1
|
Chawla J, Goldowitz I, Oberstaller J, Zhang M, Pires CV, Navarro F, Sollelis L, Wang CCQ, Seyfang A, Dvorin J, Otto TD, Rayner JC, Marti M, Adams JH. Phenotypic Screens Identify Genetic Factors Associated with Gametocyte Development in the Human Malaria Parasite Plasmodium falciparum. Microbiol Spectr 2023; 11:e0416422. [PMID: 37154686 PMCID: PMC10269797 DOI: 10.1128/spectrum.04164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Transmission of the deadly malaria parasite Plasmodium falciparum from humans to mosquitoes is achieved by specialized intraerythrocytic sexual forms called gametocytes. Though the crucial regulatory mechanisms leading to gametocyte commitment have recently come to light, networks of genes that control sexual development remain to be elucidated. Here, we report a pooled-mutant screen to identify genes associated with gametocyte development in P. falciparum. Our results categorized genes that modulate gametocyte progression as hypoproducers or hyperproducers of gametocytes, and the in-depth analysis of individual clones confirmed phenotypes in sexual commitment rates and putative functions in gametocyte development. We present a new set of genes that have not been implicated in gametocytogenesis before and demonstrate the potential of forward genetic screens in isolating genes impacting parasite sexual biology, an exciting step toward the discovery of new antimalarials for a globally significant pathogen. IMPORTANCE Blocking human-to-vector transmission is an essential step toward malaria elimination. Gametocytes are solely responsible for achieving this transmission and represent an opportunity for therapeutic intervention. While these falciform-shaped parasite stages were first discovered in the 1880s, our understanding of the genetic determinants responsible for their formation and molecular mechanisms that drive their development is limited. In this work, we developed a scalable screening methodology with piggyBac mutants to identify genes that influence the development of gametocytes in the most lethal human malaria parasite, P. falciparum. By doing so, we lay the foundation for large-scale functional genomic studies specifically designed to address remaining questions about sexual commitment, maturation, and mosquito infection in P. falciparum. Such functional genetic screens will serve to expedite the identification of essential pathways and processes for the development of novel transmission-blocking agents.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ilana Goldowitz
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Francesca Navarro
- Boston Children’s Hospital and Harvard Medical School, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauriane Sollelis
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chengqi C. Q. Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Andreas Seyfang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jeffrey Dvorin
- Boston Children’s Hospital and Harvard Medical School, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas D. Otto
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - John H. Adams
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Dombrowski JG, Acford-Palmer H, Campos M, Separovic EPM, Epiphanio S, Clark TG, Campino S, Marinho CRF. Genetic diversity of Plasmodium vivax isolates from pregnant women in the Western Brazilian Amazon: a prospective cohort study. LANCET REGIONAL HEALTH. AMERICAS 2023; 18:100407. [PMID: 36844021 PMCID: PMC9950542 DOI: 10.1016/j.lana.2022.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Background Each year, 92 million pregnant women are at risk of contracting malaria during pregnancy, with the underestimation of the mortality and morbidity burden associated with Plasmodium vivax. During pregnancy, P. vivax infection is associated with low birth weight, maternal anaemia, premature delivery, and stillbirth. In the State of Acre (Brazil), high transmission leaves pregnant women at greater risk of contracting malaria and having a greater number of recurrences. The study of genetic diversity and the association of haplotypes with adverse pregnancy effects is of great importance for the control of the disease. Here we investigate the genetic diversity of P. vivax parasites infecting pregnant women across their pregnancies. Methods P. vivax DNA was extracted from 330 samples from 177 women followed during pregnancy, collected in the State of Acre, Brazil. All samples were negative for Plasmodium falciparum DNA. Sequence data for the Pvmsp1 gene was analysed alongside data from six microsatellite (MS) markers. Allelic frequencies, haplotype frequencies, expected heterozygosity (HE) were calculated. Whole genome sequencing (WGS) was conducted on four samples from pregnant women and phylogenetic analysis performed with other samples from South American regions. Findings Initially, the pregnant women were stratified into two groups-1 recurrence and 2 or more recurrences-in which no differences were observed in clinical gestational outcomes or in placental histological changes between the two groups. Then we evaluated the parasites genetically. An average of 18.5 distinct alleles were found at each of the MS loci, and the HE calculated for each marker indicates a high genetic diversity occurring within the population. There was a high percentage of polyclonal infections (61.7%, 108/175), and one haplotype (H1) occurred frequently (20%), with only 9 of the haplotypes appearing in more than one patient. Interpretation Most pregnant women had polyclonal infections that could be the result of relapses and/or re-infections. The high percentage of H1 parasites, along with the low frequency of many other haplotypes are suggestive of a clonal expansion. Phylogenetic analysis shows that P. vivax population within pregnant women clustered with other Brazilian samples in the region. Funding FAPESP and CNPq - Brazil.
Collapse
Affiliation(s)
| | - Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Monica Campos
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Taane Gregory Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
3
|
Ebel ER, Uricchio LH, Petrov DA, Egan ES. Revisiting the malaria hypothesis: accounting for polygenicity and pleiotropy. Trends Parasitol 2022; 38:290-301. [PMID: 35065882 PMCID: PMC8916997 DOI: 10.1016/j.pt.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
The malaria hypothesis predicts local, balancing selection of deleterious alleles that confer strong protection from malaria. Three protective variants, recently discovered in red cell genes, are indeed more common in African than European populations. Still, up to 89% of the heritability of severe malaria is attributed to many genome-wide loci with individually small effects. Recent analyses of hundreds of genome-wide association studies (GWAS) in humans suggest that most functional, polygenic variation is pleiotropic for multiple traits. Interestingly, GWAS alleles and red cell traits associated with small reductions in malaria risk are not enriched in African populations. We propose that other selective and neutral forces, in addition to malaria prevalence, explain the global distribution of most genetic variation impacting malaria risk.
Collapse
|
4
|
Novel insights from the Plasmodium falciparum sporozoite-specific proteome by probabilistic integration of 26 studies. PLoS Comput Biol 2021; 17:e1008067. [PMID: 33930021 PMCID: PMC8115857 DOI: 10.1371/journal.pcbi.1008067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 05/12/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmodium species, the causative agent of malaria, have a complex life cycle involving two hosts. The sporozoite life stage is characterized by an extended phase in the mosquito salivary glands followed by free movement and rapid invasion of hepatocytes in the human host. This transmission stage has been the subject of many transcriptomics and proteomics studies and is also targeted by the most advanced malaria vaccine. We applied Bayesian data integration to determine which proteins are not only present in sporozoites but are also specific to that stage. Transcriptomic and proteomic Plasmodium data sets from 26 studies were weighted for how representative they are for sporozoites, based on a carefully assembled gold standard for Plasmodium falciparum (Pf) proteins known to be present or absent during the sporozoite life stage. Of 5418 Pf genes for which expression data were available at the RNA level or at the protein level, 975 were identified as enriched in sporozoites and 90 specific to them. We show that Pf sporozoites are enriched for proteins involved in type II fatty acid synthesis in the apicoplast and GPI anchor synthesis, but otherwise appear metabolically relatively inactive in the salivary glands of mosquitos. Newly annotated hypothetical sporozoite-specific and sporozoite-enriched proteins highlight sporozoite-specific functions. They include PF3D7_0104100 that we identified to be homologous to the prominin family, which in human has been related to a quiescent state of cancer cells. We document high levels of genetic variability for sporozoite proteins, specifically for sporozoite-specific proteins that elicit antibodies in the human host. Nevertheless, we can identify nine relatively well-conserved sporozoite proteins that elicit antibodies and that together can serve as markers for previous exposure. Our understanding of sporozoite biology benefits from identifying key pathways that are enriched during this life stage. This work can guide studies of molecular mechanisms underlying sporozoite biology and potential well-conserved targets for marker and drug development. When a person is bitten by an infectious malaria mosquito, sporozoites are injected into the skin with mosquito saliva. These sporozoites then travel to the liver, invade hepatocytes and multiply before the onset of the symptom-causing blood stage of malaria. By integrating published data, we contrast sporozoite protein expression with other life stages to filter out the unique features of sporozoites that help us understand this stage. We used a “guideline” that we derived from the literature on individual proteins so that we knew which proteins should be present or absent at the sporozoite stage, allowing us to weigh 26 data sets for their relevance to sporozoites. Among the newly discovered sporozoite-specific genes are candidates for fatty acid synthesis while others might play a role keeping the sporozoites in an inactive state in the mosquito salivary glands. Furthermore, we show that most sporozoite-specific proteins are genetically more variable than non-sporozoite proteins. We identify a set of conserved sporozoite proteins against which antibodies can serve as markers of recent exposure to sporozoites or that can serve as vaccine candidates. Our predictions of sporozoite-specific proteins and the assignment of previously unknown functions give new insights into the biology of this life stage.
Collapse
|
5
|
Selective whole genome amplification of Plasmodium malariae DNA from clinical samples reveals insights into population structure. Sci Rep 2020; 10:10832. [PMID: 32616738 PMCID: PMC7331648 DOI: 10.1038/s41598-020-67568-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/05/2020] [Indexed: 02/03/2023] Open
Abstract
The genomic diversity of Plasmodium malariae malaria parasites is understudied, partly because infected individuals tend to present with low parasite densities, leading to difficulties in obtaining sufficient parasite DNA for genome analysis. Selective whole genome amplification (SWGA) increases the relative levels of pathogen DNA in a clinical sample, but has not been adapted for P. malariae parasites. Here we design customized SWGA primers which successfully amplify P. malariae DNA extracted directly from unprocessed clinical blood samples obtained from patients with P. malariae-mono-infections from six countries, and further test the efficacy of SWGA on mixed infections with other Plasmodium spp. SWGA enables the successful whole genome sequencing of samples with low parasite density (i.e. one sample with a parasitaemia of 0.0064% resulted in 44% of the genome covered by ≥ 5 reads), leading to an average 14-fold increase in genome coverage when compared to unamplified samples. We identify a total of 868,476 genome-wide SNPs, of which 194,709 are unique across 18 high-quality isolates. After exclusion of the hypervariable subtelomeric regions, a high-quality core subset of 29,899 unique SNPs is defined. Population genetic analysis suggests that P. malariae parasites display clear geographical separation by continent. Further, SWGA successfully amplifies genetic regions of interest such as orthologs of P. falciparum drug resistance-associated loci (Pfdhfr, Pfdhps, Pfcrt, Pfk13 and Pfmdr1), and several non-synonymous SNPs were detected in these genes. In conclusion, we have established a robust SWGA approach that can assist whole genome sequencing of P. malariae, and thereby facilitate the implementation of much-needed large-scale multi-population genomic studies of this neglected malaria parasite. As demonstrated in other Plasmodia, such genetic diversity studies can provide insights into the biology underlying the disease and inform malaria surveillance and control measures.
Collapse
|
6
|
Bungei JK, Mobegi VA, Nyanjom SG. Single-nucleotide polymorphism characterization of gametocyte development 1 gene in Plasmodium falciparum isolates from Baringo, Uasin Gishu, and Nandi Counties, Kenya. Heliyon 2020; 6:e03453. [PMID: 32154414 PMCID: PMC7056661 DOI: 10.1016/j.heliyon.2020.e03453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/18/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Plasmodium falciparum relies on gametocytogenesis to transmit from humans to mosquitoes. Gametocyte development 1 (Pfgdv1) is an upstream activator and epigenetic controller of gametocytogenesis. The emergence of drug resistance is a major public health concern and this requires the development of new strategies that target the transmission of malaria. As a putative drug target, Pfgdv1 has not been characterized to identify its polymorphisms and alleles under selection and how such polymorphisms influence protein structure. METHODS This study characterized single-nucleotide polymorphisms (SNPs) in primary sequences (n = 30) of Pfgdv1 gene generated from thirty blood samples collected from patients infected with P. falciparum and secondary sequences (n = 216) retrieved from PlasmoDB. ChromasPro, MUSCLE, Tajima's D statistic, SLAC, and STRUM were used in editing raw sequences, performing multiple sequence alignment (MSA), identifying signatures of selection, detecting codon sites under selection pressure, and determining the effect of SNPs, respectively. RESULTS MSA of primary and secondary sequences established the existence of five SNPs, consisting of four non-synonymous substitutions (nsSNPs) (p.P217H, p.R398Q, p.H417N, and p.D497E), and a synonymous substitution (p.S514S). The analysis of amino acid changes reveals that p.P217H, p.R398Q, and p.H417N comprise non-conservative changes. Tajima's D statistic showed that these SNPs were under balancing selection, while SLAC analysis identified p.P217H to be under the strongest positive selection. . Further analysis based on thermodynamics indicated that p.P217H has a destabilizing effect, while p.R398Q and p.D497E have stabilizing effects on the protein structure. CONCLUSIONS The existence of four nsSNPs implies that Pfgdv1 has a minimal diversity in the encoded protein. Selection analysis demonstrates that these nsSNPs are under balancing selection in both local and global populations. However, p.P217H exhibits positive directional selection consistent with previous reports where it showed differentiatial selection of P. falciparum in low and high transmission regions. Therefore, in-silico prediction and experimental determination of protein structure are necessary to evaluate Pfgdv1 as a target candidate for drug design and development.
Collapse
Affiliation(s)
- Josephat K. Bungei
- Department of Biochemistry, JKUAT, Kenya
- Department of Biochemistry, School of Medicine, University of Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Kenya
| | | |
Collapse
|
7
|
Mohring F, Hart MN, Rawlinson TA, Henrici R, Charleston JA, Diez Benavente E, Patel A, Hall J, Almond N, Campino S, Clark TG, Sutherland CJ, Baker DA, Draper SJ, Moon RW. Rapid and iterative genome editing in the malaria parasite Plasmodium knowlesi provides new tools for P. vivax research. eLife 2019; 8:45829. [PMID: 31205002 PMCID: PMC6579517 DOI: 10.7554/elife.45829] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Tackling relapsing Plasmodium vivax and zoonotic Plasmodium knowlesi infections is critical to reducing malaria incidence and mortality worldwide. Understanding the biology of these important and related parasites was previously constrained by the lack of robust molecular and genetic approaches. Here, we establish CRISPR-Cas9 genome editing in a culture-adapted P. knowlesi strain and define parameters for optimal homology-driven repair. We establish a scalable protocol for the production of repair templates by PCR and demonstrate the flexibility of the system by tagging proteins with distinct cellular localisations. Using iterative rounds of genome-editing we generate a transgenic line expressing P. vivax Duffy binding protein (PvDBP), a lead vaccine candidate. We demonstrate that PvDBP plays no role in reticulocyte restriction but can alter the macaque/human host cell tropism of P. knowlesi. Critically, antibodies raised against the P. vivax antigen potently inhibit proliferation of this strain, providing an invaluable tool to support vaccine development.
Collapse
Affiliation(s)
- Franziska Mohring
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Melissa Natalie Hart
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Ryan Henrici
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - James A Charleston
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joanna Hall
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Health Protection Agency, Hertfordshire, United Kingdom
| | - Neil Almond
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Health Protection Agency, Hertfordshire, United Kingdom
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Robert William Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
8
|
ApiAP2 Transcription Factors in Apicomplexan Parasites. Pathogens 2019; 8:pathogens8020047. [PMID: 30959972 PMCID: PMC6631176 DOI: 10.3390/pathogens8020047] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Apicomplexan parasites are protozoan organisms that are characterised by complex life cycles and they include medically important species, such as the malaria parasite Plasmodium and the causative agents of toxoplasmosis (Toxoplasma gondii) and cryptosporidiosis (Cryptosporidium spp.). Apicomplexan parasites can infect one or more hosts, in which they differentiate into several morphologically and metabolically distinct life cycle stages. These developmental transitions rely on changes in gene expression. In the last few years, the important roles of different members of the ApiAP2 transcription factor family in regulating life cycle transitions and other aspects of parasite biology have become apparent. Here, we review recent progress in our understanding of the different members of the ApiAP2 transcription factor family in apicomplexan parasites.
Collapse
|
9
|
Abstract
Malaria is the major cause of mortality and morbidity in tropical countries. The causative agent, Plasmodium sp., has a complex life cycle and is armed with various mechanisms which ensure its continuous transmission. Gametocytes represent the sexual stage of the parasite and are indispensable for the transmission of the parasite from the human host to the mosquito. Despite its vital role in the parasite's success, it is the least understood stage in the parasite's life cycle. The presence of gametocytes in asymptomatic populations and induction of gametocytogenesis by most antimalarial drugs warrants further investigation into its biology. With a renewed focus on malaria elimination and advent of modern technology available to biologists today, the field of gametocyte biology has developed swiftly, providing crucial insights into the molecular mechanisms driving sexual commitment. This review will summarise key current findings in the field of gametocyte biology and address the associated challenges faced in malaria detection, control and elimination.
Collapse
|
10
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
11
|
Wadi I, Pillai CR, Anvikar AR, Sinha A, Nath M, Valecha N. Methylene blue induced morphological deformations in Plasmodium falciparum gametocytes: implications for transmission-blocking. Malar J 2018; 17:11. [PMID: 29310655 PMCID: PMC5759873 DOI: 10.1186/s12936-017-2153-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/23/2017] [Indexed: 12/24/2022] Open
Abstract
Background Malaria remains a global health problem despite availability of effective tools. For malaria elimination, drugs targeting sexual stages of Plasmodium falciparum need to be incorporated in treatment regimen along with schizonticidal drugs to interrupt transmission. Primaquine is recommended as a transmission blocking drug for its effect on mature gametocytes but is not extensively utilized because of associated safety concerns among glucose-6-phosphate dehydrogenase (G6PD) deficient patients. In present work, methylene blue, which is proposed as an alternative to primaquine is investigated for its gametocytocidal activity amongst Indian field isolates. An effort has been made to establish Indian field isolates of P. falciparum as in vitro model for gametocytocidal drugs screening. Methods Plasmodium falciparum isolates were adapted to in vitro culture and induced to gametocyte production by hypoxanthine and culture was enriched for gametocyte stages using N-acetyl-glucosamine. Gametocytes were incubated with methylene blue for 48 h and stage specific gametocytocidal activity was evaluated by microscopic examination. Results Plasmodium falciparum field isolates RKL-9 and JDP-8 were able to reproducibly produce gametocytes in high yield and were used to screen gametocytocidal drugs. Methylene blue was found to target gametocytes in a concentration dependent manner by either completely eliminating gametocytes or rendering them morphologically deformed with mean IC50 (early stages) as 424.1 nM and mean IC50 (late stages) as 106.4 nM. These morphologically altered gametocytes appeared highly degenerated having shrinkage, distortions and membrane deformations. Conclusions Field isolates that produce gametocytes in high yield in vitro can be identified and used to screen gametocytocidal drugs. These isolates should be used for validation of gametocytocidal hits obtained previously by using lab adapted reference strains. Methylene blue was found to target gametocytes produced from Indian field isolates and is proposed to be used as a gametocytocidal adjunct with artemisinin-based combination therapy. Further exploration of methylene blue in clinical studies amongst Indian population, including G6PD deficient patients, is recommended.
Collapse
Affiliation(s)
- Ishan Wadi
- Indian Council of Medical Research-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India. .,Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - C Radhakrishna Pillai
- Indian Council of Medical Research-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India
| | - Anupkumar R Anvikar
- Indian Council of Medical Research-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India
| | - Abhinav Sinha
- Indian Council of Medical Research-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India
| | - Mahendra Nath
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Neena Valecha
- Indian Council of Medical Research-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India
| |
Collapse
|
12
|
Benavente ED, de Sessions PF, Moon RW, Grainger M, Holder AA, Blackman MJ, Roper C, Drakeley CJ, Pain A, Sutherland CJ, Hibberd ML, Campino S, Clark TG. A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line. Int J Parasitol 2017; 48:191-196. [PMID: 29258833 DOI: 10.1016/j.ijpara.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/10/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Plasmodium knowlesi, a common parasite of macaques, is recognised as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P. knowlesi infection in humans.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Robert W Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Munira Grainger
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Anthony A Holder
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Michael J Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Genomics Institute Singapore, Singapore
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
13
|
Beshir KB, Sepúlveda N, Bharmal J, Robinson A, Mwanguzi J, Busula AO, de Boer JG, Sutherland C, Cunningham J, Hopkins H. Plasmodium falciparum parasites with histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in two endemic regions of Kenya. Sci Rep 2017; 7:14718. [PMID: 29116127 PMCID: PMC5677122 DOI: 10.1038/s41598-017-15031-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/19/2017] [Indexed: 01/12/2023] Open
Abstract
Deletions of the Plasmodium falciparum hrp2 and hrp3 genes can affect the performance of HRP2-based malaria rapid diagnostic tests (RDTs). Such deletions have been reported from South America, India and Eritrea. Whether these parasites are widespread in East Africa is unknown. A total of 274 samples from asymptomatic children in Mbita, western Kenya, and 61 genomic data from Kilifi, eastern Kenya, were available for analysis. PCR-confirmed samples were investigated for the presence of pfhrp2 and pfhrp3 genes. In samples with evidence of deletion, parasite presence was confirmed by amplifying three independent genes. We failed to amplify pfhrp2 from 25 of 131 (19.1%) PCR-confirmed samples. Of these, only 8 (10%) samples were microscopic positive and were classified as pfhrp2-deleted. Eight microscopically-confirmed pfhrp2-deleted samples with intact pfhrp3 locus were positive by HRP2-based RDT. In addition, one PCR-confirmed infection showed a deletion at the pfhrp3 locus. One genomic sample lacked pfhrp2 and one lacked pfhrp3. No sample harbored parasites lacking both genes. Parasites lacking pfhrp2 are present in Kenya, but may be detectable by HRP-based RDT at higher parasitaemia, possibly due to the presence of intact pfhrp3. These findings warrant further systematic study to establish prevalence and diagnostic significance.
Collapse
Affiliation(s)
| | - Nuno Sepúlveda
- London School of Hygiene and Tropical Medicine, London, UK
- Centre for Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | - Jameel Bharmal
- London School of Hygiene and Tropical Medicine, London, UK
| | - Ailie Robinson
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Annette Obukosia Busula
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Kaimosi Friends University College, Kaimosi, Kenya
| | - Jetske Gudrun de Boer
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | | | - Jane Cunningham
- Global Malaria Programme, World Health Organization (WHO-GMP), Geneva, Switzerland
| | - Heidi Hopkins
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
14
|
Walk J, Reuling IJ, Behet MC, Meerstein-Kessel L, Graumans W, van Gemert GJ, Siebelink-Stoter R, van de Vegte-Bolmer M, Janssen T, Teelen K, de Wilt JHW, de Mast Q, van der Ven AJ, Diez Benavente E, Campino S, Clark TG, Huynen MA, Hermsen CC, Bijker EM, Scholzen A, Sauerwein RW. Modest heterologous protection after Plasmodium falciparum sporozoite immunization: a double-blind randomized controlled clinical trial. BMC Med 2017; 15:168. [PMID: 28903777 PMCID: PMC5598044 DOI: 10.1186/s12916-017-0923-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A highly efficacious vaccine is needed for malaria control and eradication. Immunization with Plasmodium falciparum NF54 parasites under chemoprophylaxis (chemoprophylaxis and sporozoite (CPS)-immunization) induces the most efficient long-lasting protection against a homologous parasite. However, parasite genetic diversity is a major hurdle for protection against heterologous strains. METHODS We conducted a double-blind, randomized controlled trial in 39 healthy participants of NF54-CPS immunization by bites of 45 NF54-infected (n = 24 volunteers) or uninfected mosquitoes (placebo; n = 15 volunteers) against a controlled human malaria infection with the homologous NF54 or the genetically distinct NF135.C10 and NF166.C8 clones. Cellular and humoral immune assays were performed as well as genetic characterization of the parasite clones. RESULTS NF54-CPS immunization induced complete protection in 5/5 volunteers against NF54 challenge infection at 14 weeks post-immunization, but sterilely protected only 2/10 and 1/9 volunteers against NF135.C10 and NF166.C8 challenge infection, respectively. Post-immunization plasma showed a significantly lower capacity to block heterologous parasite development in primary human hepatocytes compared to NF54. Whole genome sequencing showed that NF135.C10 and NF166.C8 have amino acid changes in multiple antigens targeted by CPS-induced antibodies. Volunteers protected against heterologous challenge were among the stronger immune responders to in vitro parasite stimulation. CONCLUSIONS Although highly protective against homologous parasites, NF54-CPS-induced immunity is less effective against heterologous parasite clones both in vivo and in vitro. Our data indicate that whole sporozoite-based vaccine approaches require more potent immune responses for heterologous protection. TRIAL REGISTRATION This trial is registered in clinicaltrials.gov, under identifier NCT02098590 .
Collapse
Affiliation(s)
- Jona Walk
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Isaie J Reuling
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Marije C Behet
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Lisette Meerstein-Kessel
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences and Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein 28, CMBI 260, 6500 HB, Nijmegen, The Netherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Rianne Siebelink-Stoter
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Marga van de Vegte-Bolmer
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Thorsten Janssen
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Karina Teelen
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Johannes H W de Wilt
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein 10, Surgery 618, 6500 HB, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 10, Internal Medicine 456, 6500 HB, Nijmegen, The Netherlands
| | - André J van der Ven
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 10, Internal Medicine 456, 6500 HB, Nijmegen, The Netherlands
| | - Ernest Diez Benavente
- London School of Hygiene and Tropical Medicine, Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London, WC1E 7HT, UK
| | - Susana Campino
- London School of Hygiene and Tropical Medicine, Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London, WC1E 7HT, UK
| | - Taane G Clark
- London School of Hygiene and Tropical Medicine, Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London, WC1E 7HT, UK.,London School of Hygiene and Tropical Medicine, Department of Infectious Disease Epidemiology, Faculty of Infectious and Tropical Diseases, London, WC1E 7HT, UK
| | - Martijn A Huynen
- Radboud Institute of Molecular Life Sciences and Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein 28, CMBI 260, 6500 HB, Nijmegen, The Netherlands
| | - Cornelus C Hermsen
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Else M Bijker
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands.,Present Address: Department of Pediatrics, Radboud university medical center, Geert Grooteplein 10, Pediatrics 804, 6500 HB, Nijmegen, The Netherlands
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands.,Present Address: Innatoss Laboratories B.V., Kloosterstraat 9, RE3124, 5349 AB, Oss, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, Drakeley CJ, Pain A, Sutherland CJ, Hibberd ML, Campino S, Clark TG. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations. PLoS Genet 2017; 13:e1007008. [PMID: 28922357 PMCID: PMC5619863 DOI: 10.1371/journal.pgen.1007008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022] Open
Abstract
The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Robert W. Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Michael J. Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L. Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Genome Institute of Singapore, Biopolis, Singapore
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
16
|
Diez Benavente E, Ward Z, Chan W, Mohareb FR, Sutherland CJ, Roper C, Campino S, Clark TG. Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure. PLoS One 2017; 12:e0177134. [PMID: 28493919 PMCID: PMC5426636 DOI: 10.1371/journal.pone.0177134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/21/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Although Plasmodium vivax contributes to almost half of all malaria cases outside Africa, it has been relatively neglected compared to the more deadly P. falciparum. It is known that P. vivax populations possess high genetic diversity, differing geographically potentially due to different vector species, host genetics and environmental factors. RESULTS We analysed the high-quality genomic data for 46 P. vivax isolates spanning 10 countries across 4 continents. Using population genetic methods we identified hotspots of selection pressure, including the previously reported MRP1 and DHPS genes, both putative drug resistance loci. Extra copies and deletions in the promoter region of another drug resistance candidate, MDR1 gene, and duplications in the Duffy binding protein gene (PvDBP) potentially involved in erythrocyte invasion, were also identified. For surveillance applications, continental-informative markers were found in putative drug resistance loci, and we show that organellar polymorphisms could classify P. vivax populations across continents and differentiate between Plasmodia spp. CONCLUSIONS This study has shown that genomic diversity that lies within and between P. vivax populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Zoe Ward
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- The Bioinformatics Group, School of Water Energy and Environment, Cranfield University, Cranfield, Bedfordshire, United Kingdom
| | - Wilson Chan
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- Department of Pathology & Laboratory Medicine, Diagnostic & Scientific Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fady R. Mohareb
- Department of Pathology & Laboratory Medicine, Diagnostic & Scientific Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colin J. Sutherland
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Cally Roper
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Susana Campino
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Taane G. Clark
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|