1
|
Istvan ES, Guerra F, Abraham M, Huang KS, Rocamora F, Zhao H, Xu L, Pasaje C, Kumpornsin K, Luth MR, Cui H, Yang T, Diaz SP, Gomez-Lorenzo MG, Qahash T, Mittal N, Ottilie S, Niles J, Lee MCS, Llinas M, Kato N, Okombo J, Fidock DA, Schimmel P, Gamo FJ, Goldberg DE, Winzeler EA. Cytoplasmic isoleucyl tRNA synthetase as an attractive multistage antimalarial drug target. Sci Transl Med 2023; 15:eadc9249. [PMID: 36888694 PMCID: PMC10286833 DOI: 10.1126/scitranslmed.adc9249] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the P. falciparum cytoplasmic isoleucyl tRNA synthetase (cIRS). Engineering two of the mutations into drug-naïve parasites recapitulated the resistance phenotype, and parasites with conditional knockdowns of cIRS became hypersensitive to two thienopyrimidines. Purified recombinant P. vivax cIRS inhibition, cross-resistance, and biochemical assays indicated a noncompetitive, allosteric binding site that is distinct from that of known cIRS inhibitors mupirocin and reveromycin A. Our data show that Plasmodium cIRS is an important chemically and genetically validated target for next-generation medicines for malaria.
Collapse
Affiliation(s)
- Eva S. Istvan
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Francisco Guerra
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Matthew Abraham
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Lan Xu
- The Global Health Drug Discovery Institute, Tsinghua University 30 Shuangqing Rd, Haidian District, Beijing, China
| | - Charisse Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Madeline R. Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tuo Yang
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sara Palomo Diaz
- Global Health Medicines, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Spain
| | | | - Tarrick Qahash
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Nimisha Mittal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Jacquin Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Manuel Llinas
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Nobutaka Kato
- The Global Health Drug Discovery Institute, Tsinghua University 30 Shuangqing Rd, Haidian District, Beijing, China
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
2
|
Lagardère P, Fersing C, Masurier N, Lisowski V. Thienopyrimidine: A Promising Scaffold to Access Anti-Infective Agents. Pharmaceuticals (Basel) 2021; 15:35. [PMID: 35056092 PMCID: PMC8780093 DOI: 10.3390/ph15010035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Thienopyrimidines are widely represented in the literature, mainly due to their structural relationship with purine base such as adenine and guanine. This current review presents three isomers-thieno[2,3-d]pyrimidines, thieno[3,2-d]pyrimidines and thieno[3,4-d]pyrimidines-and their anti-infective properties. Broad-spectrum thienopyrimidines with biological properties such as antibacterial, antifungal, antiparasitic and antiviral inspired us to analyze and compile their structure-activity relationship (SAR) and classify their synthetic pathways. This review explains the main access route to synthesize thienopyrimidines from thiophene derivatives or from pyrimidine analogs. In addition, SAR study and promising anti-infective activity of these scaffolds are summarized in figures and explanatory diagrams. Ligand-receptor interactions were modeled when the biological target was identified and the crystal structure was solved.
Collapse
Affiliation(s)
- Prisca Lagardère
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
| | - Cyril Fersing
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, CEDEX 5, 34298 Montpellier, France
| | - Nicolas Masurier
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
| | - Vincent Lisowski
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
- Department of Pharmacy, Lapeyronie Hospital, CHU Montpellier, 191 Av. du Doyen Gaston Giraud, 34295 Montpellier, France
| |
Collapse
|
3
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Lande DH, Nasereddin A, Alder A, Gilberger TW, Dzikowski R, Grünefeld J, Kunick C. Synthesis and Antiplasmodial Activity of Bisindolylcyclobutenediones. Molecules 2021; 26:4739. [PMID: 34443327 PMCID: PMC8402075 DOI: 10.3390/molecules26164739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria is one of the most dangerous infectious diseases. Because the causative Plasmodium parasites have developed resistances against virtually all established antimalarial drugs, novel antiplasmodial agents are required. In order to target plasmodial kinases, novel N-unsubstituted bisindolylcyclobutenediones were designed as analogs to the kinase inhibitory bisindolylmaleimides. Molecular docking experiments produced favorable poses of the unsubstituted bisindolylcyclobutenedione in the ATP binding pocket of various plasmodial protein kinases. The synthesis of the title compounds was accomplished by sequential Friedel-Crafts acylation procedures. In vitro screening of the new compounds against transgenic NF54-luc P. falciparum parasites revealed a set of derivatives with submicromolar activity, of which some displayed a reasonable selectivity profile against a human cell line. Although the molecular docking studies suggested the plasmodial protein kinase PfGSK-3 as the putative biological target, the title compounds failed to inhibit the isolated enzyme in vitro. As selective submicromolar antiplasmodial agents, the N-unsubstituted bisindolylcyclobutenediones are promising starting structures in the search for antimalarial drugs, albeit for a rational development, the biological target addressed by these compounds has yet to be identified.
Collapse
Affiliation(s)
- Duc Hoàng Lande
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Arne Alder
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Tim W. Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
| | - Johann Grünefeld
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
5
|
Tjhin ET, Howieson VM, Spry C, van Dooren GG, Saliba KJ. A novel heteromeric pantothenate kinase complex in apicomplexan parasites. PLoS Pathog 2021; 17:e1009797. [PMID: 34324601 PMCID: PMC8366970 DOI: 10.1371/journal.ppat.1009797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/16/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.
Collapse
Affiliation(s)
- Erick T. Tjhin
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Vanessa M. Howieson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
- Medical School, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
6
|
Nurkanto A, Jeelani G, Santos HJ, Rahmawati Y, Mori M, Nakamura Y, Goto K, Saikawa Y, Annoura T, Tozawa Y, Sakura T, Inaoka DK, Shiomi K, Nozaki T. Characterization of Plasmodium falciparum Pantothenate Kinase and Identification of Its Inhibitors From Natural Products. Front Cell Infect Microbiol 2021; 11:639065. [PMID: 33768012 PMCID: PMC7985445 DOI: 10.3389/fcimb.2021.639065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Coenzyme A (CoA) is a well-known cofactor that plays an essential role in many metabolic reactions in all organisms. In Plasmodium falciparum, the most deadly among Plasmodium species that cause malaria, CoA and its biosynthetic pathway have been proven to be indispensable. The first and rate-limiting reaction in the CoA biosynthetic pathway is catalyzed by two putative pantothenate kinases (PfPanK1 and 2) in this parasite. Here we produced, purified, and biochemically characterized recombinant PfPanK1 for the first time. PfPanK1 showed activity using pantetheine besides pantothenate, as the primary substrate, indicating that CoA biosynthesis in the blood stage of P. falciparum can bypass pantothenate. We further developed a robust and reliable screening system to identify inhibitors using recombinant PfPanK1 and identified four PfPanK inhibitors from natural compounds.
Collapse
Affiliation(s)
- Arif Nurkanto
- Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yulia Rahmawati
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mihoko Mori
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.,Biological Resource Center, National Institute of Technology and Evaluation (NITE), Chiba, Japan
| | - Yumi Nakamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kana Goto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Yoko Saikawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, School of Tropical Medicine and Global Health, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, School of Tropical Medicine and Global Health, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Evaluation of 1,1-cyclopropylidene as a thioether isostere in the 4-thio-thienopyrimidine (TTP) series of antimalarials. Bioorg Med Chem 2020; 28:115758. [PMID: 33007559 DOI: 10.1016/j.bmc.2020.115758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023]
Abstract
The 4-(heteroarylthio)thieno[2,3-d]pyrimidine (TTP) series of antimalarials, represented by 1 and 17, potently inhibit proliferation of the 3D7 strain of P. falciparum (EC50 70-100 nM), but suffer from oxidative metabolism. The 1,1-cyclopropylidene isosteres 6 and 16 were designed to obviate this drawback. They were prepared by a short route that features a combined Peterson methylenation / cyclopropanation transformation of, e. g., ketone 7. Isosteres 6 and 16 possess significantly attenuated antimalarial potency relative to parents 1 and 17. This outcome can be rationalized based on the increased out-of-plane steric demands of the latter two. In support of this hypothesis, the relatively flat ketone 7 retains some of the potency of 1, even though it appears to be a comparatively inferior mimic with respect to electronics and bond lengths and angles. We also demonstrate crystallographically and computationally an apparent increase in the strength of the intramolecular sulfur hole interaction of 1 upon protonation.
Collapse
|
8
|
Nguyen HHT, Yeoh LM, Chisholm SA, Duffy MF. Developments in drug design strategies for bromodomain protein inhibitors to target Plasmodium falciparum parasites. Expert Opin Drug Discov 2019; 15:415-425. [PMID: 31870185 DOI: 10.1080/17460441.2020.1704251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Bromodomains (BRDs) bind to acetylated lysine residues, often on histones. The BRD proteins can contribute to gene regulation either directly through enzymatic activity or indirectly through recruitment of chromatin-modifying complexes or transcription factors. There is no evidence of direct orthologues of the Plasmodium falciparum BRD proteins (PfBDPs) outside the apicomplexans. PfBDPs are expressed during the parasite's life cycle in both the human host's blood and in the mosquito. PfBDPs could also prove to be promising targets for novel antimalarials, which are urgently required to address increasing drug resistance.Areas covered: This review discusses recent studies of the biology of PfBDPs, current target-based strategies for PfBDP inhibitor discovery, and different approaches to the important step of validating the specificity of hit compounds for PfBDPs.Expert opinion: The novelty of Plasmodium BRDs suggests that they could be targeted by selective compounds. Chemical series that showed promise in screens against human BRDs could be leveraged to create targeted compound libraries, as could hits from P. falciparum phenotypic screens. These targeted libraries and hits could be screened in target-based strategies aimed at discovery and optimization of novel inhibitors of PfBDPs. A key task for the field is to generate parasite assays to validate the hit compounds' specificity for PfBDPs.
Collapse
Affiliation(s)
- Hanh H T Nguyen
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia.,The Dept of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Lee M Yeoh
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Scott A Chisholm
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Michael F Duffy
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia.,The Dept of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Delves M, Lafuente-Monasterio MJ, Upton L, Ruecker A, Leroy D, Gamo FJ, Sinden R. Fueling Open Innovation for Malaria Transmission-Blocking Drugs: Hundreds of Molecules Targeting Early Parasite Mosquito Stages. Front Microbiol 2019; 10:2134. [PMID: 31572339 PMCID: PMC6753678 DOI: 10.3389/fmicb.2019.02134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background Despite recent successes at controlling malaria, progress has stalled with an estimated 219 million cases and 435,000 deaths in 2017 alone. Combined with emerging resistance to front line antimalarial therapies in Southeast Asia, there is an urgent need for new treatment options and novel approaches to halt the spread of malaria. Plasmodium, the parasite responsible for malaria propagates through mosquito transmission. This imposes an acute bottleneck on the parasite population and transmission-blocking interventions exploiting this vulnerability are recognized as vital for malaria elimination. Methods 13,533 small molecules with known activity against Plasmodium falciparum asexual parasites were screened for additional transmission-blocking activity in an ex vivo Plasmodium berghei ookinete development assay. Active molecules were then counterscreened in dose response against HepG2 cells to determine their activity/cytotoxicity window and selected non-toxic representative molecules were fully profiled in a range of transmission and mosquito infection assays. Furthermore, the entire dataset was compared to other published screens of the same molecules against P. falciparum gametocytes and female gametogenesis. Results 437 molecules inhibited P. berghei ookinete formation with an IC50 < 10 μM. of which 273 showed >10-fold parasite selectivity compared to activity against HepG2 cells. Active molecules grouped into 49 chemical clusters of three or more molecules, with 25 doublets and 94 singletons. Six molecules representing six major chemical scaffolds confirmed their transmission-blocking activity against P. falciparum male and female gametocytes and inhibited P. berghei oocyst formation in the standard membrane feeding assay at 1 μM. When screening data in the P. berghei development ookinete assay was compared to published screens of the same library in assays against P. falciparum gametocytes and female gametogenesis, it was established that each assay identified distinct, but partially overlapping subsets of transmission-blocking molecules. However, selected molecules unique to each assay show transmission-blocking activity in mosquito transmission assays. Conclusion The P. berghei ookinete development assay is an excellent high throughput assay for efficiently identifying antimalarial molecules targeting early mosquito stage parasite development. Currently no high throughput transmission-blocking assay is capable of identifying all transmission-blocking molecules.
Collapse
Affiliation(s)
- Michael Delves
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Leanna Upton
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | - Robert Sinden
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Masch A, Nasereddin A, Alder A, Bird MJ, Schweda SI, Preu L, Doerig C, Dzikowski R, Gilberger TW, Kunick C. Structure-activity relationships in a series of antiplasmodial thieno[2,3-b]pyridines. Malar J 2019; 18:89. [PMID: 30898128 PMCID: PMC6429710 DOI: 10.1186/s12936-019-2725-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is one of the most prevalent tropical infectious diseases. Since recently cases of artemisinin resistance were reported, novel anti-malarial drugs are required which differ from artemisinins in structure and biological target. The plasmodial glycogen synthase kinase-3 (PfGSK-3) was suggested as a new anti-malarial drug target. 4-Phenylthieno[2,3-b]pyridines were previously identified as selective PfGSK-3 inhibitors with antiplasmodial activity. The present study aims at identifying a molecular position on this scaffold for the attachment of side chains in order to improve solubility and antiplasmodial activity. Furthermore, the role of axial chirality in the compound class for antiplasmodial activity and PfGSK-3 inhibition was investigated. METHODS 4-Phenylthieno[2,3-b]pyridines with substituents in 4-position of the phenyl ring were docked into the ATP binding site of PfGSK-3. The compounds were synthesized employing a Thorpe reaction as final step. The enantiomers of one congener were separated by chiral HPLC. All derivatives were tested for inhibition of asexual erythrocytic stages of transgenic NF54-luc Plasmodium falciparum. Selected compounds with promising antiplasmodial activity were further evaluated for inhibition of HEK293 cells as well as inhibition of isolated PfGSK-3 and HsGSK-3. The kinetic aqueous solubility was assessed by laser nephelometry. RESULTS The para position at the 4-phenyl ring of the title compounds was identified as a suitable point for the attachment of side chains. While alkoxy substituents in this position led to decreased antiplasmodial activity, alkylamino groups retained antiparasitic potency. The most promising of these congeners (4h) was investigated in detail. This compound is a selective PfGSK-3 inhibitor (versus the human GSK-3 orthologue), and exhibits improved antiplasmodial activity in vitro as well as better solubility in aqueous media than its unsubstituted parent structure. The derivative 4b was separated into the atropisomers, and it was shown that the (+)-enantiomer acts as eutomer. CONCLUSIONS The attachment of alkylamino side chains leads to the improvement of antiplasmodial activity and aqueous solubility of selective PfGSK-inhibitors belonging to the class of 4-phenylthieno[2,3-b]pyridines. These molecules show axial chirality, a feature of high impact for biological activity. The findings can be exploited for the development of improved selective PfGSK-3 inhibitors.
Collapse
Affiliation(s)
- Andreas Masch
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel.,Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Arne Alder
- Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607, Hamburg, Germany.,Bernhard-Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Megan J Bird
- Biomedicine Discovery Institute, Infection & Immunity Program, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Sandra I Schweda
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106, Braunschweig, Germany
| | - Lutz Preu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Christian Doerig
- Biomedicine Discovery Institute, Infection & Immunity Program, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia.,Centre for Chronic, Inflammatory and Infectious Diseases, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607, Hamburg, Germany.,Bernhard-Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany. .,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106, Braunschweig, Germany.
| |
Collapse
|
11
|
Barrows RD, Blacklock KM, Rablen PR, Khare SD, Knapp S. Computational assessment of thioether isosteres. J Mol Graph Model 2018; 80:282-292. [PMID: 29414047 DOI: 10.1016/j.jmgm.2018.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
Replacement of the sulfur atom in biologically active diaryl and heteroaryl thioethers (Ar-S-Ar', HAr-S-Ar, and HAr-S-HAr') with any of several one-atom or two-atom linkers can be expected to reduce the susceptibility of the analogue to metabolic oxidation, a well-documented problem for thioethers intended for medicinal chemistry applications. Ab initio calculations indicate how well various proposed thioether isosteric groups, including some new and unusual ones, may perform structurally and electronically in replacing the bridging sulfur atom. Four of these are calculationally evaluated as proposed substructures in Axitinib analogues. The predicted binding behavior of the latter within two different previously crystallographically characterized protein-Axitinib binding sites (VEGFR2 kinase and ABL1 T315I gatekeeper mutant kinase), and an assessment of their suitability and anticipated shortcomings, are presented.
Collapse
Affiliation(s)
- Robert D Barrows
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA
| | - Kristin M Blacklock
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA
| | - Paul R Rablen
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| | - Sagar D Khare
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA
| | - Spencer Knapp
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA.
| |
Collapse
|