1
|
Dandi-Labou J, Kengne-Ouafo JA, Mugenzi L, Tchouakui M, Wondji M, Wondji CS. Susceptibility profile of Anopheles and target site resistance mechanism against organophosphates in Cameroon. PLoS One 2025; 20:e0321825. [PMID: 40402942 PMCID: PMC12097638 DOI: 10.1371/journal.pone.0321825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/12/2025] [Indexed: 05/24/2025] Open
Abstract
Escalating pyrethroid resistance in malaria vectors jeopardizes vector control, necessitating the use of alternative insecticides such as pirimiphos-methyl (organophosphate) for indoor residual spraying (IRS). Tracking the spread of resistance and elucidating its molecular basis are essential for effective resistance management against these insecticides. This study monitored resistance to two organophosphates, malathion (MA) and pirimiphos methyl (PM), in three malaria vectors (Anopheles gambiae s.s., An. coluzzii, and An. funestus s.s.) across Cameroon and explored related resistance mechanisms. WHO tube assays revealed that An. funestus s.s. populations were fully susceptible to both organophosphates; An. coluzzii populations were either fully susceptible (North) or potentially resistant (South; 97% mortality). In contrast, the two An. gambiae s.s. populations in this study were resistant: in the rural agricultural hotspots of Mangoum (94% mortality to PM; 50% to MA) and in peri-urban cultivated location of Nkolondom, which exhibited the highest resistance to both PM (80% mortality) and MA (46% mortality), associated with recorded use of organophosphates by farmers. Genotyping the Ace-1 markers revealed a close association with susceptibility profile, as no resistance allele was observed in An. funestus s.s. and in the northern population of An. coluzzii and a very low frequency in Njombe (3%). In contrast, a higher frequency of Ace-1R was observed in An. gambiae s.s. with a significant association observed with resistance (PM: OR = 20.33, P = 0.04; MA: OR = 98.33, P = 0.0019). Furthermore, analysis of 100 Ace-1 clones showed copy number variation was linked to resistance, as resistant mosquitoes displayed higher copy numbers compared to susceptible individuals. These findings suggest that malaria control with organophosphate-based IRS is a viable alternative in Cameroon; however, it will be necessary to consider the distribution of species and the development of resistance.
Collapse
Affiliation(s)
| | | | - Leon Mugenzi
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | | | - Murielle Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- International Institute of Tropical Agriculture, Yaoundé, Cameroon
| |
Collapse
|
2
|
Claret JL, Di-Liegro M, Namias A, Assogba B, Makoundou P, Koffi A, Pennetier C, Weill M, Milesi P, Labbé P. Despite structural identity, ace-1 heterogenous duplication resistance alleles are quite diverse in Anopheles mosquitoes. Heredity (Edinb) 2024; 132:179-191. [PMID: 38280976 PMCID: PMC10997782 DOI: 10.1038/s41437-024-00670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
Anopheles gambiae s.l. has been the target of intense insecticide treatment since the mid-20th century to try and control malaria. A substitution in the ace-1 locus has been rapidly selected for, allowing resistance to organophosphate and carbamate insecticides. Since then, two types of duplication of the ace-1 locus have been found in An. gambiae s.l. populations: homogeneous duplications that are composed of several resistance copies, or heterogeneous duplications that contain both resistance and susceptible copies. The substitution induces a trade-off between resistance in the presence of insecticides and disadvantages in their absence: the heterogeneous duplications allow the fixation of the intermediate heterozygote phenotype. So far, a single heterogeneous duplication has been described in An. gambiae s.l. populations (in contrast with the multiple duplicated alleles found in Culex pipiens mosquitoes). We used a new approach, combining long and short-read sequencing with Sanger sequencing to precisely identify and describe at least nine different heterogeneous duplications, in two populations of An. gambiae s.l. We show that these alleles share the same structure as the previously identified heterogeneous and homogeneous duplications, namely 203-kb tandem amplifications with conserved breakpoints. Our study sheds new light on the origin and maintenance of these alleles in An. gambiae s.l. populations, and their role in mosquito adaptation.
Collapse
Affiliation(s)
| | | | - Alice Namias
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Benoit Assogba
- Medical Research Council, Unit The Gambia at London School of Hygiene and Tropical Medicine, London, UK
| | | | - Alphonsine Koffi
- National Institute of Public Health/Pierre Richet Institute, Bouake, Côte d'Ivoire
| | | | - Mylène Weill
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237, Uppsala, Sweden
| | - Pierrick Labbé
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Wolie RZ, Koffi AA, Ahoua Alou LP, Sternberg ED, N'Nan-Alla O, Dahounto A, Yapo FHA, Kanh KMH, Camara S, Oumbouke WA, Tia IZ, Nguetta SPA, Thomas MB, NGuessan R. Evaluation of the interaction between insecticide resistance-associated genes and malaria transmission in Anopheles gambiae sensu lato in central Côte d'Ivoire. Parasit Vectors 2021; 14:581. [PMID: 34801086 PMCID: PMC8605510 DOI: 10.1186/s13071-021-05079-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background There is evidence that the knockdown resistance gene (Kdr) L1014F and acetylcholinesterase-1 gene (Ace-1R) G119S mutations involved in pyrethroid and carbamate resistance in Anopheles gambiae influence malaria transmission in sub-Saharan Africa. This is likely due to changes in the behaviour, life history and vector competence and capacity of An. gambiae. In the present study, performed as part of a two-arm cluster randomized controlled trial evaluating the impact of household screening plus a novel insecticide delivery system (In2Care Eave Tubes), we investigated the distribution of insecticide target site mutations and their association with infection status in wild An. gambiae sensu lato (s.l.) populations. Methods Mosquitoes were captured in 40 villages around Bouaké by human landing catch from May 2017 to April 2019. Randomly selected samples of An. gambiae s.l. that were infected or not infected with Plasmodium sp. were identified to species and then genotyped for Kdr L1014F and Ace-1R G119S mutations using quantitative polymerase chain reaction assays. The frequencies of the two alleles were compared between Anopheles coluzzii and Anopheles gambiae and then between infected and uninfected groups for each species. Results The presence of An. gambiae (49%) and An. coluzzii (51%) was confirmed in Bouaké. Individuals of both species infected with Plasmodium parasites were found. Over the study period, the average frequency of the Kdr L1014F and Ace-1R G119S mutations did not vary significantly between study arms. However, the frequencies of the Kdr L1014F and Ace-1R G119S resistance alleles were significantly higher in An. gambiae than in An. coluzzii [odds ratio (95% confidence interval): 59.64 (30.81–131.63) for Kdr, and 2.79 (2.17–3.60) for Ace-1R]. For both species, there were no significant differences in Kdr L1014F or Ace-1R G119S genotypic and allelic frequency distributions between infected and uninfected specimens (P > 0.05). Conclusions Either alone or in combination, Kdr L1014F and Ace-1R G119S showed no significant association with Plasmodium infection in wild An. gambiae and An. coluzzii, demonstrating the similar competence of these species for Plasmodium transmission in Bouaké. Additional factors including behavioural and environmental ones that influence vector competence in natural populations, and those other than allele measurements (metabolic resistance factors) that contribute to resistance, should be considered when establishing the existence of a link between insecticide resistance and vector competence. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Rosine Z Wolie
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire. .,Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire. .,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
| | - Alphonsine A Koffi
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Ludovic P Ahoua Alou
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Eleanore D Sternberg
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Oulo N'Nan-Alla
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire
| | - Amal Dahounto
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire
| | - Florent H A Yapo
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire
| | - Kpahe M H Kanh
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire
| | - Soromane Camara
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Welbeck A Oumbouke
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Innovative Vector Control Consortium, IVCC, Liverpool, UK
| | - Innocent Z Tia
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.,Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Simon-Pierre A Nguetta
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire
| | - Matthew B Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Raphael NGuessan
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.,Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
4
|
Mavridis K, Michaelidou K, Vontas J. Highly sensitive droplet digital PCR-based diagnostics for the surveillance of malaria vector populations in low transmission and incipient resistance settings. Expert Rev Mol Diagn 2021; 21:1105-1114. [PMID: 34328051 DOI: 10.1080/14737159.2021.1963234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sensitive monitoring of Plasmodium infective mosquitoes in low malaria transmission settings is of high priority for disease control. Early detection of insecticide resistance at low frequencies is also key for vector monitoring nowadays, when new insecticides are launched to control vector populations. RESEARCH DESIGN AND METHODS An. gambiae mosquitoes with predetermined infection and resistance status were used to produce populations with various malaria infection rates and mutant allelic frequencies (MAFs) of target site insecticide resistance traits. Total RNA and gDNA were isolated and used in droplet Digital PCR (ddPCR) and Reverse Transcription (RT) ddPCR performed in the QX200 ddPCR System. RESULTS We developed a novel ddPCR for detecting P. falciparum DNA in pooled mosquito head-thoraces with infective rate as low as 1.0%. A dissection-free RT-ddPCR assay for specific infective-stage detection was additionally developed and validated (accuracy = 100%) in mosquito pools with infective rates down to 1.0%. A novel ddPCR assay for insecticide resistant alleles, which was able to reliably quantify MAFs as low as 0.050% in pooled mosquito specimens, is also reported. CONCLUSIONS We developed highly sensitive and efficient (RT-) ddPCR assays for contemporary operational needs that require monitoring of low malaria transmission and emerging insecticide resistance.
Collapse
Affiliation(s)
- Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
5
|
Orondo PW, Nyanjom SG, Atieli H, Githure J, Ondeto BM, Ochwedo KO, Omondi CJ, Kazura JW, Lee MC, Zhou G, Zhong D, Githeko AK, Yan G. Insecticide resistance status of Anopheles arabiensis in irrigated and non-irrigated areas in western Kenya. Parasit Vectors 2021; 14:335. [PMID: 34174946 PMCID: PMC8235622 DOI: 10.1186/s13071-021-04833-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. METHODS The study was carried out in 2018-2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. RESULTS Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8-84% to 83.3-78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1-16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. CONCLUSION Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides.
Collapse
Affiliation(s)
- Pauline Winnie Orondo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya. .,International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya.
| | - Steven G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya.,School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - John Githure
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Benyl M Ondeto
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Kevin O Ochwedo
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collince J Omondi
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Andrew K Githeko
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya. .,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA.
| |
Collapse
|
6
|
Grau-Bové X, Lucas E, Pipini D, Rippon E, van ‘t Hof AE, Constant E, Dadzie S, Egyir-Yawson A, Essandoh J, Chabi J, Djogbénou L, Harding NJ, Miles A, Kwiatkowski D, Donnelly MJ, Weetman D, The Anopheles gambiae 1000 Genomes Consortium. Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus. PLoS Genet 2021; 17:e1009253. [PMID: 33476334 PMCID: PMC7853456 DOI: 10.1371/journal.pgen.1009253] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/02/2021] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d'Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arjèn E. van ‘t Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Edi Constant
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Luc Djogbénou
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institut Régional de Santé Publique, Université d’Abomey-Calavi, Benin
| | - Nicholas J. Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Alistair Miles
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Dominic Kwiatkowski
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
7
|
Oumbouke WA, Pignatelli P, Barreaux AMG, Tia IZ, Koffi AA, Ahoua Alou LP, Sternberg ED, Thomas MB, Weetman D, N'Guessan R. Fine scale spatial investigation of multiple insecticide resistance and underlying target-site and metabolic mechanisms in Anopheles gambiae in central Côte d'Ivoire. Sci Rep 2020; 10:15066. [PMID: 32934291 PMCID: PMC7493912 DOI: 10.1038/s41598-020-71933-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
Routine monitoring of occurrence, levels and mechanisms of insecticide resistance informs effective management strategies, and should be used to assess the effect of new tools on resistance. As part of a cluster randomised controlled trial evaluating a novel insecticide-based intervention in central Côte d’Ivoire, we assessed resistance and its underlying mechanisms in Anopheles gambiae populations from a subset of trial villages. Resistance to multiple insecticides in An. gambiae s.s. and An. coluzzii was detected across villages, with dose–response assays demonstrating extremely high resistance intensity to the pyrethroid deltamethrin (> 1,500-fold), and mortality following exposure to pyrethroid-treated bednets was low (< 30% mortality in cone bioassays). The 1014F kdr mutation was almost fixed (≥ 90%) in all villages but the 1575Y kdr-amplifying mutation was relatively rare (< 15%). The carbamate and organophosphate resistance-associated Ace-1 G119S mutation was also detected at moderate frequencies (22–43%). Transcriptome analysis identified overexpression of P450 genes known to confer pyrethroid resistance (Cyp9K1, Cyp6P3, and Cyp6M2), and also a carboxylesterase (COEAE1F) as major candidates. Cyp6P3 expression was high but variable (up to 33-fold) and correlated positively with deltamethrin resistance intensity across villages (r2 = 0.78, P = 0.02). Tools and strategies to mitigate the extreme and multiple resistance provided by these mechanisms are required in this area to avoid future control failures.
Collapse
Affiliation(s)
- Welbeck A Oumbouke
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK. .,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
| | - Patricia Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Antoine M G Barreaux
- School of Biological Sciences, University of Bristol, Bristol, UK.,Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Innocent Z Tia
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Alphonsine A Koffi
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Eleanore D Sternberg
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.,Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew B Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Raphael N'Guessan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| |
Collapse
|
8
|
Vontas J, Mavridis K. Vector population monitoring tools for insecticide resistance management: Myth or fact? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:54-60. [PMID: 31685197 DOI: 10.1016/j.pestbp.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/10/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Insecticide resistance is a large and growing problem for the control of mosquito disease vectors. The World Health Organization (WHO) established the Global Plan for Insecticide Resistance Management (GPIRM) in 2012. In that context, both classical and molecular tools, as well as entomological databases and decision support platforms have been developed and used for IRM. Despite major advances in the molecular elucidation of resistance mechanisms and the development of diagnostic tools, their impact on disease control programs has been limited. In most cases diagnostic tools provide a retrospective examination of changes imposed by insecticides rather than a prospective analysis to guide vector control strategies. The uncertainty of the predictive value of markers, the assay robustness and the common misconceptions in resistance diagnosis terminology are continuing challenges in monitoring vector resistance. Furthermore, an often logistics, as opposed to systematic scientific evidence, based approach to decision for the use of the very few alternative chemicals in vector control, has reduced the value of resistance monitoring in practice. The current deployment of new insecticidal active ingredients should necessitate the application of companion diagnostics (CDx) and the development of modern ways for interpretation and management of the data by trained programme managers. This will establish their real value for use in decision-making, in line with evidence based choice of chemicals in agriculture and medical applications.
Collapse
Affiliation(s)
- John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece.
| | - Konstantinos Mavridis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece
| |
Collapse
|
9
|
Status of Insecticide Resistance and Its Mechanisms in Anopheles gambiae and Anopheles coluzzii Populations from Forest Settings in South Cameroon. Genes (Basel) 2019; 10:genes10100741. [PMID: 31554225 PMCID: PMC6827028 DOI: 10.3390/genes10100741] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023] Open
Abstract
A key factor affecting malaria vector control efforts in Cameroon is the rapid expansion of insecticide resistance in Anopheles gambiae s.l (An. gambiae) populations; however, mechanisms involved in insecticide resistance in forest mosquito populations are still not well documented yet. The present study was conducted to screen molecular mechanisms conferring insecticide resistance in An. gambiae s.l. populations from the South Cameroon forest region. WHO bioassays were conducted with F0 An. gambiae females aged three to four days from forest (Sangmelima, Nyabessan, and Mbandjock) and urban sites (Yaoundé (Bastos and Nkolondom)), against pyrethroids (permethrin 0.75% and deltamethrin 0.05%) and carbamates (bendiocarb 0.1%). Members of the An. Gambiae s.l. species complex were identified using molecular diagnostic tools. TaqMan assays were used to screen for target site mutations. The expression profiles of eight genes implicated in insecticide resistance were assessed using RT-qPCR. Cuticle hydrocarbon lipids were measured to assess their potential implication in insecticide resistance. Both An. Gambiae and An. coluzzii were detected. An. gambiae was highly prevalent in Sangmelima, Nyabessan, Mbandjock, and Nkolondom. An. coluzzii was the only species found in the Yaoundé city center (Bastos). Low mortality rate to both pyrethroids and bendiocarb was recorded in all sites. High frequency of L1014F allele (75.32–95.82%) and low frequencies of L1014S (1.71–23.05%) and N1575Y (5.28–12.87%) were recorded. The G119S mutation (14.22–35.5%) was detected for the first time in An. gambiae populations from Cameroon. This mutation was rather absent from An. coluzzii populations. The detoxification genes Cyp6m2, Cyp9k1, Cyp6p4, Cyp6z1, as well as Cyp4g16 which catalyzes epicuticular hydrocarbon biosynthesis, were found to be overexpressed in at least one population. The total cuticular hydrocarvbon content, a proxy of cuticular resistance, did not show a pattern associated with pyrethroid resistance in these populations. The rapid emergence of multiple resistance mechanisms in An. Gambiae s.l. population from the South Cameroon forest region is of big concern and could deeply affect the sustainability of insecticide-based interventions strategies in this region.
Collapse
|
10
|
Hendriks CMJ, Gibson HS, Trett A, Python A, Weiss DJ, Vrieling A, Coleman M, Gething PW, Hancock PA, Moyes CL. Mapping Geospatial Processes Affecting the Environmental Fate of Agricultural Pesticides in Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3523. [PMID: 31547208 PMCID: PMC6801543 DOI: 10.3390/ijerph16193523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
Abstract
The application of agricultural pesticides in Africa can have negative effects on human health and the environment. The aim of this study was to identify African environments that are vulnerable to the accumulation of pesticides by mapping geospatial processes affecting pesticide fate. The study modelled processes associated with the environmental fate of agricultural pesticides using publicly available geospatial datasets. Key geospatial processes affecting the environmental fate of agricultural pesticides were selected after a review of pesticide fate models and maps for leaching, surface runoff, sedimentation, soil storage and filtering capacity, and volatilization were created. The potential and limitations of these maps are discussed. We then compiled a database of studies that measured pesticide residues in Africa. The database contains 10,076 observations, but only a limited number of observations remained when a standard dataset for one compound was extracted for validation. Despite the need for more in-situ data on pesticide residues and application, this study provides a first spatial overview of key processes affecting pesticide fate that can be used to identify areas potentially vulnerable to pesticide accumulation.
Collapse
Affiliation(s)
- Chantal M J Hendriks
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
- Team Sustainable Soil Use, Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | - Harry S Gibson
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Anna Trett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - André Python
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Daniel J Weiss
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Anton Vrieling
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Michael Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Peter W Gething
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Penny A Hancock
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Catherine L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| |
Collapse
|
11
|
Weetman D, Djogbenou LS, Lucas E. Copy number variation (CNV) and insecticide resistance in mosquitoes: evolving knowledge or an evolving problem? CURRENT OPINION IN INSECT SCIENCE 2018; 27:82-88. [PMID: 30025639 PMCID: PMC6056009 DOI: 10.1016/j.cois.2018.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/21/2018] [Accepted: 04/09/2018] [Indexed: 05/10/2023]
Abstract
Copy number variation (CNV) in insect genomes is a rich source of potentially adaptive polymorphism which may help overcome the constraints of purifying selection on conserved genes and/or permit elevated transcription. Classic studies of amplified esterases and acetylcholinesterase duplication in Culex pipiens quantified evolutionary dynamics of CNV driven by insecticidal selection. A more complex and potentially medically impactful form of CNV is found in Anopheles gambiae, with both heterogeneous duplications and homogeneous amplifications strongly linked with insecticide resistance. Metabolic gene amplification, revealed by shotgun sequencing, appears common in Aedes aegypti, but poorly understood in other mosquito species. Many methodologies have been used to detect CNV in mosquitoes, but relatively few can detect both duplications and amplifications, and contrasting methods should be combined. Genome scans for CNV have been rare to date in mosquitoes, but offer immense potential to determine the overall role of CNV as a component of resistance mechanisms.
Collapse
Affiliation(s)
- David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Luc S Djogbenou
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Institut Régional de Santé Publique/Université d'Abomey-Calavi, Ouidah, Benin
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
12
|
Isaacs AT, Mawejje HD, Tomlinson S, Rigden DJ, Donnelly MJ. Genome-wide transcriptional analyses in Anopheles mosquitoes reveal an unexpected association between salivary gland gene expression and insecticide resistance. BMC Genomics 2018; 19:225. [PMID: 29587635 PMCID: PMC5870100 DOI: 10.1186/s12864-018-4605-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/14/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To combat malaria transmission, the Ugandan government has embarked upon an ambitious programme of indoor residual spraying (IRS) with a carbamate class insecticide, bendiocarb. In preparation for this campaign, we characterized bendiocarb resistance and associated transcriptional variation among Anopheles gambiae s.s. mosquitoes from two sites in Uganda. RESULTS Gene expression in two mosquito populations displaying some resistance to bendiocarb (95% and 79% An. gambiae s.l. WHO tube bioassay mortality in Nagongera and Kihihi, respectively) was investigated using whole-genome microarrays. Significant overexpression of several genes encoding salivary gland proteins, including D7r2 and D7r4, was detected in mosquitoes from Nagongera. In Kihihi, D7r4, two detoxification-associated genes (Cyp6m2 and Gstd3) and an epithelial serine protease were among the genes most highly overexpressed in resistant mosquitoes. Following the first round of IRS in Nagongera, bendiocarb-resistant mosquitoes were collected, and real-time quantitative PCR analyses detected significant overexpression of D7r2 and D7r4 in resistant mosquitoes. A single nucleotide polymorphism located in a non-coding transcript downstream of the D7 genes was found at a significantly higher frequency in resistant individuals. In silico modelling of the interaction between D7r4 and bendiocarb demonstrated similarity between the insecticide and serotonin, a known ligand of D7 proteins. A meta-analysis of published microarray studies revealed a recurring association between D7 expression and insecticide resistance across Anopheles species and locations. CONCLUSIONS A whole-genome microarray approach identified an association between novel insecticide resistance candidates and bendiocarb resistance in Uganda. In addition, a single nucleotide polymorphism associated with this resistance mechanism was discovered. The use of such impartial screening methods allows for discovery of resistance candidates that have no previously-ascribed function in insecticide binding or detoxification. Characterizing these novel candidates will broaden our understanding of resistance mechanisms and yield new strategies for combatting widespread insecticide resistance among malaria vectors.
Collapse
Affiliation(s)
- Alison T Isaacs
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | | | - Sean Tomlinson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.,Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|
13
|
Martins WFS, Subramaniam K, Steen K, Mawejje H, Liloglou T, Donnelly MJ, Wilding CS. Detection and quantitation of copy number variation in the voltage-gated sodium channel gene of the mosquito Culex quinquefasciatus. Sci Rep 2017; 7:5821. [PMID: 28725028 PMCID: PMC5517494 DOI: 10.1038/s41598-017-06080-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/07/2017] [Indexed: 01/23/2023] Open
Abstract
Insecticide resistance is typically associated with alterations to the insecticidal target-site or with gene expression variation at loci involved in insecticide detoxification. In some species copy number variation (CNV) of target site loci (e.g. the Ace-1 target site of carbamate insecticides) or detoxification genes has been implicated in the resistance phenotype. We show that field-collected Ugandan Culex quinquefasciatus display CNV for the voltage-gated sodium channel gene (Vgsc), target-site of pyrethroid and organochlorine insecticides. In order to develop field-applicable diagnostics for Vgsc CN, and as a prelude to investigating the possible association of CN with insecticide resistance, three assays were compared for their accuracy in CN estimation in this species. The gold standard method is droplet digital PCR (ddPCR), however, the hardware is prohibitively expensive for widespread utility. Here, ddPCR was compared to quantitative PCR (qPCR) and pyrosequencing. Across all platforms, CNV was detected in ≈10% of mosquitoes, corresponding to three or four copies (per diploid genome). ddPCR and qPCR-Std-curve yielded similar predictions for Vgsc CN, indicating that the qPCR protocol developed here can be applied as a diagnostic assay, facilitating monitoring of Vgsc CN in wild populations and the elucidation of association between the Vgsc CN and insecticide resistance.
Collapse
Affiliation(s)
- Walter Fabricio Silva Martins
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brazil
| | | | - Keith Steen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Henry Mawejje
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research, Liverpool, UK
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Craig Stephen Wilding
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
14
|
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J, Corbel V, David JP, Weetman D. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 2017; 11:e0005625. [PMID: 28727779 PMCID: PMC5518996 DOI: 10.1371/journal.pntd.0005625] [Citation(s) in RCA: 475] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.
Collapse
Affiliation(s)
- Catherine L. Moyes
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - Ademir J. Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Helios Block, Singapore
| | - Sin Ying Koou
- Environmental Health Institute, National Environment Agency, Helios Block, Singapore
| | - Isabelle Dusfour
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Kamaraju Raghavendra
- Insecticides and Insecticide Resistance Lab, National Institute of Malaria Research (ICMR), Delhi, India
| | - João Pinto
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA), Centre National de la Recherche Scientifique (CNRS), University Grenoble-Alpes (UGA), Grenoble, France
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
15
|
Assogba BS, Milesi P, Djogbénou LS, Berthomieu A, Makoundou P, Baba-Moussa LS, Fiston-Lavier AS, Belkhir K, Labbé P, Weill M. The ace-1 Locus Is Amplified in All Resistant Anopheles gambiae Mosquitoes: Fitness Consequences of Homogeneous and Heterogeneous Duplications. PLoS Biol 2016; 14:e2000618. [PMID: 27918584 PMCID: PMC5137868 DOI: 10.1371/journal.pbio.2000618] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022] Open
Abstract
Gene copy-number variations are widespread in natural populations, but investigating their phenotypic consequences requires contemporary duplications under selection. Such duplications have been found at the ace-1 locus (encoding the organophosphate and carbamate insecticides' target) in the mosquito Anopheles gambiae (the major malaria vector); recent studies have revealed their intriguing complexity, consistent with the involvement of various numbers and types (susceptible or resistant to insecticide) of copies. We used an integrative approach, from genome to phenotype level, to investigate the influence of duplication architecture and gene-dosage on mosquito fitness. We found that both heterogeneous (i.e., one susceptible and one resistant ace-1 copy) and homogeneous (i.e., identical resistant copies) duplications segregated in field populations. The number of copies in homogeneous duplications was variable and positively correlated with acetylcholinesterase activity and resistance level. Determining the genomic structure of the duplicated region revealed that, in both types of duplication, ace-1 and 11 other genes formed tandem 203kb amplicons. We developed a diagnostic test for duplications, which showed that ace-1 was amplified in all 173 resistant mosquitoes analyzed (field-collected in several African countries), in heterogeneous or homogeneous duplications. Each type was associated with different fitness trade-offs: heterogeneous duplications conferred an intermediate phenotype (lower resistance and fitness costs), whereas homogeneous duplications tended to increase both resistance and fitness cost, in a complex manner. The type of duplication selected seemed thus to depend on the intensity and distribution of selection pressures. This versatility of trade-offs available through gene duplication highlights the importance of large mutation events in adaptation to environmental variation. This impressive adaptability could have a major impact on vector control in Africa.
Collapse
Affiliation(s)
- Benoît S. Assogba
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
- Institut Régional de Santé Publique, Université d’Abomey Calavi, Cotonou, Benin
- Faculté des Sciences et Techniques, Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Université d’Abomey Calavi, Cotonou, Bénin
| | - Pascal Milesi
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Luc S. Djogbénou
- Institut Régional de Santé Publique, Université d’Abomey Calavi, Cotonou, Benin
| | - Arnaud Berthomieu
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Patrick Makoundou
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Lamine S. Baba-Moussa
- Faculté des Sciences et Techniques, Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Université d’Abomey Calavi, Cotonou, Bénin
| | - Anna-Sophie Fiston-Lavier
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| |
Collapse
|
16
|
Kohl A, Pondeville E, Schnettler E, Crisanti A, Supparo C, Christophides GK, Kersey PJ, Maslen GL, Takken W, Koenraadt CJM, Oliva CF, Busquets N, Abad FX, Failloux AB, Levashina EA, Wilson AJ, Veronesi E, Pichard M, Arnaud Marsh S, Simard F, Vernick KD. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements. Pathog Glob Health 2016; 110:164-72. [PMID: 27677378 PMCID: PMC5072118 DOI: 10.1080/20477724.2016.1211475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations.
Collapse
Affiliation(s)
- Alain Kohl
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Emilie Pondeville
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Esther Schnettler
- a MRC-University of Glasgow Centre for Virus Research , Glasgow , UK
| | - Andrea Crisanti
- b Department of Life Sciences , Imperial College London , London , UK
| | - Clelia Supparo
- b Department of Life Sciences , Imperial College London , London , UK
| | | | - Paul J Kersey
- c The European Molecular Biology Laboratory , The European Bioinformatics Institute, Wellcome Trust Genome Campus , Cambridge , UK
| | - Gareth L Maslen
- c The European Molecular Biology Laboratory , The European Bioinformatics Institute, Wellcome Trust Genome Campus , Cambridge , UK
| | - Willem Takken
- d Laboratory of Entomology , Wageningen University and Research Centre , Wageningen , The Netherlands
| | | | - Clelia F Oliva
- e Polo d'Innovazione di Genomica, Genetica e Biologia , Perugia , Italy
| | - Núria Busquets
- f Centre de Recerca en Sanitat Animal (CReSA) , Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB , Barcelona , Spain
| | - F Xavier Abad
- f Centre de Recerca en Sanitat Animal (CReSA) , Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB , Barcelona , Spain
| | - Anna-Bella Failloux
- g Arboviruses and Insect Vectors Unit, Department of Virology , Institut Pasteur , Paris cedex 15 , France
| | - Elena A Levashina
- h Department of Vector Biology , Max-Planck-Institut für Infektionsbiologie, Campus Charité Mitte , Berlin , Germany
| | - Anthony J Wilson
- i Integrative Entomology Group, Vector-borne Viral Diseases Programme , The Pirbright Institute , Surrey , UK
| | - Eva Veronesi
- j Swiss National Centre for Vector Entomology, Institute of Parasitology , University of Zürich , Zürich , Switzerland
| | - Maëlle Pichard
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France
| | - Sarah Arnaud Marsh
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France
| | - Frédéric Simard
- l MIVEGEC "Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle" , UMR IRD224-CNRS5290-Université de Montpellier , Montpellier France
| | - Kenneth D Vernick
- k Department of Parasites and Insect Vectors , Institut Pasteur, Unit of Insect Vector Genetics and Genomics , Paris cedex 15 , France.,m CNRS Unit of Hosts, Vectors and Pathogens (URA3012) , Institut Pasteur , Paris cedex 15 , France
| |
Collapse
|