1
|
Fan X, Xie Y, Cao S, Zhu L, Wang X. VPS35-Retromer: Multifunctional Roles in Various Biological Processes - A Focus on Neurodegenerative Diseases and Cancer. J Inflamm Res 2025; 18:4665-4680. [PMID: 40195959 PMCID: PMC11975009 DOI: 10.2147/jir.s510768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/23/2025] [Indexed: 04/09/2025] Open
Abstract
The Vacuolar Protein Sorting 35 (VPS35)-Retromer complex plays a pivotal role in intracellular protein trafficking and recycling. As an integral component of the Retromer complex, VPS35 selectively recognizes and retrogradely transports membrane protein receptors to the trans-Golgi network, thereby preventing the degradation of transmembrane proteins by lysosomes after they have fulfilled their physiological functions, and facilitating their continued activity. VPS35 regulates autophagy, mitophagy, mitochondrial homeostasis, and various other biological processes, including epidermal regeneration, neuronal iron homeostasis, and synaptic function. Studies have shown that mutations or dysfunctions in VPS35 disrupt the normal operation of Retromer, impair neuronal health and survival, and contribute to the onset of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Additionally, VPS35 modulates tumor growth and metastasis in cancers such as liver and breast cancer through the regulation of multiple signaling pathways. Targeting VPS35 might be a potential therapy in clinic treatment of neurodegenerative diseases and cancers.
Collapse
Affiliation(s)
- Xiaoyang Fan
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Yuqi Xie
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Sitong Cao
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| |
Collapse
|
2
|
Chen H, Wang Z, Shi J, Peng J. Integrating mitochondrial and lysosomal gene analysis for breast cancer prognosis using machine learning. Sci Rep 2025; 15:3320. [PMID: 39865118 PMCID: PMC11770110 DOI: 10.1038/s41598-025-86970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
The impact of mitochondrial and lysosomal co-dysfunction on breast cancer patient outcomes is unclear. The objective of this study is to develop a predictive machine learning (ML) model utilizing mitochondrial and lysosomal co-regulators in order to provide a foundation for future studies focused on breast cancer (BC) patients' stratification and personalized interventions. Firstly, Differences and correlations of mitochondrial and lysosome related genes were screened and validated by differential analysis, copy number variation (CNV), single nucleotide polymorphism (SNPs) and correlation analysis. WGCNA and univariate Cox regression were employed to identify prognostic mitochondrial and lysosomal co-regulators. ML was utilized to further selected these regulators and then the coxboost + Survivor-SVM model was identified as the most suitable model for predicting outcomes in BC patients. Subsequently, the association between the immune and mlMSGs score was investigated through scRNA-seq. We found that the overall immunoinfiltration of immune cells was decreased in the high-risk group, it was specifically noted that B cell mlMSGs activity remained diminished in high-risk patients. Finally, the expression and function of the key gene SHMT2 were confirmed through in vitro experiments. This study shows that the ML model demonstrated a strong association with patient outcomes. Analysis conducted through the model has identified decreased B-cell immune infiltration and increased mlMSGs activity as significant factors influencing patient prognosis. These results may offer novel approaches for early intervention and prognostic forecasting in BC.
Collapse
Affiliation(s)
- Huilin Chen
- Departments of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Women and Children Central Laboratory, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zhenghui Wang
- Departments of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Women and Children Central Laboratory, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Jiale Shi
- Women and Children Central Laboratory, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Departments of Prenatal Diagnostic Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Jinghui Peng
- Departments of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- Women and Children Central Laboratory, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Fu C, Yang N, Chuang JZ, Nakajima N, Iraha S, Roy N, Wu Z, Jiang Z, Otsu W, Radu RA, Yang HH, Lee MP, Worgall TS, Xiong WC, Sung CH. Mutant mice with rod-specific VPS35 deletion exhibit retinal α-synuclein pathology-associated degeneration. Nat Commun 2024; 15:5970. [PMID: 39043666 PMCID: PMC11266608 DOI: 10.1038/s41467-024-50189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Vacuolar protein sorting 35 (VPS35), the core component of the retromer complex which regulates endosomal trafficking, is genetically linked with Parkinson's disease (PD). Impaired vision is a common non-motor manifestation of PD. Here, we show mouse retinas with VPS35-deficient rods exhibit synapse loss and visual deficit, followed by progressive degeneration concomitant with the emergence of Lewy body-like inclusions and phospho-α-synuclein (P-αSyn) aggregation. Ultrastructural analyses reveal VPS35-deficient rods accumulate aggregates in late endosomes, deposited as lipofuscins bound to P-αSyn. Mechanistically, we uncover a protein network of VPS35 and its interaction with HSC70. VPS35 deficiency promotes sequestration of HSC70 and P-αSyn aggregation in late endosomes. Microglia which engulf lipofuscins and P-αSyn aggregates are activated, displaying autofluorescence, observed as bright dots in fundus imaging of live animals, coinciding with pathology onset and progression. The Rod∆Vps35 mouse line is a valuable tool for further mechanistic investigation of αSyn lesions and retinal degenerative diseases.
Collapse
Affiliation(s)
- Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University School of Medicipne, Tokyo, Japan
| | - Satoshi Iraha
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University; Department of Ophthalmology, National Sanatorium Kikuchi Keifuen, Kumamoto, Japan
| | - Neeta Roy
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhenquan Wu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Roxana A Radu
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Wang X, Xie Y, Fan X, Wu X, Wang D, Zhu L. Intermittent hypoxia training enhances Aβ endocytosis by plaque associated microglia via VPS35-dependent TREM2 recycling in murine Alzheimer's disease. Alzheimers Res Ther 2024; 16:121. [PMID: 38831312 PMCID: PMC11145795 DOI: 10.1186/s13195-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Beta-amyloid (Aβ) deposition in the brain parenchyma is a crucial initiating step in the amyloid cascade hypothesis of Alzheimer's disease (AD) pathology. Furthermore, dysfunction of plaque-associated microglia, also known as disease-associated microglia (DAM) has been reported to accelerate Aβ deposition and cognitive impairment. Our previous research demonstrated that intermittent hypoxia training (IHT) improved AD pathology by upregulating autophagy in DAM, thereby enhancing oligomeric Aβ (oAβ) clearance. Considering that oAβ internalization is the initial stage of oAβ clearance, this study focused on the IHT mechanism involved in upregulating Aβ uptake by DAM. METHODS IHT was administered to 8-month-old APP/PS1 mice or 6-month-old microglial vacuolar protein sorting 35 (VPS35) knockout mice in APP/PS1 background (MG VPS35 KO: APP/PS1) for 28 days. After the IHT, the spatial learning-memory capacity of the mice was assessed. Additionally, AD pathology was determined by estimating the nerve fiber and synapse density, Aβ plaque deposition, and Aβ load in the brain. A model of Aβ-exposed microglia was constructed and treated with IHT to explore the related mechanism. Finally, triggering receptor expressed on myeloid cells 2 (TREM2) intracellular recycling and Aβ internalization were measured using a fluorescence tracing technique. RESULTS Our results showed that IHT ameliorated cognitive function and Aβ pathology. In particular, IHT enhanced Aβ endocytosis by augmenting the intracellular transport function of microglial TREM2, thereby contributing to Aβ clearance. Furthermore, IHT specifically upregulated VPS35 in DAM, the primary cause for the enhanced intracellular recycling of TREM2. IHT lost ameliorative effect on Aβ pathology in MG VPS35 KO: APP/PS1 mice brain. Lastly, the IHT mechanism of VPS35 upregulation in DAM was mediated by the transcriptional regulation of VPS35 by transcription factor EB (TFEB). CONCLUSION IHT enhances Aβ endocytosis in DAM by upregulating VPS35-dependent TREM2 recycling, thereby facilitating oAβ clearance and mitigation of Aβ pathology. Moreover, the transcriptional regulation of VPS35 by TFEB demonstrates a close link between endocytosis and autophagy in microglia. Our study further elucidates the IHT mechanism in improving AD pathology and provides evidence supporting the potential application of IHT as a complementary therapy for AD.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China.
| | - Yuqi Xie
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Xiaoyang Fan
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China.
| |
Collapse
|
5
|
Evergren E, Mills IG, Kennedy G. Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137:jcs260943. [PMID: 38770683 PMCID: PMC11166456 DOI: 10.1242/jcs.260943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.
Collapse
Affiliation(s)
- Emma Evergren
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian G. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Grace Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
6
|
Wang C, Chen Y, Zhou R, Yang Y, Fang Y. Systematic Analysis of Tumor Stem Cell-related Gene Characteristics to Predict the PD-L1 Immunotherapy and Prognosis of Gastric Cancer. Curr Med Chem 2024; 31:2467-2482. [PMID: 37936456 DOI: 10.2174/0109298673278775231101064235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
AIMS We aimed to develop a prognostic model with stemness-correlated genes to evaluate prognosis and immunotherapy responsiveness in gastric cancer (GC). BACKGROUND Tumor stemness is related to intratumoral heterogeneity, immunosuppression, and anti-tumor resistance. We developed a prognostic model with stemness-correlated genes to evaluate prognosis and immunotherapy responsiveness in GC. OBJECTIVE We aimed to develop a prognostic model with stemness-correlated genes to evaluate prognosis and immunotherapy responsiveness in GC. METHODS We downloaded single-cell RNA sequencing (scRNA-seq) data of GC patients from the Gene-Expression Omnibus (GEO) database and screened GC stemness- related genes using CytoTRACE. We characterized the association of tumor stemness with immune checkpoint blockade (ICB) and immunity. Thereafter, a 9-stemness signature-based prognostic model was developed using weighted gene co-expression network analysis (WGCNA), univariate Cox regression analysis, and the least absolute shrinkage and selection operator (LASSO) regression analysis. The model predictive value was evaluated with a nomogram. RESULTS Early GC patients had significantly higher levels of stemness. The stemness score showed a negative relationship to tumor immune dysfunction and exclusion (TIDE) score and immune infiltration, especially T cells and B cells. A stemness-based signature based on 9 genes (ERCC6L, IQCC, NKAPD1, BLMH, SLC25A15, MRPL4, VPS35, SUMO3, and CINP) was constructed with good performance in prognosis prediction, and its robustness was validated in GSE26942 cohort. Additionally, nomogram and risk score exhibited the most powerful ability for prognosis prediction. High-risk patients exhibited a tendency to develop immune escape and low response to PD-L1 immunotherapy. CONCLUSION We developed a stemness-based gene signature for prognosis prediction with accuracy and reliability. This signature also helps clinical decision-making of immunotherapy for GC patients.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Ying Chen
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Ru Zhou
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, 200000, China
| | - Ya'nan Yang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Yantian Fang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200000, China
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| |
Collapse
|
7
|
Zhou Q, Qi F, Zhou C, Ji J, Jiang J, Wang C, Zhao Q, Jin Y, Wu J, Cai Q, Tian H, Zhang J. VPS35 promotes gastric cancer progression through integrin/FAK/SRC signalling-mediated IL-6/STAT3 pathway activation in a YAP-dependent manner. Oncogene 2024; 43:106-122. [PMID: 37950040 PMCID: PMC10774127 DOI: 10.1038/s41388-023-02885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
VPS35 is a key subunit of the retromer complex responsible for recognising cytosolic retrieval signals in cargo and is involved in neurodegenerative disease and tumour progression. However, the function and molecular mechanism of VPS35 in gastric cancer (GC) remains largely unknown. Here, we demonstrated that VPS35 was significantly upregulated in GC, which was associated with poor survival. VPS35 promoted GC cell proliferation and metastasis both in vitro and in vivo. Mechanistically, VPS35 activated FAK-SRC kinases through integrin-mediated outside-in signalling, leading to the activation of YAP and subsequent IL-6 expression induction in tumour cells. What's more, combined mass spectrometry analysis of MGC-803 cell and bioinformatic analysis, we found that phosphorylation of VPS35 was enhanced in GC cells, and phosphorylated VPS35 has enhanced interaction with ITGB3. VPS35 interacted with ITGB3 and affected the recycling of ITGB3 in GC cells. Gain- and loss-of-function experiments revealed that VPS35 promoted tumour proliferation and metastasis via the IL-6/STAT3 pathway. Interestingly, we also found that STAT3 directly bound to the VPS35 promoter and increased VPS35 transcription, thereby establishing a positive regulatory feedback loop. In addition, we demonstrated that VPS35 knockdown sensitised GC cells to 5-FU and cisplatin. These findings provide evidence that VPS35 promotes tumour proliferation and metastasis, and highlight the potential of targeting VPS35- and IL-6/STAT3-mediated tumour interactions as promising therapeutic strategies for GC.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qianfu Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Yu J, Feng H, Sang Q, Li F, Chen M, Yu B, Xu Z, Pan T, Wu X, Hou J, Zhu Z, Yan C, Su L, Li J, Liu B. VPS35 promotes cell proliferation via EGFR recycling and enhances EGFR inhibitors response in gastric cancer. EBioMedicine 2023; 89:104451. [PMID: 36738481 PMCID: PMC9931929 DOI: 10.1016/j.ebiom.2023.104451] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vacuolar protein sorting-associated protein 35 (VPS35) is a core component of the retromer complex which mediates intracellular protein transport. It is well known that dysfunctional VPS35 functions in the accumulation of pathogenic proteins. In our previous study, VPS35 was found to be a potential gene related to poor prognosis in gastric cancer. However, the biological functions of VPS35 in gastric cancer remain unclear. METHODS Cell viability assays were performed to examine whether VPS35 affected cell proliferation. Immunoprecipitation and biotin assays showed that VPS35 bound to epidermal growth factor receptor (EGFR) in the cytoplasm and recycled it to the cell surface. Patient-derived xenografts and organoids were used to evaluate the effect of VPS35 on the response of gastric cancer to EGFR inhibitors. FINDINGS VPS35 expression levels were upregulated in tumour tissues and correlated with local tumour invasion and poor survival in patients with gastric cancer. VPS35 promoted cell proliferation and increased tumour growth. Mechanistically, VPS35 selectively bound to endocytosed EGFR in early endosomes and recycled it back to the cell surface, leading to the downstream activation of the ERK1/2 pathway. We also found that high VPS35 expression levels increased the sensitivity of the xenograft and organoid models to EGFR inhibitors. INTERPRETATION VPS35 promotes cell proliferation by recycling EGFR to the cell surface, amplifying the network of receptor trafficking. VPS35 expression levels are positively correlated with gastric cancer sensitivity to EGFR inhibitors, which offers a potential method to stratify patients for EGFR inhibitor utilisation. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Junxian Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qingqing Sang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fangyuan Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mengdi Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Beiqin Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Tao Pan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiongyan Wu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Junyi Hou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhenggang Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Chao Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| | - Bingya Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| |
Collapse
|
9
|
Zhang F, Wang Y, Li H, Li L, Yang X, You X, Tang L. Pan-cancer analysis identifies LIFR as a prognostic and immunological biomarker for uterine corpus endometrial carcinoma. Front Oncol 2023; 13:1118906. [PMID: 36925915 PMCID: PMC10011451 DOI: 10.3389/fonc.2023.1118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Background Leukemia inhibitory factor (LIF) exhibits significant tumor-promoting function, while its cognate receptor (LIFR) is considered to act as either a tumor promoter or suppressor. Dysregulation of LIF and LIFR is associated with the initiation, progression and metastasis of multiple cancer entities. Although increasing numbers of studies are revealing an indispensable critical role of LIFR in tumorigenesis for various different cancers, no systematic analysis of LIFR has appeared thus far. Methods Here, we comprehensively analyzed the expression profile and prognostic value of LIFR, and correlations between LIFR and the infiltration of immune cells and clinicopathological parameters across different tumor types using several bioinformatic tools. The expression profile of LIFR in various tumor types and clinical stages was investigated using the TIMER2 and GEPIA2 databases. Genetic alternations of LIFR were extracted from cBioPortal. The prognostic value of LIFR was assessed using GEPIA2 and Sanger box databases, and correlations between LIFR expression and immune infiltration were analyzed using the CIBERSORT method and TIMER2 database. The correlations between LIFR expression and immune and stromal scores were assessed using ESTIMATE. We also analyzed correlations between LIFR and immunoregulators. Finally, we detected an effect of LIFR on Uterine Corpus Endometrial Carcinoma (UCEC) and evaluated the expression level of LIFR in clinical UCEC samples. Results Aberrant expression of LIFR in cancers and its prognosis ability, especially in UCEC was documented. Significantly lower levels of LIFR expression level correlated with better prognosis in multiple tumor types. LIFR expression was positively correlated with the abundance of cancer-associated fibroblasts (CAFs) and endothelial cells in the tumor microenvironment. Additionally, LIFR expression was strongly associated with the presence of immune modulators and checkpoint genes. Overexpression of LIFR suppressed the migration and invasion of UCEC cells in vitro. Conclusion Our pan-cancer detection data provided a novel understanding of the roles of LIFR in oncogenesis.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaoyan You
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lina Tang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Tang L, Gao Y, Li T. Pan-cancer analysis identifies the immunological and prognostic role of PAK4. Life Sci 2023; 312:121263. [PMID: 36470541 DOI: 10.1016/j.lfs.2022.121263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
AIMS P21-activated kinase 4 (PAK4) belongs to the wider family of Serine/Threonine p21-activated kinases (PAKs) and functions as a hub for signaling pathways in cancer progression. Numerous studies have indicated the significance of PAK4 for tumorigenesis, but no systematic pan-cancer analysis has been performed. MAIN METHODS The current study aimed to investigate the prognostic and immunological functions of PAK4 through bioinformatic analysis of datasets from The Cancer Genome Atlas, UALCAN, GEPIA2, cBioPortal, TIMER2, and Human Protein Atlas. PAK4 expression was correlated with prognosis, DNA methylation, tumor mutational burden, microsatellite instability, and immune cell infiltration. KEY FINDINGS PAK4 was highly expressed in various cancers but showed decreased expression in colon adenocarcinoma, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, and thyroid carcinoma. PAK4 was found to have a positive or negative correlation with prognosis of different cancers. PAK4 expression was related to tumor mutational burden in 11 tumor types, and associated with microsatellite instability in 10 tumor types and was correlated with immune infiltration and immune checkpoint genes. SIGNIFICANCE PAK4 could be considered as a prognostic and immunotherapeutic marker for some types of malignant tumor.
Collapse
Affiliation(s)
- Lina Tang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China.
| | - Yunling Gao
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| |
Collapse
|
11
|
Wu J, Liu Y, Huang H, Zhu M, Zhang X. Identification of a Risk Predictive Signature Based on Genes Associated with Tumor Size and Lymph Node Involvement in Breast Cancer. Genet Test Mol Biomarkers 2022; 26:532-542. [DOI: 10.1089/gtmb.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Junqiang Wu
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuqing Liu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hu Huang
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mingjie Zhu
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiufen Zhang
- Oncology Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Understanding the Role of Autophagy in Cancer Formation and Progression Is a Real Opportunity to Treat and Cure Human Cancers. Cancers (Basel) 2021; 13:cancers13225622. [PMID: 34830777 PMCID: PMC8616104 DOI: 10.3390/cancers13225622] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The modulation of autophagy represents a potential therapeutic strategy for cancer. More than one hundred clinical trials have been conducted or are ongoing to explore the efficacy of autophagy modulators to reduce the tumor growth and potentiate the anti-cancer effects of conventional therapy. Despite this, the effective role of autophagy during tumor initiation, growth, and metastasis remains not well understood. Depending on the cancer type and stage of cancer, autophagy may have tumor suppressor properties as well as help cancer cells to proliferate and evade cancer therapy. The current review aims to summarize the current knowledge about the autophagy implications in cancer and report the therapeutic opportunities based on the modulation of the autophagy process. Abstract The malignant transformation of a cell produces the accumulation of several cellular adaptions. These changes determine variations in biological processes that are necessary for a cancerous cell to survive during stressful conditions. Autophagy is the main nutrient recycling and metabolic adaptor mechanism in eukaryotic cells, represents a continuous source of energy and biomolecules, and is fundamental to preserve the correct cellular homeostasis during unfavorable conditions. In recent decades, several findings demonstrate a close relationship between autophagy, malignant transformation, and cancer progression. The evidence suggests that autophagy in the cancer context has a bipolar role (it may act as a tumor suppressor and as a mechanism of cell survival for established tumors) and demonstrates that the targeting of autophagy may represent novel therapeutic opportunities. Accordingly, the modulation of autophagy has important clinical benefits in patients affected by diverse cancer types. Currently, about 30 clinical trials are actively investigating the efficacy of autophagy modulators to enhance the efficacy of cytotoxic chemotherapy treatments. A deeper understanding of the molecular pathways regulating autophagy in the cancer context will provide new ways to target autophagy for improving the therapeutic benefits. Herein, we describe how autophagy participates during malignant transformation and cancer progression, and we report the ultimate efforts to translate this knowledge into specific therapeutic approaches to treat and cure human cancers.
Collapse
|