1
|
Minwuyelet A, Abiye M, Zeleke AJ, Getie S. Plasmodium gametocyte carriage in humans and sporozoite rate in anopheline mosquitoes in Gondar zuria district, Northwest Ethiopia. PLoS One 2024; 19:e0306289. [PMID: 38950022 PMCID: PMC11216604 DOI: 10.1371/journal.pone.0306289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Although the overall burden of malaria is decreasing in Ethiopia, a recent report of an unpredictable increased incidence may be related to the presence of community-wide gametocyte-carrier individuals and a high proportion of infected vectors. This study aimed to reveal the current prevalence of gametocyte-carriage and the sporozoite infectivity rate of Anopheles vectors for Plasmodium parasites. A community-based cross-sectional study was conducted from May 01 to June 30/2019. A total of 53 households were selected using systematic random sampling and a 242 study participants were recruited. Additionally,515 adult female Anopheles mosquitoes were collected using Center for Diseases Control and Prevention (CDC) light traps and mouth aspirators. Parasite gametocytemia was determined using giemsa stain microscopy, while sporozoite infection was determined by giemsa staining microscopy and enzyme linked immunosorbent assay (ELISA). Among the total 242 study participants, 5.4% (95%, CI = 2.9-8.3) of them were positive for any of the Plasmodium species gametocyte. Furthermore, being female [AOR = 15.5(95%, CI = 1.71-140.39)], age group between 15-29 years old [AOR = 16.914 (95%, CI = 1.781-160.63)], no ITNs utilization [AOR = 16.7(95%, CI = 1.902 -146.727)], and high asexual parasite density [(95%, CI = 0.057-0.176, P = 0.001, F = 18.402)] were identified as statistically significant factors for gametocyte carriage. Whereas sporozoite infection rate was 11.6% (95%, CI = 8.2-15.5) and 12.7% (95%, CI = 9.6-16.3) by microscopy and ELISA, respectively. Overall, this study indicated that malaria remains to be an important public health problem in Gondar Zuria district where high gametocyte carriage rate and sporozoite infection rate could sustain its transmission and burden. Therefore, in Ethiopia, where malaria elimination program is underway, frequent, and active community-based surveillance of gametocytemia and sporozoite infection rate is important.
Collapse
Affiliation(s)
- Awoke Minwuyelet
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Melkam Abiye
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Ayalew Jejaw Zeleke
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Sisay Getie
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Looareesuwan P, Krudsood S, Lawpoolsri S, Tangpukdee N, Matsee W, Nguitragool W, Wilairatana P. Gametocyte prevalence and risk factors of P. falciparum malaria patients admitted at the Hospital for Tropical Diseases, Thailand: a 20-year retrospective study. Malar J 2023; 22:321. [PMID: 37872594 PMCID: PMC10591378 DOI: 10.1186/s12936-023-04728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The incidence of malaria in Thailand has dramatically declined over the past two decades, and the goal is to eliminate malaria by 2025. Despite significant progress, one of the key challenges to malaria elimination are undetected gametocyte carriers. Human migration adds complexity to the malaria situation, as it not only sustains local transmission but also poses the risk of spreading drug-resistant parasites. Currently, no study has assessed the prevalence of gametocytes across multiple years in Plasmodium falciparum malaria patients in Thailand, and the risk factors for gametocyte carriage have not been fully explored. METHODS Medical records of all P. falciparum malaria patients admitted from January 1, 2001 to December 31, 2020 at the Hospital for Tropical Diseases, Thailand, were retrospectively examined and a total of 1962 records were included for analysis. Both P. falciparum parasites and gametocytes were diagnosed by microscopy. A regression model was used to evaluate predictors of gametocyte carriage. RESULTS The study demonstrated gametocyte prevalence in low malaria transmission areas. Nine risk factors for gametocyte carriage were identified: age between 15 and 24 years [adjusted odds ratio (aOR) = 1.96, 95% confidence interval (CI) 1.18-3.26], Karen ethnicity (aOR = 2.59, 95% CI 1.56-4.29), preadmission duration of fever > 7 days (aOR = 5.40, 95% CI 3.92-7.41), fever on admission (> 37.5 °C) (aOR = 0.61, 95% CI 0.48-0.77), haemoglobin ≤ 8 g/dL (aOR = 3.32, 95% CI 2.06-5.33), asexual parasite density > 5000-25,000/µL (aOR = 0.71, 95% CI 0.52-0.98), asexual parasite density > 25,000-100,000/µL (aOR = 0.74, 95% CI 0.53-1.03), asexual parasite density > 100,000/µL (aOR = 0.51, 95% CI 0.36-0.72), platelet count ≤ 100,000/µL (aOR = 0.65, 95% CI 0.50-0.85, clinical features of severe malaria (aOR = 2.33, 95% CI 1.76-3.10) and dry season (aOR = 1.41, 95% CI 1.10-1.80). An increasing incidence of imported transnational malaria cases was observed over the past two decades. CONCLUSIONS This is the first study to determine the prevalence of gametocytes among patients with symptomatic P. falciparum malaria, identify the risk factors for gametocyte carriage, and potential gametocyte carriers in Thailand. Blocking transmission is one of the key strategies for eliminating malaria in these areas. The results might provide important information for targeting gametocyte carriers and improving the allocation of resources for malaria control in Thailand. This study supports the already nationally recommended use of a single dose of primaquine in symptomatic P. falciparum malaria patients to clear gametocytes.
Collapse
Affiliation(s)
- Panita Looareesuwan
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Srivicha Krudsood
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Noppadon Tangpukdee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wasin Matsee
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Alemayehu A. Biology and epidemiology of Plasmodium falciparum and Plasmodium vivax gametocyte carriage: Implication for malaria control and elimination. Parasite Epidemiol Control 2023; 21:e00295. [PMID: 36950502 PMCID: PMC10025134 DOI: 10.1016/j.parepi.2023.e00295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/01/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Malaria is among the leading public health problems worldwide. Female anopheles mosquito orchestrates the transmission of malaria by taking gametocytes and introducing sporozoite while taking blood meals. Interrupting transmission is the major strategy for malaria elimination. The gametocyte stage is essential for the onward transmission of malaria. Thus, understanding its basic biology and epidemiology is key to malaria control and elimination. Therefore, the current review focuses on revealing the biology, prevalence, and determinants of gametocyte carriage as well as its implication on mitigation of malaria. It also illustrates the role of asymptomatic and sub-microscopic Plasmodium infections and G-6-PD deficiency in gametocyte carriage and hence malaria transmission. Gametocytogenesis is initiated at committed merozoites and gives rise to the development of gametocytes. The trigger for gametocytogenesis depends on the host, parasite, and intervention factors. Gametocytes pass through five developmental stages identifiable by molecular markers. A considerable number of malaria patients carry gametocytes at a sub-microscopic level, thereby serving as a potential infectious reservoir of transmission. Factors involving the human host, Plasmodium parasite, and intervention parameters play a critical role in gametocyte biology and prevalence. The contribution of asymptomatic and sub-microscopic infections to malaria transmission is unknown. The clear impact of G-6-PD deficiency on malaria control and elimination remains unclear. Lack of clarity on such issues might impede the success of interventions. Basic science and epidemiological studies should continue to overcome the challenges and cope with the ever-evolving parasite and guide interventions.
Collapse
Affiliation(s)
- Aklilu Alemayehu
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
4
|
Effects of Age, Gender and Soil-Transmitted Helminth Infection on Prevalence of Plasmodium Infection among Population Living in Bata District, Equatorial Guinea. Trop Med Infect Dis 2023; 8:tropicalmed8030149. [PMID: 36977150 PMCID: PMC10059851 DOI: 10.3390/tropicalmed8030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Malaria and soil-transmitted helminth (STH) co-infection is an important parasitic infection affecting populations in co-endemic countries including Equatorial Guinea. To date, the health impact of STH and malaria co-infection is inconclusive. The current study aimed to report the malaria and STH infection epidemiology in the continental region of Equatorial Guinea. Methods: We performed a cross-sectional study between October 2020 and January 2021 in the Bata district of Equatorial Guinea. Participants aged 1–9 years, 10–17 years and above 18 were recruited. Fresh venous blood was collected for malaria testing via mRDTs and light microscopy. Stool specimens were collected, and the Kato–Katz technique was used to detect the presence of Ascaris lumbricoides, Trichuris trichiura, hookworm spp. and intestinal Schistosoma eggs. Results: A total of 402 participants were included in this study. An amount of 44.3% of them lived in urban areas, and only 51.9% of them reported having bed nets. Malaria infections were detected in 34.8% of the participants, while 50% of malaria infections were reported in children aged 10–17 years. Females had a lower prevalence of malaria (28.8%) compared with males (41.7%). Children of 1–9 years carried more gametocytes compared with other age groups. An amount of 49.3% of the participants infected with T. trichiura had malaria parasites compared with those infected with A. lumbricoides (39.6%) or both (46.8%). Conclusions: The overlapping problem of STH and malaria is neglected in Bata. The current study forces the government and other stakeholders involved in the fight against malaria and STH to consider a combined control program strategy for both parasitic infections in Equatorial Guinea.
Collapse
|
5
|
Rodriguez AM, Hambly MG, Jandu S, Simão-Gurge R, Lowder C, Lewis EE, Riffell JA, Luckhart S. Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species. Biomolecules 2021; 11:719. [PMID: 34064869 PMCID: PMC8151525 DOI: 10.3390/biom11050719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
An estimated 229 million people worldwide were impacted by malaria in 2019. The vectors of malaria parasites (Plasmodium spp.) are Anopheles mosquitoes, making their behavior, infection success, and ultimately transmission of great importance. Individuals with severe malaria can exhibit significantly increased blood concentrations of histamine, an allergic mediator in humans and an important insect neuromodulator, potentially delivered to mosquitoes during blood-feeding. To determine whether ingested histamine could alter Anopheles stephensi biology, we provisioned histamine at normal blood levels and at levels consistent with severe malaria and monitored blood-feeding behavior, flight activity, antennal and retinal responses to host stimuli and lifespan of adult female Anopheles stephensi. To determine the effects of ingested histamine on parasite infection success, we quantified midgut oocysts and salivary gland sporozoites in mosquitoes infected with Plasmodium yoelii and Plasmodium falciparum. Our data show that provisioning An. stephensi with histamine at levels consistent with severe malaria can enhance mosquito behaviors and parasite infection success in a manner that would be expected to amplify parasite transmission to and from human hosts. Such knowledge could be used to connect clinical interventions by reducing elevated histamine to mitigate human disease pathology with the delivery of novel lures for improved malaria control.
Collapse
Affiliation(s)
- Anna M. Rodriguez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Sandeep Jandu
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; (S.J.); (J.A.R.)
| | - Raquel Simão-Gurge
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Casey Lowder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; (S.J.); (J.A.R.)
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843-3051, USA
| |
Collapse
|
6
|
Stiffler DM, Oyieko J, Kifude CM, Rockabrand DM, Luckhart S, Stewart VA. HIV-1 Infection Is Associated With Increased Prevalence and Abundance of Plasmodium falciparum Gametocyte-Specific Transcripts in Asymptomatic Adults in Western Kenya. Front Cell Infect Microbiol 2021; 10:600106. [PMID: 33614525 PMCID: PMC7892447 DOI: 10.3389/fcimb.2020.600106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2020] [Indexed: 01/05/2023] Open
Abstract
As morbidity and mortality due to malaria continue to decline, the identification of individuals with a high likelihood of transmitting malaria is needed to further reduce the prevalence of malaria. In areas of holoendemic malaria transmission, asymptomatically infected adults may be infected with transmissible gametocytes. The impact of HIV-1 on gametocyte carriage is unknown, but co-infection may lead to an increase in gametocytemia. In this study, a panel of qPCR assays was used to quantify gametocyte stage-specific transcripts present in dried blood spots obtained from asymptomatic adults seeking voluntary HIV testing in Kombewa, Kenya. A total of 1,116 Plasmodium-specific 18S-positive samples were tested and 20.5% of these individuals had detectable gametocyte-specific transcripts. Individuals also infected with HIV-1 were 1.82 times more likely to be gametocyte positive (P<0.0001) and had significantly higher gametocyte copy numbers when compared to HIV-negative individuals. Additionally, HIV-1 positivity was associated with higher gametocyte prevalence in men and increased gametocyte carriage with age. Overall, these data suggest that HIV-positive individuals may have an increased risk of transmitting malaria parasites in regions with endemic malaria transmission and therefore should be at a higher priority for treatment with gametocidal antimalarial drugs.
Collapse
Affiliation(s)
- Deborah M Stiffler
- Department of Preventive Medicine and Biostatistics, Division of Tropical Public Health, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Janet Oyieko
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Carolyne M Kifude
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - David M Rockabrand
- Department of Preventive Medicine and Biostatistics, Division of Tropical Public Health, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - V Ann Stewart
- Department of Preventive Medicine and Biostatistics, Division of Tropical Public Health, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
7
|
Iron Status of Burkinabé Adolescent Girls Predicts Malaria Risk in the Following Rainy Season. Nutrients 2020; 12:nu12051446. [PMID: 32429481 PMCID: PMC7284973 DOI: 10.3390/nu12051446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
High levels of storage iron may increase malaria susceptibility. This risk has not been investigated in semi-immune adolescents. We investigated whether baseline iron status of non-pregnant adolescent girls living in a high malaria transmission area in Burkina Faso affected malaria risk during the following rainy season. For this prospective study, we analysed data from an interim safety survey, conducted six months into a randomised iron supplementation trial. We used logistic regression to model the risk of P. falciparum infection prevalence by microscopy, the pre-specified interim safety outcome, in relation to iron status, nutritional indicators and menarche assessed at recruitment. The interim survey was attended by 1223 (82%) of 1486 eligible participants, 1084 (89%) of whom were <20 years at baseline and 242 (22%) were pre-menarcheal. At baseline, prevalence of low body iron stores was 10%. At follow-up, 38% of adolescents had predominantly asymptomatic malaria parasitaemias, with no difference by menarcheal status. Higher body iron stores at baseline predicted an increased malaria risk in the following rainy season (OR 1.18 (95% CI 1.05, 1.34, p = 0.007) after adjusting for bed net use, age, menarche, and body mass index. We conclude that routine iron supplementation should not be recommended without prior effective malaria control.
Collapse
|
8
|
Brussee JM, Schulz JD, Coulibaly JT, Keiser J, Pfister M. Ivermectin Dosing Strategy to Achieve Equivalent Exposure Coverage in Children and Adults. Clin Pharmacol Ther 2019; 106:661-667. [PMID: 30993667 DOI: 10.1002/cpt.1456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Ivermectin is a commonly used broad-spectrum antiparasitic drug, yet doses that produce consistent exposure coverage across age have not been characterized, and no data are available in children weighing < 15 kg. First, a population pharmacokinetic model is developed based on data from 200 children and 11 adults, treated with 100-600 μg/kg ivermectin. Second, model-based simulations are performed to identify a dosing strategy that achieves equivalent exposure coverage in children and adults. Median (90% confidence interval) clearance of 0.346 (0.12-0.73) L/hour/kg in pre-school-aged (2-5 years) children is similar to 0.352 (0.17-0.69) L/hour/kg in school-aged (6-12 years) children but higher than in adults (0.199 (0.10-0.31) L/hour/kg), resulting in significantly lower exposure in children following a 200 μg/kg dose. Simulations indicate that a dose increase to 300 and 250 μg/kg in children aged 2-5 and 6-12 years, respectively, will achieve equivalent ivermectin exposure coverage in children and adults.
Collapse
Affiliation(s)
- Janneke M Brussee
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Jessica D Schulz
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jean T Coulibaly
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Marc Pfister
- University of Basel, Basel, Switzerland.,Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Certara LP, Princeton, New Jersey, USA
| |
Collapse
|
9
|
Koepfli C, Yan G. Plasmodium Gametocytes in Field Studies: Do We Measure Commitment to Transmission or Detectability? Trends Parasitol 2018; 34:378-387. [PMID: 29544966 DOI: 10.1016/j.pt.2018.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The proportion of Plasmodium spp. infections carrying gametocytes, and gametocyte densities, are often reported as surrogate markers for transmission potential. It remains unclear whether parasites under natural conditions adjust commitment to transmission depending on external factors. Population-based surveys comprising mostly asymptomatic low-density infections are always impacted by the sensitivity of the assays used to diagnose infections and detect gametocytes. Asexual parasite density is an important predictor for the probability of detecting gametocytes, and in many cases it can explain patterns in gametocyte carriage without the need for an adjustment of the gametocyte conversion rate. When reporting gametocyte data, quantification of blood-stage parasitemia and its inclusion as a confounder in multivariable analyses is essential.
Collapse
Affiliation(s)
- Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92697, USA
| |
Collapse
|