
|
31
|
Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J 2021; 19:910-928. [PMID: 33598105 PMCID: PMC7851342 DOI: 10.1016/j.csbj.2021.01.018] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a very interesting class of conserved single-stranded RNA molecules derived from exonic or intronic sequences by precursor mRNA back-splicing. Unlike canonical linear RNAs, circRNAs form covalently closed, continuous stable loops without a 5'end cap and 3'end poly(A) tail, and therefore are resistant to exonuclease digestion. The majority of circRNAs are highly abundant, and conserved across different species with a tissue or developmental-stage-specific expression. circRNAs have been shown to play important roles as microRNA sponges, regulators of gene splicing and transcription, RNA-binding protein sponges and protein/peptide translators. Emerging evidence reveals that circRNAs function in various human diseases, particularly cancers, and may function as better predictive biomarkers and therapeutic targets for cancer treatment. In consideration of their potential clinical relevance, circRNAs have become a new research hotspot in the field of tumor pathology. In the present study, the current understanding of the biogenesis, characteristics, databases, research methods, biological functions subcellular distribution, epigenetic regulation, extracellular transport and degradation of circRNAs was discussed. In particular, the multiple databases and methods involved in circRNA research were first summarized, and the recent advances in determining the potential roles of circRNAs in tumor growth, migration and invasion, which render circRNAs better predictive biomarkers, were described. Furthermore, future perspectives for the clinical application of circRNAs in the management of patients with cancer were proposed, which could provide new insights into circRNAs in the future.
Collapse
Key Words
- AML, acute myloid leukemia
- BSJ, back-splice junction
- Biomarker
- CLL, chronic lymphocytic leukemia
- CML, chronic myeloid leukemia
- CRC, colorectal cancer
- Cancer
- Circular RNAs
- EIciRNAs, exon–intron RNAs
- EMT, epithelial-mesenchymal transition
- Functions
- GC, gastric cancer
- HCC, hepatocellular carcinoma
- ISH, in situ hybridization
- LUAD, lung adenocarcinoma
- MER, miRNA response elements
- MM, multiple myeloma
- NSCLC, non-small cell lung cancer
- PCR, polymerase chain reaction
- PDAC, pancreatic ductal adenocarcinoma
- RBP, RNA-binding protein
- RNA, ribonucleic acid
- RNase, ribonuclease
- RT-PCR, reverse transcription-PCR
- TNM, tumor node metastases
- UTR, untranslated regions
- ccRCC, clear cell renal cell carcinoma
- ceRNAs, endogenous RNAs
- ciRNAs, circular intronic RNAs
- ciRS-7, circular RNA sponge for miR-7
- circRNAs, circular RNAs
- ecircRNAs, exonic circular RNAs
- lncRNAs, long ncRNA
- miRNAs, microRNAs
- ncRNAs, noncoding RNAs
- qPCR, quantitative PCR
- rRNA, ribosomal RNA
- siRNAs, small interfering RNAs
- snRNA, small nuclear RNA
- tricRNAs, tRNA intronic circRNAs
Collapse
Affiliation(s)
- Xiaozhu Tang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyan Ren
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
32
|
Güzel C, van den Berg CB, Koopman S, van Krugten RJ, Stoop M, Stingl C, Duvekot JJ, Luider TM. Cerebrospinal Fluid of Preeclamptic and Normotensive Pregnant Women Compared to Nonpregnant Women Analyzed with Mass Spectrometry. ACS OMEGA 2020; 5:32256-32266. [PMID: 33376863 PMCID: PMC7758887 DOI: 10.1021/acsomega.0c03910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/13/2020] [Indexed: 06/01/2023]
Abstract
Preeclampsia is a pregnancy-specific multiorgan disorder in which impaired placental functioning and excessive oxidative stress play an important role. We previously showed distinct differences between cerebrospinal fluid proteins in patients with preeclampsia and normotensive pregnant women. An additional group of nonpregnant women was included to study the presence of pregnancy-related proteins in normotensive and preeclamptic pregnancies and whether pregnancy-related proteins were associated with preeclampsia. Cerebrospinal fluid samples were tryptically digested and subsequently measured with a nano-LC-tribrid Orbitrap mass spectrometry system. Proteins were identified by shotgun proteomic analysis based on a data-dependent acquisition method. Proteins identified in preeclampsia, normotensive pregnant controls, and nonpregnant groups were compared to the Progenesis method according to the criteria as previously described and with a secondary analysis using a Scaffold method including Benjamini-Hochberg correction for multiple testing. For preeclampsia, the Progenesis and the Scaffold method together identified 15 (eight proteins for both analyses with one overlap) proteins that were significantly different compared to normotensive control pregnancies. Three of these 15 proteins, which were elevated in cerebrospinal fluid of preeclamptic women, were described to be pregnancy proteins with a calcium-binding function. Using two analysis methods (Progenesis and Scaffold), four out of 15 differential proteins were associated with pregnancy, as described in the literature. Three out of the four pregnancy-related proteins were elevated in preeclampsia. Furthermore, the contribution of elevated (n = 4/15) and downregulated (n = 2/15) calcium-binding proteins in preeclampsia is remarkably high (40%) and needs to be elucidated further.
Collapse
Affiliation(s)
- Coşkun Güzel
- Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Room AE 312, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Caroline B van den Berg
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Seppe Koopman
- Department of Anesthesiology, Maasstad Hospital, Rotterdam 3079 DZ, The Netherlands
| | | | - Marcel Stoop
- Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Room AE 312, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Christoph Stingl
- Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Room AE 312, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Johannes J Duvekot
- Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Room AE 312, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| |
Collapse
|
33
|
Zeng-Brouwers J, Pandey S, Trebicka J, Wygrecka M, Schaefer L. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J Histochem Cytochem 2020; 68:887-906. [PMID: 32623933 PMCID: PMC7708667 DOI: 10.1369/0022155420930303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sony Pandey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Ricci B, Tycksen E, Celik H, Belle JI, Fontana F, Civitelli R, Faccio R. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. eLife 2020; 9:e54659. [PMID: 32755539 PMCID: PMC7428306 DOI: 10.7554/elife.54659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of mesenchymal cells supporting tumor progression, whose origin remains to be fully elucidated. Osterix (Osx) is a marker of osteogenic differentiation, expressed in skeletal progenitor stem cells and bone-forming osteoblasts. We report Osx expression in CAFs and by using Osx-cre;TdTomato reporter mice we confirm the presence and pro-tumorigenic function of TdTOSX+ cells in extra-skeletal tumors. Surprisingly, only a minority of TdTOSX+ cells expresses fibroblast and osteogenic markers. The majority of TdTOSX+ cells express the hematopoietic marker CD45, have a genetic and phenotypic profile resembling that of tumor infiltrating myeloid and lymphoid populations, but with higher expression of lymphocytic immune suppressive genes. We find Osx transcript and Osx protein expression early during hematopoiesis, in subsets of hematopoietic stem cells and multipotent progenitor populations. Our results indicate that Osx marks distinct tumor promoting CD45- and CD45+ populations and challenge the dogma that Osx is expressed exclusively in cells of mesenchymal origin.
Collapse
Affiliation(s)
- Biancamaria Ricci
- Department of Orthopedics, Washington University School of MedicineSt. LouisUnited States
| | - Eric Tycksen
- Genome Technology Access Center, Department of Genetics, Washington University School of MedicineSt. LouisUnited States
| | - Hamza Celik
- Department of Medicine, Division of Oncology, Washington University School of MedicineSt. LouisUnited States
| | - Jad I Belle
- Department of Medicine, Division of Oncology, Washington University School of MedicineSt. LouisUnited States
| | - Francesca Fontana
- Department of Medicine, Division of Oncology, Washington University School of MedicineSt. LouisUnited States
| | - Roberto Civitelli
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of MedicineSt. LouisUnited States
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of MedicineSt. LouisUnited States
- Shriners Children HospitalSt. LouisUnited States
| |
Collapse
|
35
|
Determination of a Tumor-Promoting Microenvironment in Recurrent Medulloblastoma: A Multi-Omics Study of Cerebrospinal Fluid. Cancers (Basel) 2020; 12:cancers12061350. [PMID: 32466393 PMCID: PMC7352284 DOI: 10.3390/cancers12061350] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Molecular classification of medulloblastoma (MB) is well-established and reflects the cell origin and biological properties of tumor cells. However, limited data is available regarding the MB tumor microenvironment. Here, we present a mass spectrometry-based multi-omics pilot study of cerebrospinal fluid (CSF) from recurrent MB patients. A group of age-matched patients without a neoplastic disease was used as control cohort. Proteome profiling identified characteristic tumor markers, including FSTL5, ART3, and FMOD, and revealed a strong prevalence of anti-inflammatory and tumor-promoting proteins characteristic for alternatively polarized myeloid cells in MB samples. The up-regulation of ADAMTS1, GAP43 and GPR37 indicated hypoxic conditions in the CSF of MB patients. This notion was independently supported by metabolomics, demonstrating the up-regulation of tryptophan, methionine, serine and lysine, which have all been described to be induced upon hypoxia in CSF. While cyclooxygenase products were hardly detectable, the epoxygenase product and beta-oxidation promoting lipid hormone 12,13-DiHOME was found to be strongly up-regulated. Taken together, the data suggest a vicious cycle driven by autophagy, the formation of 12,13-DiHOME and increased beta-oxidation, thus promoting a metabolic shift supporting the formation of drug resistance and stem cell properties of MB cells. In conclusion, the different omics-techniques clearly synergized and mutually supported a novel model for a specific pathomechanism.
Collapse
|
36
|
Alagoz M, Kherad N. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). Int J Mol Med 2020; 46:521-534. [PMID: 32467995 PMCID: PMC7307811 DOI: 10.3892/ijmm.2020.4609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genome editing techniques are considered to be one of the most challenging yet efficient tools for assisting therapeutic approaches. Several studies have focused on the development of novel methods to improve the efficiency of gene editing, as well as minimise their off-target effects. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas9) is a tool that has revolutionised genome editing technologies. New applications of CRISPR/Cas9 in a broad range of diseases have demonstrated its efficiency and have been used in ex vivo models of somatic and pluripotent stem cells, as well as in in vivo animal models, and may eventually be used to correct defective genes. The focus of the present review was the recent applications of CRISPR/Cas9 and its contribution to the treatment of challenging human diseases, such as various types of cancer, neurodegenerative diseases and a broad spectrum of other disorders. CRISPR technology is a novel method for disease treatment, enhancing the effectiveness of drugs and improving the development of personalised medicine.
Collapse
Affiliation(s)
- Meryem Alagoz
- Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
| | - Nasim Kherad
- Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
| |
Collapse
|
37
|
Phillips CL, Lane A, Gerbing RB, Alonzo TA, Wilkey A, Radloff G, Lange B, Gamazon ER, Dolan ME, Davies SM. Genomic Variants of Cytarabine Sensitivity Associated with Treatment-Related Mortality in Pediatric AML: A Report from the Children's Oncology Group. Clin Cancer Res 2020; 26:2891-2897. [PMID: 32122921 DOI: 10.1158/1078-0432.ccr-19-3117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Cytarabine is an effective treatment for AML with associated toxicities including treatment related mortality (TRM). The purpose is to determine the clinical relevance of SNPs identified through the use of HapMap lymphoblastoid cell-based models, in predicting cytarabine response and toxicity in AML. EXPERIMENTAL DESIGN We tested clinical significance of SNPs associated with cytarabine sensitivity in children with AML treated on Children's Oncology Group regimens (CCG 2941/2961). Endpoints included overall survival (OS), event-free survival (EFS), and TRM. Patients who received bone marrow transplant were excluded. We tested 124 SNPs associated with cytarabine sensitivity in HapMap cell lines in 348 children to determine whether any associated with treatment outcomes. In addition, we tested five SNPs previously associated with TRM in children with AML in our independent dataset of 385 children. RESULTS Homozygous variant genotypes of rs2025501 and rs6661575 had increased in vitro cellular sensitivity to cytarabine and were associated with increased TRM. TRM was particularly increased in children with variant genotype randomized to high-dose cytarabine (rs2025501: P = 0.0024 and rs6661575 P = 0.0188). In analysis of previously reported SNPs, only the variant genotype rs17202778 C/C was significantly associated with TRM (P < 0.0001). CONCLUSIONS We report clinical importance of two SNPs not previously associated with cytarabine toxicity. Moreover, we confirm that SNP rs17202778 significantly impacts TRM in pediatric AML. Cytarabine sensitivity genotypes may predict TRM and could be used to stratify to standard versus high-dose cytarabine regimens, warranting further study in prospective AML trials.
Collapse
Affiliation(s)
- Christine L Phillips
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio. .,Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati Ohio
| | - Adam Lane
- Division of Biostatics and Epidemiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | | | - Todd A Alonzo
- University of Southern California, Los Angeles, California
| | - Alyss Wilkey
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati Ohio
| | - Gretchen Radloff
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati Ohio
| | - Beverly Lange
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric R Gamazon
- Vanderbilt Genetics Institute and the Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Clare Hall, University of Cambridge, Cambridge, United Kingdom
| | - M Eileen Dolan
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Stella M Davies
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati Ohio
| |
Collapse
|
38
|
Razi E, Radak M, Mahjoubin-Tehran M, Talebi S, Shafiee A, Hajighadimi S, Moradizarmehri S, Sharifi H, Mousavi N, Sarvizadeh M, Nejati M, Taghizadeh M, Ghasemi F. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam Clin Pharmacol 2019; 34:202-212. [PMID: 31709581 DOI: 10.1111/fcp.12521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The discovery of stem cells and their potential abilities in self-renewal and differentiation has opened a new horizon in medicine. Scientists have found a small population of stem cells in some types of cancers with the same functions as normal stem cells. There are two models for tumor progression: clonal (stochastic) and cancer stem cell (CSCs) models. According to the first model, all transformed cells in the tumor have carcinogenic potential and are able to proliferate and produce the same cells. The latter model, which has received more attention recently, considers the role of CSCs in drug resistance and tumor metastasis. Following the model, researchers have found that targeting CSCs may be a promising way in cancer therapy. This review describes CSC characteristics in general, while also focusing on CSC properties in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Mehran Radak
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Talebi
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Mousavi
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
39
|
Li C, Ha P, Jiang W, Haveles CS, Zheng Z, Zou M. Fibromodulin - A New Target of Osteoarthritis Management? Front Pharmacol 2019; 10:1475. [PMID: 31920661 PMCID: PMC6927287 DOI: 10.3389/fphar.2019.01475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chenshuang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christos S Haveles
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Min Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
40
|
Listik E, Azevedo Marques Gaschler J, Matias M, Neuppmann Feres MF, Toma L, Raphaelli Nahás-Scocate AC. Proteoglycans and dental biology: the first review. Carbohydr Polym 2019; 225:115199. [DOI: 10.1016/j.carbpol.2019.115199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
|