1
|
Aller EJ, Nair HB, Vadlamudi RK, Viswanadhapalli S. Significance of Midkine Signaling in Women's Cancers: Novel Biomarker and Therapeutic Target. Int J Mol Sci 2025; 26:4809. [PMID: 40429950 PMCID: PMC12112249 DOI: 10.3390/ijms26104809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Midkine (MDK) is a multifunctional protein that is secreted into the extracellular space. It functions as a cytokine or growth factor, modulating a variety of signaling pathways implicated in angiogenesis, antitumor immunity, metastasis, and therapy resistance. MDK overexpression has been documented in a variety of cancers, including those that affect women. MDK mediates its effects through activation of key signaling pathways such as MAPK/ERK, PI3K/AKT, and STAT3, which are pivotal for cell cycle progression, survival, and maintenance of stemness. Obesity and estrogen signaling, a known critical driver of women's cancer, further elevate the levels of MDK. MDK's effects are mediated by a variety of membrane receptors, such as integrins, protein tyrosine phosphatase ζ (PTPζ), anaplastic lymphoma kinase (ALK), and neurogenic locus notch homolog protein 2 (Notch2). Recently published studies have indicated that MDK is a potential therapeutic target and a biomarker for the progression of women's cancer. In this review, we have provided a concise summary of the most recent papers that have examined the potential biomarker and therapeutic utility of MDK signaling in women's cancer.
Collapse
Affiliation(s)
- Emily J. Aller
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (E.J.A.); (H.B.N.)
| | - Hareesh B. Nair
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (E.J.A.); (H.B.N.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (E.J.A.); (H.B.N.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (E.J.A.); (H.B.N.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Zhang X, Liu H, Cai P, Huang Z, Ma J, Luo L. Mdka produced by the activated HSCs drives bipotential progenitor cell redifferentiation during zebrafish biliary-mediated liver regeneration. Hepatology 2025; 81:1400-1415. [PMID: 39188045 DOI: 10.1097/hep.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS After extensive hepatocyte loss or impaired hepatocyte proliferation, liver regeneration occurs through trans-differentiation of biliary epithelial cells (BECs), which involves dedifferentiation of biliary epithelial cells into bipotential progenitor cells (BP-PCs) and subsequent redifferentiation of BP-PCs into nascent hepatocytes and biliary epithelial cells. Despite several studies on the redifferentiation process of BP-PCs into nascent hepatocytes, the contributions of nonparenchymal cells in this process remain poorly understood. APPROACH AND RESULTS Using the zebrafish severe liver injury model, we observed specific expression of midkine a (Mdka) in the activated HSCs through single-cell analyses and fluorescence in situ hybridization. Genetic mutation, pharmacological inhibition, whole-mount in situ hybridizations, and antibody staining demonstrated an essential role of mdka in the redifferentiation of BP-PCs during liver regeneration. Notably, we identified Nucleolin (Ncl), the potential receptor for Mdka, specifically expressed in BP-PCs, and its mutant recapitulated the mdka mutant phenotypes with impaired BP-PC redifferentiation. Mechanistically, the Mdka-Ncl axis drove Erk1 activation in BP-PCs during liver regeneration. Furthermore, overexpression of activated Erk1 partially rescued the defective liver regeneration in the mdka mutant. CONCLUSIONS The activated HSCs produce Mdka to drive the redifferentiation process of BP-PCs through activating Erk1 during the biliary-mediated liver regeneration, implying previously unappreciated contributions of nonparenchymal cells to this regeneration process.
Collapse
Affiliation(s)
- Xintao Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Huijuan Liu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianlong Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Ishahak M, Han RH, Annamalai D, Woodiwiss T, McCornack C, Cleary RT, DeSouza PA, Qu X, Dahiya S, Kim AH, Millman JR. Genetically Engineered Brain Organoids Recapitulate Spatial and Developmental States of Glioblastoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410110. [PMID: 39836549 PMCID: PMC11905097 DOI: 10.1002/advs.202410110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Glioblastoma (GBM) is an aggressive form of brain cancer that is highly resistant to therapy due to significant intra-tumoral heterogeneity. The lack of robust in vitro models to study early tumor progression has hindered the development of effective therapies. Here, this study develops engineered GBM organoids (eGBOs) harboring GBM subtype-specific oncogenic mutations to investigate the underlying transcriptional regulation of tumor progression. Single-cell and spatial transcriptomic analyses revealed that these mutations disrupt normal neurodevelopment gene regulatory networks resulting in changes in cellular composition and spatial organization. Upon xenotransplantation into immunodeficient mice, eGBOs form tumors that recapitulate the transcriptional and spatial landscape of human GBM samples. Integrative single-cell trajectory analysis of both eGBO-derived tumor cells and patient GBM samples reveal the dynamic gene expression changes in developmental cell states underlying tumor progression. This analysis of eGBOs provides an important validation of engineered cancer organoid models and demonstrates their utility as a model of GBM tumorigenesis for future preclinical development of therapeutics.
Collapse
Affiliation(s)
- Matthew Ishahak
- Division of EndocrinologyMetabolism and Lipid ResearchWashington University School of Medicine660 South Euclid Avenue, Campus Box 8127St. LouisMO63110USA
| | - Rowland H. Han
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Devi Annamalai
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Timothy Woodiwiss
- Department of Neurological SurgeryUniversity of Iowa Healthcare1800 John Pappajohn PavilionIowa CityIA52242USA
| | - Colin McCornack
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Ryan T. Cleary
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Patrick A. DeSouza
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Xuan Qu
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
| | - Sonika Dahiya
- Division of NeuropathologyWashington University School of Medicine660 South Euclid Avenue, Campus Box 8118St. LouisMO63110USA
| | - Albert H. Kim
- Department of GeneticsWashington University School of Medicine4515 McKinley Ave.St. LouisMO63110USA
- Taylor Family Department of NeurosurgeryWashington University School of Medicine660 South Euclid Avenue, Campus Box 8057St. LouisMO63110USA
- The Brain Tumor Center at Siteman Cancer Center4921 Parkview PlaceSt. LouisMO63110USA
| | - Jeffrey R. Millman
- Division of EndocrinologyMetabolism and Lipid ResearchWashington University School of Medicine660 South Euclid Avenue, Campus Box 8127St. LouisMO63110USA
- Department of Biomedical EngineeringWashington University1 Brookings Drive, Campus Box 1097St. LouisMO63130USA
| |
Collapse
|
4
|
Luo L, Yang P, Mastoraki S, Rao X, Wang Y, Kettner NM, Raghavendra AS, Tripathy D, Damodaran S, Hunt KK, Wang J, Li Z, Keyomarsi K. Single-cell RNA sequencing identifies molecular biomarkers predicting late progression to CDK4/6 inhibition in patients with HR+/HER2- metastatic breast cancer. Mol Cancer 2025; 24:48. [PMID: 39955556 PMCID: PMC11829392 DOI: 10.1186/s12943-025-02226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) in combination with endocrine therapy are the standard treatment for patients with hormone receptor-positive, HER2-negative metastatic breast cancer (mBC). Despite the efficacy of CDK4/6is, intrinsic resistance occurs in approximately one-third of patients, highlighting the need for reliable predictive biomarkers. METHODS Single-cell RNA sequencing analyzed metastatic tumors from HR+/HER2- mBC patients pre-CDK4/6i treatment at baseline (BL) and/or at disease progression. BL samples were from CDK4/6i responders (median progression-free survival [mPFS] = 25.5 months), while progressors were categorized as early-progressors (EP, mPFS = 3 months) and late-progressors (LP, mPFS = 11 months). Metastatic sites included liver, pleural effusions, ascites, and bone. InferCNV distinguished tumor cells, and functional analysis utilized the Molecular Signatures Database. RESULTS LP tumors displayed enhanced Myc, EMT, TNF-α, and inflammatory pathways compared to those EP tumors. Samples from BL and LP responders showed increased tumor-infiltrating CD8+ T cells and natural killer (NK) cells compared to EP non-responders. Notably, despite a high frequency of CD8+ T cells in responding tumors, a functional analysis revealed significant upregulation of genes associated with stress and apoptosis in proliferative CD4+ and CD8+ T cells in BL tumors compared to in EP and LP tumors. These genes, including HSP90 and HSPA8, are linked to resistance to PD1/PD-L1 immune checkpoint inhibitors. A ligand-receptor analysis showed enhanced interactions associated with inhibitory T-cell proliferation (SPP1-CD44) and suppression of immune activity (MDK-NCL) in LP tumors. Longitudinal biopsies consistently revealed dynamic NK cell expansion and enhanced cytotoxic T cell activity, alongside upregulation of immune activity inhibition, in LP tumors compared to in BL tumors. Notably, the predictive biomarker panel from BL tumor cells was validated in 2 independent cohorts, where it consistently predicted a significant improvement in mPFS duration in signature-high versus -low groups. CONCLUSION This study underscores the significance of molecular biomarkers in predicting clinical outcomes to CDK4/6i. Tumor-infiltration CD8+ T and NK cells may also serve as baseline predictors. These insights pave the way for optimizing therapeutic strategies based on microenvironment-specific changes, providing a personalized and effective approach for managing HR+/HER2- mBC and improving patient outcomes.
Collapse
Affiliation(s)
- Linjie Luo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Peng Yang
- Department of Statistics, Rice University, Houston, TX, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sofia Mastoraki
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole M Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akshara Singareeka Raghavendra
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Debasish Tripathy
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Lu W, Huang G, Yu Y, Zhai X, Zhou X. Fructose 1,6-bisphosphatase 1 is a potential biomarker affecting the malignant phenotype and aerobic glycolysis in glioblastoma. PeerJ 2025; 13:e18926. [PMID: 39902328 PMCID: PMC11789649 DOI: 10.7717/peerj.18926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
Background Fructose 1,6-bisphosphatase 1 (FBP1) has been considered as a potential prognostic biomarker in glioblastoma (GBM), and this study explored the underlying mechanism. Methods The expression and effect of FBP1 expression on the prognosis of GBM patients were examined applying bioinformatics analyses. After measuring the expression of FBP1 in normal glial cell line HEB and GBM cells, cell counting kit-8 (CCK-8), 5-ethynyl-2-deoxyuridine (EdU), colony formation, transwell, and wound healing assay were carried out to examine the effects of silencing FBP1 on the proliferation and invasion of GBM cells. Aerobic glycolysis was measured by calculating the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of FBP1-silenced GBM cells. Furthermore, the protein levels of the mediators related to PI3K/AKT pathway and BCL2 protein family were detected via immunoblotting. Additionally, the effects of FBP1 silencing on the macrophage M2 polarization were assessed based on the fluorescence intensity of CD206 and the phosphorylation of STAT6 quantified by immunofluorescence and immunoblotting, respectively. Results High-expressed FBP1 was indicative of a worse prognosis of GBM. FBP1 knockdown in GBM cells suppressed the proliferation, invasion, migration, and aerobic glycolysis of GBM cells, lowered the phosphorylation levels of AKT and PI3K and the protein expression of BCL2 but promoted BAX protein expression. Moreover, FBP1 knockdown reduced CD206 fluorescence intensity and the phosphorylation of STAT6. Conclusion To conclude, FBP1 could be considered as a biomarker that affected the malignant phenotypes and aerobic glycolysis in GBM, contributing to the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Weihong Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| | - Guozheng Huang
- Department of Quality Management, Jinhua Fifth Hospital, Jinhua, China
| | - Yihan Yu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| | - Xia Zhai
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| | - Xiangfeng Zhou
- Clinical Medicine Department, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| |
Collapse
|
6
|
Xing H, Wang Q, Ma Y, Han R, Li H. The significance of MDK growth factor in the antler development of sika deer (Cervus nippon): An in-depth analysis. Gene Expr Patterns 2024:119388. [PMID: 39733918 DOI: 10.1016/j.gep.2024.119388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Deer antlers exhibit rapid growth during the velvet phase. As a critical endogenous growth factor in animals, midkine (MDK) is likely closely associated with the growth of antlers. However, the spatio-temporal expression pattern of MDK during the velvet phase was unclear. This study explored the physiological role of MDK by analyzing its molecular characterization and spatio-temporal expression dynamics during the growth of sika deer antlers. The study cloned the coding sequences (CDS) of MDK, which spanned 429 bp and encoded 142 amino acids. The results of bioinformatics prediction analysis showed that MDK was an extracellular hydrophilic secreted protein, which was mainly composed of random coil. MDK protein was relatively conserved in evolution and MDK protein of sika deer had the closest relatives to ruminants and the furthest relatives to Aves. The tip tissues (dermis, mesenchyme, precartilage, cartilage) of antlers were collected from three important growth and development nodes (early period, EP. middle period, MP. late period, LP), and quantitative real-time polymerase chain reaction (qRT-PCR) was chosen to detect the spatio-temporal expression of the MDK. The results showed that MDK was expressed in all tissue sites of antler tip in EP, MP, LP. MDK had a consistent expression pattern under all growth periods and was strongly expressed in dermis and cartilage. The expression of MDK was consistently up-regulated in precartilage, whereas it was first up-regulated and then down-regulated in other tissues, and it was highly significant in MP compared to EP and LP (P < 0.01). This study suggested that MDK may regulate the growth of dermis and cartilage tissues mainly by participating in the process of angiogenesis and bone formation, thus promoting the rapid growth of antlers.
Collapse
Affiliation(s)
- Haihua Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Qianghui Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yukai Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
7
|
Yuan L, Zhou P, Liu W, Jiang L, Xia M, Zhao Y. Midkine promotes thyroid cancer cell migration and invasion by activating the phosphatidylinositol 3 kinase/protein kinase B/mammalian target of rapamycin pathway. Cytojournal 2024; 21:41. [PMID: 39737135 PMCID: PMC11683398 DOI: 10.25259/cytojournal_47_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/25/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Thyroid cancer (TC) therapy, which is routinely used at present, can improve patients' survival rates. However, lymph node metastasis results in a higher degree of TC malignancy in patients who experience recurrence and/or death. The elucidation of new mechanisms of TC metastasis can help identify new therapeutic targets. Midkine (MDK) is expressed aberrantly in various cancers. However, the regulatory mechanisms of MDK in TC remain largely unknown. Hence, this study mainly explores the effect and molecular function of MDK in TC. Material and Methods MDK gene expression and protein levels were analyzed using the Gene Expression Profiling Interactive Analysis and the Human Protein Atlas online databases. MDK messenger RNA (mRNA) in TC was analyzed by quantitative real-time polymerase chain reaction. MDK, phosphatidylinositol 3 kinase (PI3K), phosphorylated AKT (p-AKT), and phosphorylated mammalian target of rapamycin (p-mTOR) protein in TC were analyzed by Western blotting. Transwell and wound healing assays were performed to evaluate TC cell metastasis. Results MDK mRNA was significantly highly expressed in most patients with TC (P < 0.05). Moreover, MDK gene expression levels correlated with different TC stages. MDK protein was negative in normal tissues and positive in TC tissues. MDK mRNA and protein were significantly highly expressed in TC cells (P < 0.01). Compared with metastasis in the control group, that in the MDK group is significantly suppressed by MDK knockdown (P < 0.001). MDK knockdown also significantly inhibited PI3K, p-AKT, and p-mTOR protein expression in TPC-1 and K1 cells (P < 0.001). The activation of PAmT-P significantly enhanced the PI3K, p-AKT, and p-mTOR protein expression in TPC-1 and K1 cells (P < 0.001) and promoted metastasis (P < 0.001), thereby disrupting the inhibitory effect of the MDK knockdown. Conclusion Our findings confirmed that MDK promotes TC migration and invasion by activating PAmT-P. MDK is a novel molecular target for the treatment of patients with metastatic TC.
Collapse
Affiliation(s)
- Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ping Zhou
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wengang Liu
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liqing Jiang
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Mengwen Xia
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yongfeng Zhao
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Yan P, Jimenez ER, Li Z, Bui T, Seehawer M, Nishida J, Foidart P, Stevens LE, Xie Y, Gomez MM, Park SY, Long HW, Polyak K. Midkine as a driver of age-related changes and increase in mammary tumorigenesis. Cancer Cell 2024; 42:1936-1954.e9. [PMID: 39366375 PMCID: PMC11560576 DOI: 10.1016/j.ccell.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Aging is a pivotal risk factor for cancer, yet the underlying mechanisms remain poorly defined. Here, we explore age-related changes in the rat mammary gland by single-cell multiomics. Our findings include increased epithelial proliferation, loss of luminal identity, and decreased naive B and T cells with age. We discover a luminal progenitor population unique to old rats with profiles reflecting precancerous changes and identify midkine (Mdk) as a gene upregulated with age and a regulator of age-related luminal progenitors. Midkine treatment of young rats mimics age-related changes via activating PI3K-AKT-SREBF1 pathway and promotes nitroso-N-methylurea-induced mammary tumorigenesis. Midkine levels increase with age in human blood and mammary epithelium, and higher MDK in normal breast tissue is associated with higher breast cancer risk in younger women. Our findings reveal a link between aging and susceptibility to tumor initiation and identify midkine as a mediator of age-dependent increase in breast tumorigenesis.
Collapse
Affiliation(s)
- Pengze Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ernesto Rojas Jimenez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Triet Bui
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pierre Foidart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Miguel Munoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - So Yeon Park
- Department of Pathology, Seoul National University, Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Seoul National University, Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea; Harvard Stem Cell Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Li Y, Yang Y, Zhu L, Xie S, Guo L, Zhang Z, Zhe C, Li W, Liu F. Angelica sinensis polysaccharide facilitates chondrogenic differentiation of adipose-derived stem cells via MDK-PI3K/AKT signaling cascade. Biomed Pharmacother 2024; 179:117349. [PMID: 39191028 DOI: 10.1016/j.biopha.2024.117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECT Adipose-derived mesenchymal stem cells (ADSCs) have received significant attention in the field of cartilage tissue repair. Angelica sinensis polysaccharide (ASP) can enhance both the proliferation and differentiation of mesenchymal stem cells. Therefore, we intend to explore the effect of ASP on chondrogenic differentiation of ADSCs in vitro, and elucidate the underlying mechanisms. METHOD ADSCs were treated with different concentrations of ASP to determine the optimal concentration. The chondrogenic differentiation of ADSCs was evaluated using Alcian blue staining, qRT-PCR, western blot, and IF staining. Transcriptome sequencing was performed to identify the expression profiles of ADSCs before and after ASP treatment, followed by bioinformatic analyses including differential expression analysis, enrichment analysis, and construction of PPI networks to identify differentially expressed genes (DEGs) associated with ASP and chondrogenic differentiation. RESULT Surface markers of isolated rat-derived ADSCs were identified by CD44+CD90+CD45-CD106-, and exhibited the capacity for lipogenic, osteogenic, and chondrogenic differentiation. With increasing concentration of ASP treatment, there was an upregulation in the activity and acidic mucosubstance of ADSCs. The levels of Aggrecan, COL2A1, and Sox9 showed an increase in ADSCs after 28 days of 80 µg/ml ASP treatment. Transcriptome sequencing revealed that ASP-associated DEGs regulate extracellular matrix synthesis, immune response, inflammatory response, and cell cycle, and are involved in the NF-κB, AGE-RAGE, and calcium pathways. Moreover, Edn1, Frzb, Mdk, Nog, and Sulf1 are hub genes in DEGs. Notably, ASP upregulated MDK levels in ADSCs, while knockdown of MDK mitigated ASP-induced elevations in acidic mucosubstance, chondrogenic differentiation-related markers (Aggrecan, COL2A1, and Sox9), and the activity of the PI3K/AKT pathway. CONCLUSION ASP enhances the proliferation and chondrogenic differentiation of ADSCs by activating the MDK-mediated PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yangjie Li
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Yongqiang Yang
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Lina Zhu
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Shukang Xie
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Ling Guo
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Zhiming Zhang
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Chunyang Zhe
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Wenhui Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming City, Yunnan Province, China
| | - Feng Liu
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China.
| |
Collapse
|
10
|
Zhang S, Yang Y, Zhang L, Liu Y, Guo Z, Wu J, Zhou W, Hong Z, Zhang W. Identification and Validation of a Prognostic Signature Based on Fibroblast Immune-related Genes to Predict the Prognosis and Therapeutic Response of renal clear cell carcinoma by Integrated Analysis of Single-Cell and Bulk RNA Sequencing Data. J Cancer 2024; 15:5942-5955. [PMID: 39440053 PMCID: PMC11493018 DOI: 10.7150/jca.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background: The importance of fibroblasts in cancer progression is becoming more acknowledged, particularly the significance of their immune-related genes. However, the precise roles these genes play in fibroblasts throughout tumor development remains unclear. Exploring how these genes function in advancing kidney renal clear cell carcinoma (KIRC) could provide answers to these uncertainties. Material and method: The Cancer Genome Atlas (TCGA) database served as the source of data for KIRC patients. We distinguished fibroblast immune-related genes (FIGs), which are used to construct risk score. Further analysis conducted including enrichment analysis, assessment of tumor mutation burden (TMB), evaluation of tumor microenvironment (TME), analysis of immune cell infiltration, and drug sensitivity prediction. Result: The risk score using 6 FIGs effectively predicts the outcomes for KIRC patients. Nomogram which is based on the risk score and clinical data, demonstrated superior predictive performance compared to the version without the risk score. Enrichment analysis identified that coagulation pathway predominates in high-risk group, the protein secretion pathway is prevalent in low-risk patients' cohort. The adverse prognosis in high-risk patient cohort could be linked to an elevated TMB. TME analysis showed that high-risk group's tumor tissues contain more immune and stromal cells. Furthermore, the amount of regulatory T cells increases with the risk score. Low-risk group response better to immunotherapy. Finally, RT-qPCR confirmed the differential expression of FIGs in KIRC patients. Conclusion: This risk score and nomogram are valuable tools assessing KIRC patients' prognosis. Poorer prognosis in high-risk categories may have relationship with activation of coagulation pathway and a higher TMB.
Collapse
Affiliation(s)
- Shuwen Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China, 330006
- Queen Mary School, Jiangxi medical college, Nanchang University, Nanchang, China, 330006
| | - Yuqian Yang
- Queen Mary School, Jiangxi medical college, Nanchang University, Nanchang, China, 330006
- Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China, 330006
| | - Liyi Zhang
- Queen Mary School, Jiangxi medical college, Nanchang University, Nanchang, China, 330006
- Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China, 330006
| | - Yijiang Liu
- Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China, 330006
- Jiangxi medical college, Nanchang University, Nanchang, China, 330006
| | - Zihun Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China, 330006
| | - Jiajun Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China, 330006
| | - Weijun Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China, 330006
| | - Zhengdong Hong
- Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China, 330006
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China, 330006
| |
Collapse
|
11
|
Ishahak M, Han RH, Annamalai D, Woodiwiss T, McCornack C, Cleary RT, DeSouza PA, Qu X, Dahiya S, Kim AH, Millman JR. Modeling glioblastoma tumor progression via CRISPR-engineered brain organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606387. [PMID: 39211284 PMCID: PMC11361109 DOI: 10.1101/2024.08.02.606387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of brain cancer that is highly resistant to therapy due to significant intra-tumoral heterogeneity. The lack of robust in vitro models to study early tumor progression has hindered the development of effective therapies. Here, we develop engineered GBM organoids (eGBOs) harboring GBM subtype-specific oncogenic mutations to investigate the underlying transcriptional regulation of tumor progression. Single-cell and spatial transcriptomic analyses revealed that these mutations disrupt normal neurodevelopment gene regulatory networks resulting in changes in cellular composition and spatial organization. Upon xenotransplantation into immunodeficient mice, eGBOs form tumors that recapitulate the transcriptional and spatial landscape of human GBM samples. Integrative single-cell trajectory analysis of both eGBO-derived tumor cells and patient GBM samples revealed the dynamic gene expression changes in developmental cell states underlying tumor progression. This analysis of eGBOs provides an important validation of engineered cancer organoid models and demonstrates their utility as a model of GBM tumorigenesis for future preclinical development of therapeutics.
Collapse
|
12
|
Chen S, Liao J, Li J, Wang S. GPC2 promotes prostate cancer progression via MDK-mediated activation of PI3K/AKT signaling pathway. Funct Integr Genomics 2024; 24:127. [PMID: 39014225 PMCID: PMC11252201 DOI: 10.1007/s10142-024-01406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Prostate cancer is a major medical problem for men worldwide. Advanced prostate cancer is currently incurable. Recently, much attention was paid to the role of GPC2 in the field of oncology. Nevertheless, there have been no investigations of GPC2 and its regulatory mechanism in prostate cancer. Here, we revealed a novel action of GPC2 and a tumor promoting mechanism in prostate cancer. GPC2 was upregulated in prostate cancer tissues and cell lines. Higher expression of GPC2 was correlated with higher Gleason score, lymphatic metastasis, and worse overall survival in prostate cancer patients. Decreased expression of GPC2 inhibited cell proliferation, migration, and invasion in prostate cancer, whereas GPC2 overexpression promoted these properties. Mechanistically, GPC2 promoted the activation of PI3K/AKT signaling pathway through MDK. The rescue assay results in prostate cancer cells demonstrated that overexpression of MDK could attenuate GPC2 knockdown induced inactivation of PI3K/AKT signaling and partly reverse GPC2 knockdown induced inhibition of cell proliferation, migration, and invasion. In all, our study identified GPC2 as an oncogene in prostate cancer. GPC2 promoted prostate cancer cell proliferation, migration, and invasion via MDK-mediated activation of PI3K/AKT signaling pathway. GPC2 might be a promising prognosis predictor and potential therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Sijin Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Jiaxing Liao
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Juhua Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Saihui Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China.
| |
Collapse
|
13
|
Zhang W, Chen XS, Wei Y, Wang XM, Chen XJ, Chi BT, Huang LQ, He RQ, Huang ZG, Li Q, Chen G, He J, Wu M. Overexpressed KCNK1 regulates potassium channels affecting molecular mechanisms and biological pathways in bladder cancer. Eur J Med Res 2024; 29:257. [PMID: 38689322 PMCID: PMC11059691 DOI: 10.1186/s40001-024-01844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND This study aimed to explore the expression, molecular mechanism and its biological function of potassium two pore domain channel subfamily K member 1 (KCNK1) in bladder cancer (BC). METHODS We integrated large numbers of external samples (n = 1486) to assess KCNK1 mRNA expression levels and collected in-house samples (n = 245) for immunohistochemistry (IHC) experiments to validate at the KCNK1 protein level. Single-cell RNA sequencing (scRNA-seq) analysis was performed to further assess KCNK1 expression and cellular communication. The transcriptional regulatory mechanisms of KCNK1 expression were explored by ChIP-seq, ATAC-seq and ChIA-PET data. Highly expressed co-expressed genes (HECEGs) of KCNK1 were used to explore potential signalling pathways. Furthermore, the immunoassay, clinical significance and molecular docking of KCNK1 were calculated. RESULTS KCNK1 mRNA was significantly overexpressed in BC (SMD = 0.58, 95% CI [0.05; 1.11]), validated at the protein level (p < 0.0001). Upregulated KCNK1 mRNA exhibited highly distinguishing ability between BC and control samples (AUC = 0.82 [0.78-0.85]). Further, scRNA-seq analysis revealed that KCNK1 expression was predominantly clustered in BC epithelial cells and tended to increase with cellular differentiation. BC epithelial cells were involved in cellular communication mainly through the MK signalling pathway. Secondly, the KCNK1 transcription start site (TSS) showed promoter-enhancer interactions in three-dimensional space, while being transcriptionally regulated by GRHL2 and FOXA1. Most of the KCNK1 HECEGs were enriched in cell cycle-related signalling pathways. KCNK1 was mainly involved in cellular metabolism-related pathways and regulated cell membrane potassium channel activity. KCNK1 expression was associated with the level of infiltration of various immune cells. Immunotherapy and chemotherapy (docetaxel, paclitaxel and vinblastine) were more effective in BC patients in the high KCNK1 expression group. KCNK1 expression correlated with age, pathology grade and pathologic_M in BC patients. CONCLUSIONS KCNK1 was significantly overexpressed in BC. A complex and sophisticated three-dimensional spatial transcriptional regulatory network existed in the KCNK1 TSS and promoted the upregulated of KCNK1 expression. The high expression of KCNK1 might be involved in the cell cycle, cellular metabolism, and tumour microenvironment through the regulation of potassium channels, and ultimately contributed to the deterioration of BC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Song Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ying Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Min Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xian-Jin Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lin-Qing Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Juan He
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Mei Wu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
14
|
Christou C, Stylianou A, Gkretsi V. Midkine (MDK) in Hepatocellular Carcinoma: More than a Biomarker. Cells 2024; 13:136. [PMID: 38247828 PMCID: PMC10814326 DOI: 10.3390/cells13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Midkine (MDK) is a multifunctional secreted protein that can act as a cytokine or growth factor regulating multiple signaling pathways and being implicated in fundamental cellular processes, such as survival, proliferation, and migration. Although its expression in normal adult tissues is barely detectable, MDK serum levels are found to be elevated in several types of cancer, including hepatocellular carcinoma (HCC). In this review, we summarize the findings of recent studies on the role of MDK in HCC diagnosis and progression. Overall, studies show that MDK is a powerful biomarker for HCC early diagnosis, as it can differentiate not only between HCC patients and normal individuals but also between HCC patients and patients with other liver pathologies. It is correlated with high recurrence rates and was shown to be valuable for the diagnosis of early-stage HCC, even in patients negative for α-fetoprotein (AFP), the most commonly used biomarker for HCC diagnosis. A comparison with AFP reveals that MDK is inferior to AFP with regard to specificity but significantly superior with regard to sensitivity, which further indicates the need for using both biomarkers for more effective HCC diagnosis.
Collapse
Affiliation(s)
- Christiana Christou
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus;
- European University Cyprus Research Centre Ltd., Nicosia 2404, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Andreas Stylianou
- European University Cyprus Research Centre Ltd., Nicosia 2404, Cyprus;
- Cancer Mechanobiology and Applied Biophysics Laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus
| | - Vasiliki Gkretsi
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus;
- European University Cyprus Research Centre Ltd., Nicosia 2404, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
15
|
Li JD, Chen Y, Jing SW, Wang LT, Zhou YH, Liu ZS, Song C, Li DZ, Wang HQ, Huang ZG, Dang YW, Chen G, Luo JY. Triosephosphate isomerase 1 may be a risk predictor in laryngeal squamous cell carcinoma: a multi-centered study integrating bulk RNA, single-cell RNA, and protein immunohistochemistry. Eur J Med Res 2023; 28:591. [PMID: 38102653 PMCID: PMC10724924 DOI: 10.1186/s40001-023-01568-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Although great progress has been made in anti-cancer therapy, the prognosis of laryngeal squamous cell carcinoma (LSCC) patients remains unsatisfied. Quantities of studies demonstrate that glycolytic reprograming is essential for the progression of cancers, where triosephosphate isomerase 1 (TPI1) serves as a catalytic enzyme. However, the clinicopathological significance and potential biological functions of TPI1 underlying LSCC remains obscure. METHODS We collected in-house 82 LSCC tissue specimens and 56 non-tumor tissue specimens. Tissue microarrays (TMA) and immunohistochemical (IHC) experiments were performed. External LSCC microarrays and bulk RNA sequencing data were integrated to evaluate the expression of TPI1. We used a log-rank test and the CIBERSORT algorithm to assess the prognostic value of TPI1 and its association with the LSCC microenvironment. Malignant laryngeal epithelial cells and immune-stromal cells were identified using inferCNV and CellTypist. We conducted a comprehensive analysis to elucidate the molecular functions of TPI1 in LSCC tissue and single cells using Pearson correlation analysis, high dimensional weighted gene co-expression analysis, gene set enrichment analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) screen. We explored intercellular communication patterns between LSCC single cells and immune-stromal cells and predicted several therapeutic agents targeting TPI1. RESULTS Based on the in-house TMA and IHC analysis, TPI1 protein was found to have a strong positive expression in the nucleus of LSCC cells but only weakly positive activity in the cytoplasm of normal laryngeal cells (p < 0.0001). Further confirmation of elevated TPI1 mRNA expression was obtained from external datasets, comparing 251 LSCC tissue samples to 136 non-LSCC tissue samples (standardized mean difference = 1.06). The upregulated TPI1 mRNA demonstrated a high discriminative ability between LSCC and non-LSCC tissue (area under the curve = 0.91; sensitivity = 0.87; specificity = 0.79), suggesting its potential as a predictive marker for poor prognosis (p = 0.037). Lower infiltration abundance was found for plasma cells, naïve B cells, monocytes, and neutrophils in TPI-high expression LSCC tissue. Glycolysis and cell cycle were significantly enriched pathways for both LSCC tissue and single cells, where heat shock protein family B member 1, TPI1, and enolase 1 occupied a central position. Four outgoing communication patterns and two incoming communication patterns were identified from the intercellular communication networks. TPI1 was predicted as an oncogene in LSCC, with CRISPR scores less than -1 across 71.43% of the LSCC cell lines. TPI1 was positively correlated with the half maximal inhibitory concentration of gemcitabine and cladribine. CONCLUSIONS TPI1 is dramatically overexpressed in LSCC than in normal tissue, and the high expression of TPI1 may promote LSCC deterioration through its metabolic and non-metabolic functions. This study contributes to advancing our knowledge of LSCC pathogenesis and may have implications for the development of targeted therapies in the future.
Collapse
Affiliation(s)
- Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Shu-Wen Jing
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Li-Ting Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yu-Hong Zhou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Zhi-Su Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Chang Song
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Da-Zhi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Hai-Quan Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China.
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China.
| |
Collapse
|
16
|
Yuemaierabola A, Guo J, Sun L, Yeerkenbieke B, Liu F, Ye D, Zhai X, Guo W, Cao Y. Comprehensive analysis of CPSF4-related alternative splice genes in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:13955-13971. [PMID: 37542549 PMCID: PMC10590311 DOI: 10.1007/s00432-023-05178-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND An important stage in controlling gene expression is RNA alternative splicing (AS), and aberrant AS can trigger the development and spread of malignancies, including hepatocellular carcinoma (HCC). A crucial component of AS is cleavage and polyadenylation-specific factor 4 (CPSF4), a component of the CPSF complex, but it is unclear how CPSF4-related AS molecules describe immune cell infiltration in the total tumor microenvironment (TME). METHODS Using RNA-sequencing data and clinical data from TCGA-LIHC from the Cancer Genome Atlas (TCGA) database, the AS genes with differential expression were found. The univariate Cox analysis, KM analysis, and Spearman analysis were used to identify the AS genes related to prognosis. Screening of key AS genes that are highly correlated with CPSF4. Key genes were screened using Cox regression analysis and stepwise regression analysis, and prognosis prediction models and the topography of TME cell infiltration were thoroughly analyzed. RESULTS A model consisting of seven AS genes (STMN1, CLSPN, MDK, RNFT2, PRR11, RNF157, GHR) was constructed that was aimed to predict prognostic condition. The outcomes of the HCC samples in the high-risk group were considerably worse than those in the lower risk group (p < 0.0001), and different risk patient groups were formed. According to the calibration curves and the area under the ROC curve (AUC) values for survival at 1, 2, and 3 years, the clinical nomogram performs well in predicting survival in HCC patients. These values were 0.76, 0.70, and 0.69, respectively. Moreover, prognostic signature was markedly related to immune infiltration and immune checkpoint genes expression. CONCLUSION By shedding light on the function of CPSF4 and the seven AS genes in the formation and progression of HCC, this research analysis contributes to the development of more useful prognostic, diagnostic, and possibly therapeutic biomarkers.
Collapse
Affiliation(s)
- Anwaier Yuemaierabola
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, China
| | - Jun Guo
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, China
| | - Lili Sun
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, China
| | - Buerlan Yeerkenbieke
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, China
| | - Fuzhong Liu
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, China
| | - Dilinaer Ye
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, China
| | - Xiaoyi Zhai
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, China
| | - Wenjia Guo
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, China.
| | - Yan Cao
- Cancer Hospital of Xinjiang Uygur Autonomous Region (Affiliated Cancer Hospital of Xinjiang Medical University), Urumqi, 830011, China.
- Nursing School of Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
17
|
Chiu TJ, Chen CH, Chen YJ, Wee Y, Wang CS, Luo SD. Prognosis of Midkine and AT1R expression in resectable head and neck squamous cell carcinoma. Cancer Cell Int 2023; 23:212. [PMID: 37743493 PMCID: PMC10518915 DOI: 10.1186/s12935-023-03060-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Research studies have demonstrated that Midkine (MDK) can influence the expression and activity of Renin-angiotensin system (RAS) components. Angiotensin II is involved in tumor growth and angiogenesis in different cancers. We previously observed Angiotensin II receptor blockers (ARBs) improve the survival rates of patients with oral cancers. These findings have prompted us to investigate whether MDK can influence the RAS pathway, mainly through its association with angiotensin II type 1 receptor (AT1R), which contributes to the observed poor prognosis in head and neck squamous cell carcinoma (HNSCC) patients. METHODS MDK and AT1R expressions were examined in 150 HNSCC patients post-operation by immunohistochemical staining between 1 January 2010 and 31 December 2016. We tested the over-expression and silencing of MDK to evaluate the AT1R expression and functional biological assays in HNSCC cell lines HSC-3 and SAS. RESULTS Positive expression of MDK is correlated with positive AT1R expression. MDK predicted poor NSCC patients' survival. Silencing MDK could suppress AT1R and pAKT expression and reduce the growth, migration, and invasion of HNSCC cells. ARB also inhibits MDK stimulating HNSCC cell proliferation. Overexpression of MDK could upregulate AT1R and pAKT. CONCLUSIONS MDK is an independent prognostic factor of HNSCC post-operation, and AT1R regulates HNSCC cell growth, invasion, and migration. Positive MDK and AT1R expressions are highly correlated. Mechanistically, the interaction between MDK and AT1R is crucial for MDK-mediated cell viability, and inhibiting AT1R can effectively counteract or abolish these effects. Furthermore, MDK exerts a regulatory role in the expression of AT1R, as well as in the growth and motility of HNSCC cells. These findings highlight the involvement of the interaction between MDK, AT1R, and the pAkt signaling pathways in HNSCC cell viability growth.
Collapse
Affiliation(s)
- Tai-Jan Chiu
- Department of Hematology‑Oncology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Chang-Han Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ju Chen
- Kaohsiung Cancer Prevention and Screening Center, Kaohsiung, 833, Taiwan
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, 33302, Taiwan.
| |
Collapse
|
18
|
Santana-Bejarano MB, Grosso-Martínez PR, Puebla-Mora AG, Martínez-Silva MG, Nava-Villalba M, Márquez-Aguirre AL, Ortuño-Sahagún D, Godínez-Rubí M. Pleiotrophin and the Expression of Its Receptors during Development of the Human Cerebellar Cortex. Cells 2023; 12:1733. [PMID: 37443767 PMCID: PMC10341181 DOI: 10.3390/cells12131733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
During embryonic and fetal development, the cerebellum undergoes several histological changes that require a specific microenvironment. Pleiotrophin (PTN) has been related to cerebral and cerebellar cortex ontogenesis in different species. PTN signaling includes PTPRZ1, ALK, and NRP-1 receptors, which are implicated in cell differentiation, migration, and proliferation. However, its involvement in human cerebellar development has not been described so far. Therefore, we investigated whether PTN and its receptors were expressed in the human cerebellar cortex during fetal and early neonatal development. The expression profile of PTN and its receptors was analyzed using an immunohistochemical method. PTN, PTPRZ1, and NRP-1 were expressed from week 17 to the postnatal stage, with variable expression among granule cell precursors, glial cells, and Purkinje cells. ALK was only expressed during week 31. These results suggest that, in the fetal and neonatal human cerebellum, PTN is involved in cell communication through granule cell precursors, Bergmann glia, and Purkinje cells via PTPRZ1, NRP-1, and ALK signaling. This communication could be involved in cell proliferation and cellular migration. Overall, the present study represents the first characterization of PTN, PTPRZ1, ALK, and NRP-1 expression in human tissues, suggesting their involvement in cerebellar cortex development.
Collapse
Affiliation(s)
- Margarita Belem Santana-Bejarano
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Paula Romina Grosso-Martínez
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Ana Graciela Puebla-Mora
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
| | - María Guadalupe Martínez-Silva
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Mario Nava-Villalba
- Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ana Laura Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara 44270, Mexico;
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.B.S.-B.); (P.R.G.-M.); (A.G.P.-M.)
- Departamento de Morfología, CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
19
|
Wei L, Pan M, Jiang Q, Hu B, Zhao J, Zou C, Chen L, Tang C, Zou D. Eukaryotic initiation factor 4 A-3 promotes glioblastoma growth and invasion through the Notch1-dependent pathway. BMC Cancer 2023; 23:550. [PMID: 37322413 DOI: 10.1186/s12885-023-10946-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND As an adult tumor with the most invasion and the highest mortality rate, the inherent heterogeneity of glioblastoma (GBM) is the main factor that causes treatment failure. Therefore, it is important to have a deeper understanding of the pathology of GBM. Some studies have shown that Eukaryotic Initiation Factor 4A-3 (EIF4A3) can promote the growth of many people's tumors, and the role of specific molecules in GBM remains unclear. METHODS The correlation between the expression of EIF4A3 gene and its prognosis was studied in 94 GBM patients using survival analysis. Further in vitro and in vivo experiments, the effect of EIF4A3 on GBM cells proliferation, migration, and the mechanism of EIF4A3 on GBM was explored. In addition, combined with bioinformatics analysis, we further confirmed that EIF4A3 contributes to the progress of GBM. RESULTS The expression of EIF4A3 was upregulated in GBM tissues, and high expression of EIF4A3 is associated with poor prognosis in GBM. In vitro, knockdown of EIF4A3 significantly reduced the proliferation, migration, and invasion abilities of GBM cells, whereas overexpression of EIF4A3 led to the opposite effect. The analysis of differentially expressed genes related to EIF4A3 indicates that it is involved in many cancer-related pathways, such as Notch and JAK-STAT3 signal pathway. In Besides, we demonstrated the interaction between EIF4A3 and Notch1 by RNA immunoprecipitation. Finally, the biological function of EIF4A3-promoted GBM was confirmed in living organisms. CONCLUSION The results of this study suggest that EIF4A3 may be a potential prognostic factor, and Notch1 participates in the proliferation and metastasis of GBM cells mediated by EIF4A3.
Collapse
Affiliation(s)
- Lei Wei
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Qiulan Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, People's Republic of China
| | - Beiquan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Jianyi Zhao
- Department of Neurosurgery, RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Chunhai Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
- The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue Dong Road, Nanning, 530007, Guangxi, China.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
- The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue Dong Road, Nanning, 530007, Guangxi, China.
| |
Collapse
|
20
|
Saikia M, Cheung N, Singh AK, Kapoor V. Role of Midkine in Cancer Drug Resistance: Regulators of Its Expression and Its Molecular Targeting. Int J Mol Sci 2023; 24:8739. [PMID: 37240085 PMCID: PMC10218550 DOI: 10.3390/ijms24108739] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Molecules involved in drug resistance can be targeted for better therapeutic efficacies. Research on midkine (MDK) has escalated in the last few decades, which affirms a positive correlation between disease progression and MDK expression in most cancers and indicates its association with multi-drug resistance in cancer. MDK, a secretory cytokine found in blood, can be exploited as a potent biomarker for the non-invasive detection of drug resistance expressed in various cancers and, thereby, can be targeted. We summarize the current information on the involvement of MDK in drug resistance, and transcriptional regulators of its expression and highlight its potential as a cancer therapeutic target.
Collapse
Affiliation(s)
- Minakshi Saikia
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (M.S.); (N.C.); (A.K.S.)
| | - Nathan Cheung
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (M.S.); (N.C.); (A.K.S.)
| | - Abhay Kumar Singh
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (M.S.); (N.C.); (A.K.S.)
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (M.S.); (N.C.); (A.K.S.)
- Siteman Cancer Center, St. Louis, MO 63108, USA
| |
Collapse
|
21
|
Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother 2023; 158:114204. [PMID: 36916430 DOI: 10.1016/j.biopha.2022.114204] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant cancers of central nervous system and due to its sensitive location, surgical resection has high risk and therefore, chemotherapy and radiotherapy are utilized for its treatment. However, chemoresistance and radio-resistance are other problems in GBM treatment. Hence, new therapies based on genes are recommended for treatment of GBM. PTEN is a tumor-suppressor operator in cancer that inhibits PI3K/Akt/mTOR axis in diminishing growth, metastasis and drug resistance. In the current review, the function of PTEN/PI3K/Akt axis in GBM progression is evaluated. Mutation or depletion of PTEN leads to increase in GBM progression. Low expression level of PTEN mediates poor prognosis in GBM and by increasing proliferation and invasion, promotes malignancy of tumor cells. Moreover, loss of PTEN signaling can result in therapy resistance in GBM. Activation of PTEN signaling impairs GBM metabolism via glycolysis inhibition. In contrast to PTEN, PI3K/Akt signaling has oncogenic function and during tumor progression, expression level of PI3K/Akt enhances. PI3K/Akt signaling shows positive association with oncogenic pathways and its expression similar to PTEN signaling, is regulated by non-coding RNAs. PTEN upregulation and PI3K/Akt signaling inhibition by anti-cancer agents can be beneficial in interfering GBM progression. This review emphasizes on the signaling networks related to PTEN/PI3K/Akt and provides new insights for targeting this axis in effective GBM treatment.
Collapse
|
22
|
Yu X, Zhou Z, Tang S, Zhang K, Peng X, Zhou P, Zhang M, Shen L, Yang L. MDK induces temozolomide resistance in glioblastoma by promoting cancer stem-like properties. Am J Cancer Res 2022; 12:4825-4839. [PMID: 36381313 PMCID: PMC9641408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023] Open
Abstract
Glioblastoma (GBM) is the most frequently observed and aggressive type of high-grade malignant glioma. Temozolomide (TMZ) is the primary agent for GBM treatment. However, TMZ resistance remains a major challenge. In this study, we report that MDK is overexpressed in GBM, which leads to enhanced proliferation, apoptosis inhibition, increased invasion and TMZ resistance in GBM cells. It was also determined that MDK could significantly improve the stem-like properties of GBM cells. Mechanistically, MDK enhanced p-JNK through Notch1 and subsequently increased the expression of stemness markers, such as CD133 and Nanog, thereby promoting TMZ resistance. Finally, xenograft experiments and clinical sample analysis also demonstrated that MDK knockdown could significantly inhibit tumor growth in vivo, and the expression of MDK was positively correlated with Notch1, p-JNK and CD133. This study revealed that MDK induces TMZ resistance by improving the stem-like properties of GBM by upregulating the Notch1/p-JNK signaling pathway, which provides a possible target for therapeutic intervention of GBM, especially in TMZ-resistant GBM with high MDK expression.
Collapse
Affiliation(s)
- Xuehui Yu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute, School of Basic Medicine Science, Central South UniversityChangsha, Hunan, China
| | - Zhuan Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute, School of Basic Medicine Science, Central South UniversityChangsha, Hunan, China
| | - Siyuan Tang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Kun Zhang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Xingzhi Peng
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute, School of Basic Medicine Science, Central South UniversityChangsha, Hunan, China
| | - Peijun Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute, School of Basic Medicine Science, Central South UniversityChangsha, Hunan, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Liangfang Shen
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute, School of Basic Medicine Science, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
23
|
Zhang Y, Fan H, Zou C, Wei F, Sun J, Shang Y, Chen L, Wang X, Hu B. Screening seven hub genes associated with prognosis and immune infiltration in glioblastoma. Front Genet 2022; 13:924802. [PMID: 36035134 PMCID: PMC9412194 DOI: 10.3389/fgene.2022.924802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Diagnostic and therapeutic challenges have been raised because of poor prognosis. Gene expression profiles of GBM and normal brain tissue samples from GSE68848, GSE16011, GSE7696, and The Cancer Genome Atlas (TCGA) were downloaded. We identified differentially expressed genes (DEGs) by differential expression analysis and obtained 3,800 intersected DEGs from all datasets. Enrichment analysis revealed that the intersected DEGs were involved in the MAPK and cAMP signaling pathways. We identified seven different modules and 2,856 module genes based on the co-expression analysis. Module genes were used to perform Cox and Kaplan-Meier analysis in TCGA to obtain 91 prognosis-related genes. Subsequently, we constructed a random survival forest model and a multivariate Cox model to identify seven hub genes (KDELR2, DLEU1, PTPRN, SRBD1, CRNDE, HPCAL1, and POLR1E). The seven hub genes were subjected to the risk score and survival analyses. Among these, CRNDE may be a key gene in GBM. A network of prognosis-related genes and the top three differentially expressed microRNAs with the largest fold-change was constructed. Moreover, we found a high infiltration of plasmacytoid dendritic cells and T helper 17 cells in GBM. In conclusion, the seven hub genes were speculated to be potential prognostic biomarkers for guiding immunotherapy and may have significant implications for the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Yesen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, GD, China
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huasheng Fan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Feng Wei
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Jiwei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuchun Shang
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, GD, China
- *Correspondence: Xiangyu Wang, ; Beiquan Hu,
| | - Beiquan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
- *Correspondence: Xiangyu Wang, ; Beiquan Hu,
| |
Collapse
|
24
|
Li R, Jiang Q, Tang C, Chen L, Kong D, Zou C, Lin Y, Luo J, Zou D. Identification of Candidate Genes Associated With Prognosis in Glioblastoma. Front Mol Neurosci 2022; 15:913328. [PMID: 35875673 PMCID: PMC9302577 DOI: 10.3389/fnmol.2022.913328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant primary brain tumor, which associated with extremely poor prognosis. Methods Data from datasets GSE16011, GSE7696, GSE50161, GSE90598 and The Cancer Genome Atlas (TCGA) were analyzed to identify differentially expressed genes (DEGs) between patients and controls. DEGs common to all five datasets were analyzed for functional enrichment and for association with overall survival using Cox regression. Candidate genes were further screened using least absolute shrinkage and selection operator (LASSO) and random forest algorithms, and the effects of candidate genes on prognosis were explored using a Gaussian mixed model, a risk model, and concordance cluster analysis. We also characterized the GBM landscape of immune cell infiltration, methylation, and somatic mutations. Results We identified 3,139 common DEGs, which were associated mainly with PI3K-Akt signaling, focal adhesion, and Hippo signaling. Cox regression identified 106 common DEGs that were significantly associated with overall survival. LASSO and random forest algorithms identified six candidate genes (AEBP1, ANXA2R, MAP1LC3A, TMEM60, PRRG3 and RPS4X) that predicted overall survival and GBM recurrence. AEBP1 showed the best prognostic performance. We found that GBM tissues were heavily infiltrated by T helper cells and macrophages, which correlated with higher AEBP1 expression. Stratifying patients based on the six candidate genes led to two groups with significantly different overall survival. Somatic mutations in AEBP1 and modified methylation of MAP1LC3A were associated with GBM. Conclusion We have identified candidate genes, particularly AEBP1, strongly associated with GBM prognosis, which may help in efforts to understand and treat the disease.
Collapse
Affiliation(s)
- Rongjie Li
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiulan Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chunhai Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Deyan Kong
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Jiefeng Luo,
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Donghua Zou,
| |
Collapse
|
25
|
CAF-derived midkine promotes EMT and cisplatin resistance by upregulating lncRNA ST7-AS1 in gastric cancer. Mol Cell Biochem 2022; 477:2493-2505. [PMID: 35588343 DOI: 10.1007/s11010-022-04436-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
This study aimed to investigate the role of cancer-associated fibroblast (CAF)-derived midkine (MK) in cisplatin (DDP) resistance. The primary cultures of CAFs and non-cancer fibroblasts (NFs) were isolated and purified. The DDP-resistant gastric cancer (GC) cells were cultured with CAF-conditioned medium. QRT-PCR and Elisa assays were employed to determine MK expression. The expression of ST7-AS1 was measured by qRT-PCR. The impact of CAFs, MK, and ST7-AS1 silencing on DDP resistance was determined by MTT and Annexin V/PI staining assay. Expression of EMT markers and PI3K/AKT was determined by Western blot and qRT-PCR. The role of MK in DDP resistance was confirmed in a xenograft model. Incubation with CAF-conditioned medium increased the IC50 to DDP. Also, incubation with CAF-conditioned medium increased cell viability, reduced cell apoptosis, and promoted EMT in DDP-resistant GC cells, which were all blocked with MK neutralization antibody treatment. MK increased the DDP resistance and upregulated the expression of ST7-AS1 in DDP-resistant GC cells. Additionally, ST7-AS1 knockdown increased the sensitivity to DDP by inhibiting EMT. Moreover, ST7-AS1 knockdown significantly decreased the phosphorylation of PI3K and AKT, and suppressed EMT, which were restored by MK addition. Finally, MK promoted tumor growth and DDP resistance in a mice model bearing the SGC-7901/DDP xenografts. CAF-derived MK promotes EMT-mediated DDP resistance via upregulation of ST7-AS1 and activation of PI3K/AKT pathway.
Collapse
|
26
|
Ince FA, Shariev A, Dixon K. PTEN as a target in melanoma. J Clin Pathol 2022; 75:jclinpath-2021-208008. [PMID: 35534199 DOI: 10.1136/jclinpath-2021-208008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/03/2022] [Indexed: 11/03/2022]
Abstract
PTEN is a well-known tumour suppressor protein that is frequently found to be mutated, inactivated or deleted in a wide range of different cancers. Its tumour suppressive properties result predominantly from its inhibitory effects on the PI3K-AKT signalling pathway. In melanoma, numerous different PTEN mutations have been identified in both melanoma cell lines and melanoma tissue. A number of different molecules can act on PTEN to either promote its suppression of melanoma, while other molecules may antagonise PTEN to inhibit its mechanism of action against melanoma. This review will discuss how the interactions of PTEN with other molecules may have a positive or negative impact on melanoma pathogenesis, giving rise to the potential for PTEN-targeted therapies against melanoma.
Collapse
Affiliation(s)
- Furkan Akif Ince
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Artur Shariev
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Katie Dixon
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Lin Y, Wei L, Hu B, Zhang J, Wei J, Qian Z, Zou D. RBM8A Promotes Glioblastoma Growth and Invasion Through the Notch/STAT3 Pathway. Front Oncol 2021; 11:736941. [PMID: 34804926 PMCID: PMC8600138 DOI: 10.3389/fonc.2021.736941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background Glioblastoma (GBM) is a prevalent brain malignancy with an extremely poor prognosis, which is attributable to its invasive biological behavior. The RNA-binding motif protein 8A (RBM8A) has different effects on various human cancers. However, the role of RBM8A in GBM progression remains unclear. Methods We investigated the expression levels of RBM8A in 94 GBM patients and explored the correlation between RBM8A expression and patient prognosis. Using in vitro and in vivo assays, combined with GBM sequencing data from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we examined whether and how RBM8A contributes to GBM progression. Results RBM8A was up-regulated in GBM tissues, and its higher expression correlated with worse prognosis. Knockdown of RBM8A inhibited GBM progression and invasion ability both in vitro and in vivo. On the contrary, overexpression of RBM8A promoted GBM progression and invasion ability. Enrichment analysis of differentially expressed genes in GBM data identified the Notch1/STAT3 network as a potential downstream target of RBM8A, and this was supported by molecular docking studies. Furthermore, we demonstrated that RBM8A regulates the transcriptional activity of CBF1. The γ-secretase inhibitor DAPT significantly reversed RBM8A-enhanced GBM cell proliferation and invasion, and was associated with down-regulation of p-STAT3 and Notch1 protein. Finally, the gene set variance analysis score of genes involved in regulation of the Notch1/STAT3 network by RBM8A showed good diagnostic and prognostic value for GBM. Conclusions RBM8A may promote GBM cell proliferation and migration by activating the Notch/STAT3 pathway in GBM cells, suggesting that RBM8A may serve as a potential therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lei Wei
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Beiquan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Zhongrun Qian
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, Hefei, China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|