1
|
Narang G, Hawadak J, Jakhan J, Yadav K, Singh V. Longitudinal population analysis of Plasmodium falciparum apical membrane antigen-1 in Indian field isolates. Acta Trop 2025; 266:107630. [PMID: 40286894 DOI: 10.1016/j.actatropica.2025.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/21/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
High genetic diversity is a major impediment to developing a universal malaria vaccine based on Plasmodium falciparum apical membrane antigen-1 (Pfama-1). Vaccine effectiveness against heterologous forms of the antigen requires information about existing genetic diversity of gene in circulation. Genotyping of Pfama-1 was performed on 147 archival samples from 14 different Indian states collected from 1993 to 2021. Genetic diversity and natural selection were assessed to explore the longitudinal variation in Pfama-1 in Indian P. falciparum field isolates. A total of 52 polymorphic sites were observed giving rise to 70 different haplotypes. Two novel amino acid substitutions S498C/G and F505Y, were observed in our samples. Highest genetic polymorphism was observed in Domain I (π = 0.025), while Domain II (π = 0.006) appeared to be most conserved across all states over the time. Non-significant positive Tajima D value (Taj D = 0.945, p > 0.10) was observed indicating that Indian Pfama-1 is under balancing natural selection. Although haplotype network was complex, structure analysis has shown no evidence of distinct genetic pattern state wise or change in Pfama-1 structure in time. Genetic structure of Pfama-1 in Indian field isolates is complex, exhibiting a high degree of genetic polymorphism. Since allele specific immunity is observed in the gene, Domain II which shows relative conservation across all states and between old and recent field isolates could have implications in vaccine design.
Collapse
Affiliation(s)
- Geetika Narang
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Joseph Hawadak
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India
| | - Jahnvi Jakhan
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karmveer Yadav
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India
| | - Vineeta Singh
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Zamora A, Pinto A, Escobar D, Valdivia HO, Chaver L, Ardón G, Carranza E, Fontecha G. Genetic diversity of Plasmodium vivax and Plasmodium falciparum field isolates from Honduras in the malaria elimination phase. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 7:100230. [PMID: 39759387 PMCID: PMC11699087 DOI: 10.1016/j.crpvbd.2024.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
Malaria continues to be a major threat to public health in tropical regions, primarily affecting sub-Saharan Africa but also Asia, the Middle East, and Latin America. Malaria cases in Honduras have seen a significant decline and the country aims to eliminate the disease by 2030. This study examines the genetic diversity of Plasmodium falciparum and Plasmodium vivax in Honduras using four molecular markers (Pfama1, Pfglurp, Pvmsp3α, and Pvmsp3β), and the chloroquine resistance marker pfcrt in the context of the elimination phase. Our findings indicate that P. falciparum populations in Honduras are more homogeneous compared to P. vivax. The multilocus sequence typing (MLST) approach, using four loci from Pvmsp3α and Pvmsp3β, proved more effective in assessing the genetic diversity of P. vivax than individual marker analyses. No geographical clustering was observed for P. vivax haplotypes, either within Honduras or globally. In Honduras, P. falciparum appears to be under more effective control, while P. vivax presents a greater challenge due to its higher genetic diversity. This requires enhanced surveillance, targeted control strategies, and measures to prevent the reintroduction of variants. The isolates of P. falciparum also displayed a wild-type Pfcrt phenotype, suggesting susceptibility to chloroquine.
Collapse
Affiliation(s)
- Alejandro Zamora
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, 11101, Honduras
| | - Alejandra Pinto
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, 11101, Honduras
| | - Denis Escobar
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, 11101, Honduras
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), 07006, Lima, Peru
| | - Lesly Chaver
- Laboratorio Nacional de Vigilancia, Secretaría de Salud de Honduras, Tegucigalpa, 11101, Honduras
| | - Gloria Ardón
- Laboratorio Nacional de Vigilancia, Secretaría de Salud de Honduras, Tegucigalpa, 11101, Honduras
| | - Erick Carranza
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, 11101, Honduras
| | - Gustavo Fontecha
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, 11101, Honduras
| |
Collapse
|
3
|
Zaib K, Khan A, Khan MU, Ullah I, Võ TC, Kang JM, Lê HG, Na BK, Afridi SG. Genetic structure of apical membrane antigen-1 in Plasmodium falciparum isolates from Pakistan. PARASITES, HOSTS AND DISEASES 2024; 62:302-312. [PMID: 39218629 PMCID: PMC11366544 DOI: 10.3347/phd.24028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major candidate for the blood-stage malaria vaccine. Genetic polymorphisms of global pfama-1suggest that the genetic diversity of the gene can disturb effective vaccine development targeting this antigen. This study was conducted to explore the genetic diversity and gene structure of pfama-1 among P. falciparum isolates collected in the Khyber Pakhtunkhwa (KP) province of Pakistan. A total of 19 full-length pfama-1 sequences were obtained from KP-Pakistan P. falciparum isolates, and genetic polymorphism and natural selection were investigated. KP-Pakistan pfama-1 exhibited genetic diversity, wherein 58 amino acid changes were identified, most of which were located in ectodomains, and domains I, II, and III. The amino acid changes commonly found in the ectodomain of global pfama-1 were also detected in KP-Pakistan pfama-1. Interestingly, 13 novel amino acid changes not reported in the global population were identified in KP-Pakistan pfama-1. KP-Pakistan pfama-1 shared similar levels of genetic diversity with global pfama-1. Evidence of natural selection and recombination events were also detected in KP-Pakistan pfama-1.
Collapse
Affiliation(s)
- Komal Zaib
- Department of Biochemistry Abdul Wali Khan University, Mardan 23200,
Pakistan
| | - Asifullah Khan
- Department of Biochemistry Abdul Wali Khan University, Mardan 23200,
Pakistan
| | - Muhammad Umair Khan
- Department of Biochemistry Abdul Wali Khan University, Mardan 23200,
Pakistan
| | - Ibrar Ullah
- Department of Biochemistry Abdul Wali Khan University, Mardan 23200,
Pakistan
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Department of Convergence Medical Science, and Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Sahib Gul Afridi
- Department of Biochemistry Abdul Wali Khan University, Mardan 23200,
Pakistan
| |
Collapse
|
4
|
Hawadak J, Kojom Foko LP, Dongang Nana RR, Yadav K, Pande V, Das A, Singh V. Genetic diversity and natural selection of apical membrane antigen-1 (ama-1) in Cameroonian Plasmodium falciparum isolates. Gene 2024; 894:147956. [PMID: 37925116 DOI: 10.1016/j.gene.2023.147956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Antigenic variation associated with genetic diversity in global Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major impediment to designing an effective malaria vaccine. Here, we report the first study on genetic diversity and natural selection of the Pfama-1 gene in P. falciparum isolates from Cameroon. A total of 328 P. falciparum positive samples collected during 2016 and 2019 from five localities of Cameroon were analysed. The ectodomain coding fragment of Pfama-1 gene was amplified for polymorphism profiling and natural selection analysis. A total of 108 distinct haplotypes were found in 203 P. falciparum isolates with considerable nucleotide diversity (π = 0.016) and haplotype diversity (Hd = 0.976). Most amino acid substitutions detected were scattered in ectodomain-I and few specific mutations viz P145L, K148Q, K462I, L463F, N471K, S482L, E537G, K546R and I547F were seen only in Cameroonian isolates. A tendency of natural selection towards positive diversifying selection was observed (Taj-D = 2.058). Five positively selected codon sites (P145L, S283L, Q308E/K, P330S and I547F) were identified, which overlapped with predicted B-cell epitopes and red blood cell (RBC) binding sites, suggesting their potential implication in host immune pressure and parasite-RBC binding complex modulation. The Cameroonian P. falciparum populations indicated a moderate level of genetic differentiation when compared with global sequences, with few exceptions from Vietnam and Venezuela. Our findings provide baseline data on existing Pfama-1 gene polymorphisms in Cameroonian field isolates, which will be useful information for malaria vaccine design.
Collapse
Affiliation(s)
- Joseph Hawadak
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Loick Pradel Kojom Foko
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rodrigue Roman Dongang Nana
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Institut de Recherches Médicales et D'Etudes des Plantes Médicinales (IMPM), Yaoundé, Cameroon
| | - Karmveer Yadav
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Aparup Das
- ICMR-National Institute for Research in Tribal Health (NIRTH), Jabalpur, India.
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India.
| |
Collapse
|
5
|
Võ TC, Lê HG, Kang JM, Naw H, Yoo WG, Myint MK, Quang HH, Na BK. Genetic polymorphism and natural selection of the erythrocyte binding antigen 175 region II in Plasmodium falciparum populations from Myanmar and Vietnam. Sci Rep 2023; 13:20025. [PMID: 37973970 PMCID: PMC10654615 DOI: 10.1038/s41598-023-47275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
Plasmodium falciparum erythrocyte binding antigen 175 (PfEBA-175) plays essential role in erythrocyte invasion by the parasite and is a leading vaccine candidate. However, its genetic diversity in global isolates is a concern in developing an universal vaccine incorporating this protein. This study aimed to investigate genetic polymorphisms and natural selection of pfeba-175 region II (RII) in Myanmar and Vietnam P. falciparum isolates. Vietnam pfeba-175 RII displayed a low genetic polymorphism, while Myanmar pfeba-175 RII showed high levels of genetic diversity across the region. Point mutations, deletion, and recombinations were main factors contributing to genetic diversities in P. falciparum populations. Global pfeba-175 RII revealed similar, but not identical, genetic polymorphisms and natural selection profiles. Despite profiles of amino acid substitutions differed among populations, five major amino acid changes (K279E, E403K, K481I, Q584K, and R664) were commonly detected in global pfeba-175 RII populations. Haplotype network and genetic differentiation analyses of global pfeba-175 RII populations demonstrated no geographical relationships. Non-neglectable level of genetic diversity was observed in global pfeba-175 RII populations, emphasizing the need to consider this when designing an effective vaccine based on this protein. This study underscores the importance of the continuous monitoring of genetic diversity of pfeba-175 RII in the global P. falciparum populations.
Collapse
Affiliation(s)
- Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Haung Naw
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Huynh Hong Quang
- Tropical Diseases Clinical and Treatment Research Department, Institute of Malariology, Parasitology, and Entomology Quy Nhon, Quy Nhon, Vietnam
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
6
|
Olowe RA, Ojo JA, Funwei RI, Oyedeji SI, Olowe OA, Thomas BN, Ojurongbe O. Genetic diversity of Plasmodium falciparum among asymptomatic pregnant women on intermittent preventive treatment with sulfadoxine-pyrimethamine in Nigeria. Afr Health Sci 2023; 23:765-773. [PMID: 37545953 PMCID: PMC10398500 DOI: 10.4314/ahs.v23i1.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
This study investigated the genetic diversity of Plasmodium falciparum among asymptomatic pregnant women on intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-Sp) in Osogbo, southwest Nigeria. Blood sample was obtained from consenting pregnant women attending antenatal clinics. Microscopy and Polymerase chain reaction (PCR) were employed to diagnose and analyse genetic diversity. Of the 301 samples, 53 (18%) and 83 (28%) were positive for P. falciparum by microscopy and PCR, respectively. Using the merozoite surface protein (msp)-1, msp-2, and glutamate-rich protein (glurp) genes of P. falciparum as polymorphic markers, the msp-1 gene showed nine alleles with R033 (66.7%) being predominant, followed by K1 (45.5%) and MAD20 (33.3%). The msp-2 gene had 16 alleles (eight each for FC27 and 3D7). The 3D7 alleles (82.1%) was significantly more than FC27 alleles (48.2%) (p = 0.0093). Nine alleles were detected with glurp gene, presenting with the highest monoclonal and the lowest polyclonal infection. The multiplicity of infection (MOI) of 1.5, 1.8, and 1.2 were obtained for msp-1, msp-2 and glurp genes. In light of the high P. falciparum genetic diversity among pregnant women on IPT-Sp in this study, additional strategies for preventing and controlling malaria in pregnancy might be required.
Collapse
Affiliation(s)
- Rita A Olowe
- Ladoke Akintola University of Technology, Department of Medical Microbiology and Parasitology
| | - Johnson A Ojo
- Ladoke Akintola University of Technology, Department of Medical Microbiology and Parasitology
| | | | - Segun I Oyedeji
- Federal University Oye-Ekiti, Department of Animal & Environmental Biology
| | - Olugbenga A Olowe
- Ladoke Akintola University of Technology, Department of Medical Microbiology and Parasitology
| | - Bolaji N Thomas
- Rochester Institute of Technology, Department of Biomedical Sciences
| | - Olusola Ojurongbe
- Ladoke Akintola University of Technology, Department of Medical Microbiology and Parasitology
| |
Collapse
|
7
|
Ullah I, Afridi SG, Israr M, Khan H, Shams S, Zaib K, Le HG, Kang JM, Na BK, Khan A. Population genetic analyses inferred a limited genetic diversity across the pvama-1 DI domain among Plasmodium vivax isolates from Khyber Pakhtunkhwa regions of Pakistan. BMC Infect Dis 2022; 22:807. [PMID: 36310166 PMCID: PMC9620592 DOI: 10.1186/s12879-022-07798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium vivax apical membrane antigen-1 (pvama-1) is an important vaccine candidate against Malaria. The genetic composition assessment of pvama-1 from wide-range geography is vital to plan the antigen based vaccine designing against Malaria. Methods The blood samples were collected from 84 P. vivax positive malaria patients from different districts of Khyber Pakhtunkhwa (KP) province of Pakistan. The highly polymorphic and immunogenic domain-I (DI) region of pvama-1 was PCR amplified and DNA sequenced. The QC based sequences raw data filtration was done using DNASTAR package. The downstream population genetic analyses were performed using MEGA4, DnaSP, Arlequin v3.5 and Network.5 resources. Results The analyses unveiled total 57 haplotypes of pvama-1 (DI) in KP samples with majorly prevalent H-14 and H-5 haplotypes. Pairwise comparative population genetics analyses identified limited to moderate genetic distinctions among the samples collected from different districts of KP, Pakistan. In context of worldwide available data, the KP samples depicted major genetic differentiation against the Korean samples with Fst = 0.40915 (P-value = 0.0001), while least distinction was observed against Indian and Iranian samples. The statistically significant negative values of Fu and Li’s D* and F* tests indicate the evidence of population expansion and directional positive selection signature. The slow LD decay across the nucleotide distance in KP isolates indicates low nucleotide diversity. In context of reference pvama-1 sequence, the KP samples were identified to have 09 novel non-synonymous single nucleotide polymorphisms (nsSNPs), including several trimorphic and tetramorphic substitutions. Few of these nsSNPs are mapped within the B-cell predicted epitopic motifs of the pvama-1, and possibly modulate the immune response mechanism. Conclusion Low genetic differentiation was observed across the pvama-1 DI among the P. vivax isolates acquired from widespread regions of KP province of Pakistan. The information may implicate in future vaccine designing strategies based on antigenic features of pvama-1. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07798-1.
Collapse
|
8
|
Nirmolia T, Ahmed MA, Sathishkumar V, Sarma NP, Bhattacharyya DR, Mohapatra PK, Bansal D, Bharti PK, Sehgal R, Mahanta J, Sultan AA, Narain K, Patgiri SJ. Genetic diversity of Plasmodium falciparum AMA-1 antigen from the Northeast Indian state of Tripura and comparison with global sequences: implications for vaccine development. Malar J 2022; 21:62. [PMID: 35193607 PMCID: PMC8861999 DOI: 10.1186/s12936-022-04081-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Malaria continues to be a major public health problem in the Northeastern part of India despite the implementation of vector control measures and changes in drug policies. To develop successful vaccines against malaria, it is important to assess the diversity of vaccine candidate antigens in field isolates. This study was done to assess the diversity of Plasmodium falciparum AMA-1 vaccine candidate antigen in a malaria-endemic region of Tripura in Northeast India and compare it with previously reported global isolates with a view to assess the feasibility of developing a universal vaccine based on this antigen. Methods Patients with fever and malaria-like illness were screened for malaria and P. falciparum positive cases were recruited for the current study. The diversity of PfAMA-1 vaccine candidate antigen was evaluated by nested PCR and RFLP. A selected number of samples were sequenced using the Sanger technique. Results Among 56 P. falciparum positive isolates, Pfama-1 was successfully amplified in 75% (n = 42) isolates. Allele frequencies of PfAMA-1 antigen were 16.6% (n = 7) for 3D7 allele and 33.3% (n = 14) in both K1 and HB3 alleles. DNA sequencing revealed 13 haplotypes in the Pfama-1 gene including three unique haplotypes not reported earlier. No unique amino-acid substitutions were found. Global analysis with 2761 sequences revealed 435 haplotypes with a very complex network composition and few clusters. Nucleotide diversity for Tripura (0.02582 ± 0.00160) showed concordance with South-East Asian isolates while recombination parameter (Rm = 8) was lower than previous reports from India. Population genetic structure showed moderate differentiation. Conclusions Besides documenting all previously reported allelic forms of the vaccine candidate PfAMA-1 antigen of P. falciparum, new haplotypes not reported earlier, were found in Tripura. Neutrality tests indicate that the Pfama-1 population in Tripura is under balancing selection. This is consistent with global patterns. However, the high haplotype diversity observed in the global Pfama-1 network analysis indicates that designing a universal vaccine based on this antigen may be difficult. This information adds to the existing database of genetic diversity of field isolates of P. falciparum and may be helpful in the development of more effective vaccines against the parasite. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04081-1.
Collapse
Affiliation(s)
- Tulika Nirmolia
- ICMR - Regional Medical Research Centre, North East Region, Dibrugarh, Assam, 786001, India
| | - Md Atique Ahmed
- ICMR - Regional Medical Research Centre, North East Region, Dibrugarh, Assam, 786001, India
| | - Vinayagam Sathishkumar
- ICMR - Regional Medical Research Centre, North East Region, Dibrugarh, Assam, 786001, India
| | - Nilanju P Sarma
- ICMR - Regional Medical Research Centre, North East Region, Dibrugarh, Assam, 786001, India.,SRL Reference Laboratory, Mumbai, 400060, India
| | - Dibya R Bhattacharyya
- ICMR - Regional Medical Research Centre, North East Region, Dibrugarh, Assam, 786001, India
| | - Pradyumna K Mohapatra
- ICMR - Regional Medical Research Centre, North East Region, Dibrugarh, Assam, 786001, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Doha, Qatar.,Ministry of Public Health, Doha, Qatar
| | - Praveen K Bharti
- ICMR - National Institute for Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, 160012, India
| | - Jagadish Mahanta
- ICMR - Regional Medical Research Centre, North East Region, Dibrugarh, Assam, 786001, India
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Doha, Qatar
| | - Kanwar Narain
- ICMR - Regional Medical Research Centre, North East Region, Dibrugarh, Assam, 786001, India
| | - Saurav J Patgiri
- ICMR - Regional Medical Research Centre, North East Region, Dibrugarh, Assam, 786001, India.
| |
Collapse
|
9
|
Genetic Polymorphism and Natural Selection of Apical Membrane Antigen-1 in Plasmodium falciparum Isolates from Vietnam. Genes (Basel) 2021; 12:genes12121903. [PMID: 34946853 PMCID: PMC8701107 DOI: 10.3390/genes12121903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Apical membrane antigen-1 of Plasmodium falciparum (PfAMA-1) is a leading malaria vaccine candidate antigen. However, the genetic diversity of pfama-1 and associated antigenic variation in global P. falciparum field isolates are major hurdles to the design of an efficacious vaccine formulated with this antigen. Here, we analyzed the genetic structure and the natural selection of pfama-1 in the P. falciparum population of Vietnam. A total of 37 distinct haplotypes were found in 131 P. falciparum Vietnamese isolates. Most amino acid changes detected in Vietnamese pfama-1 were localized in the ectodomain, domains I, II, and III. Overall patterns of major amino acid changes in Vietnamese pfama-1 were similar to those of global pfama-1, but the frequencies of the amino acid changes slightly differed by country. Novel amino acid changes were also identified in Vietnamese pfama-1. Vietnamese pfama-1 revealed relatively lower genetic diversity than currently analyzed pfama-1 in other geographical regions, and suggested a distinct genetic differentiation pattern. Evidence for natural selection was detected in Vietnamese pfama-1, but it showed purifying selection unlike the global pfama-1 analyzed so far. Recombination events were also found in Vietnamese pfama-1. Major amino acid changes that were commonly identified in global pfama-1 were mainly localized to predicted B-cell epitopes, RBC-binding sites, and IUR regions. These results provide important information for understanding the genetic nature of the Vietnamese pfama-1 population, and have significant implications for the design of a vaccine based on PfAMA-1.
Collapse
|
10
|
Võ TC, Lê HG, Kang JM, Naw H, Fan CK, Trinh NTM, Quang HH, Na BK. Molecular surveillance of malaria in the Central Highlands, Vietnam. Parasitol Int 2021; 83:102374. [PMID: 33957296 DOI: 10.1016/j.parint.2021.102374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/25/2023]
Abstract
Vietnam achieved outstanding success against malaria in the last few decades. The mortality and morbidity of malaria in Vietnam have decreased remarkably in recent years, but malaria is still a major public health concern in the country, particularly in the Central Highlands region. In this study, molecular analyses of malaria parasites in the Central Highlands were performed to understand the population structure and genetic diversity of the parasites circulating in the region. Plasmodium falciparum (68.7%) and P. vivax (27.4%) along with mixed infections with P. falciparum/P. vivax (3.9%) were detected in 230 blood samples from patients with malaria. Allele-specific nested-polymerase chain reaction (PCR) or PCR-restriction fragment length polymorphism (PCR-RFLP) analyses of pfmsp-1, pfama-1, pvcsp, and pvmsp-1 revealed complex genetic makeup in P. falciparum and P. vivax populations of Vietnam. Substantial multiplicity of infection (MOI) was also identified, suggesting significant genetic diversity and polymorphism of P. falciparum and P. vivax populations in the Central Highlands of Vietnam. These results provide fundamental insight into the current patterns of dispersion and genetic nature of malaria parasites as well as for the development of malaria elimination strategies in the endemic region.
Collapse
Affiliation(s)
- Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| | - Haung Naw
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| | - Chia-Kwung Fan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine and Research Center of International Tropical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, Taiwan.
| | - Nguyen Thi Minh Trinh
- Tropical Diseases Clinical and Treatment Research Department, Institute of Malariology, Parasitology, and Entomology Quy Nhon, MoH, 611B Nguyen Thai Hoc Street, Quy Nhon, Vietnam.
| | - Huynh Hong Quang
- Tropical Diseases Clinical and Treatment Research Department, Institute of Malariology, Parasitology, and Entomology Quy Nhon, MoH, 611B Nguyen Thai Hoc Street, Quy Nhon, Vietnam.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| |
Collapse
|
11
|
Lei Y, Shen F, Zhu H, Zhu L, Chu R, Tang J, Yao W, Zhu G, Zhang D, Cao J, Cheng Y. Low genetic diversity and strong immunogenicity within the apical membrane antigen-1 of plasmodium ovale spp. imported from africa to china. Acta Trop 2020; 210:105591. [PMID: 32562621 PMCID: PMC7456792 DOI: 10.1016/j.actatropica.2020.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 10/27/2022]
Abstract
Malaria is still an important challenge for global public health because of its extensive mortality and morbidity. Plasmodium ovale is mainly distributed in tropical regions of Africa and Asia. it includes two distinct ovale malaria species, which are P. ovale curtisi and P. ovale wallikeri. Apical membrane antigen-1 (AMA-1) is an asexual blood-stage protein which is essential for Plasmodium. Thus far, no study on gene polymorphism and immunogenicity of P. ovale AMA-1 (PoAMA-1) has been conducted. Amplified poama1 gene products from 14 P ovale curtisi samples and 12 P ovale wallikeri samples imported from Africa to Jiangsu Province, China were sequenced and their polymorphisms were analyzed. We expressed recombinant PoAMA-1 (rPoAMA-1, 53 kDa) proteins in an E. coli expression system and evaluated immune responses against the rPoAMA-1 in BALB/c mice. We identified a synonymous mutation in nucleotide position 333 of the pocama-1 gene and powama-1 did not reveal any variation. The humoral and cellular immune responses to rPoAMA-1 were evaluated using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. rPoAMA-1-immunized mice produced specific antibodies as verified by immunoblotting. The rPoAMA-1 induced high antibody titers (1: 640,000), and had high avidity indexes (an average of 78.63% and 83.40%). The antibodies also recognized the native proteins, namely, crude antigen from blood stages. Cross-reactivity between rPocAMA-1 and rPowAMA-1 was observed. Moreover, rPoAMA-1 s induced interferon (IFN)-gamma-secreting cells in mice and increased lymphocyte proliferation response. Low genetic diversity was observed in poama-1 from the Jiangsu Province imported malaria cases, and further studies conclusively showed its strong immunogenicity. Significant cross-reactivity was found between rPocAMA-1 and rPowAMA-1, suggesting that a single PoAMA-1 antigen could be used to diagnose P. ovale curtisi or P. ovale wallikeri patient simultaneously. However, further evaluation needs to be carried out to validate the potential and limitations of PoAMA-1 as a candidate vaccine.
Collapse
|
12
|
Võ TC, Lê HG, Kang JM, Moe M, Naw H, Myint MK, Lee J, Sohn WM, Kim TS, Na BK. Genetic polymorphism and natural selection of circumsporozoite protein in Myanmar Plasmodium vivax. Malar J 2020; 19:303. [PMID: 32883283 PMCID: PMC7650223 DOI: 10.1186/s12936-020-03366-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022] Open
Abstract
Background Circumsporozoite surface protein (CSP) of malaria parasites has been recognized as one of the leading vaccine candidates. Clinical trials of vaccines for vivax malaria incorporating Plasmodium vivax CSP (PvCSP) have demonstrated their effectiveness in preventing malaria, at least in part. However, genetic diversity of pvcsp in the natural population remains a major concern. Methods A total of 171 blood samples collected from patients infected with Plasmodium vivax in Myanmar were analysed in this study. The pvcsp was amplified by polymerase chain reaction, followed by cloning and sequencing. Polymorphic characteristics and natural selection of pvcsp population in Myanmar were analysed using DNASTAR, MEGA6 and DnaSP programs. The polymorphic pattern and natural selection of publicly accessible global pvcsp sequences were also comparatively analysed. Results Myanmar pvcsp sequences were divided into two subtypes VK210 and VK247 comprising 143 and 28 sequences, respectively. The VK210 subtypes showed higher levels of genetic diversity and polymorphism than the VK247 subtypes. The N-terminal non-repeat region of pvcsp displayed limited genetic variations in the global population. Different patterns of octapeptide insertion (ANKKAEDA in VK210 and ANKKAGDA in VK247) and tetrapeptide repeat motif (GGNA) were identified in the C-terminal region of global pvcsp population. Meanwhile, the central repeat region (CRR) of Myanmar and global pvcsp, both in VK210 and VK247 variants, was highly polymorphic. The high level of genetic diversity in the CRR has been attributed to the different numbers, types and combinations of peptide repeat motifs (PRMs). Interestingly, 27 and 5 novel PRMs were found in Myanmar VK210 and VK247 variants, respectively. Conclusion Comparative analysis of the global pvcsp population suggests a complex genetic profile of pvcsp in the global population. These results widen understanding of the genetic make-up of pvcsp in the global P. vivax population and provide valuable information for the development of a vaccine based on PvCSP.
Collapse
Affiliation(s)
- Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Mya Moe
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Haung Naw
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Jinyoung Lee
- Department of Tropical Medicine, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
13
|
Lê HG, Thái TL, Kang JM, Lee J, Moe M, Võ TC, Naw H, Myint MK, Htun ZT, Kim TS, Shin HJ, Na BK. Genetic polymorphism of merozoite surface protein-3 in Myanmar Plasmodium falciparum field isolates. Malar J 2020; 19:184. [PMID: 32429986 PMCID: PMC7235555 DOI: 10.1186/s12936-020-03256-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum merozoite surface protein-3 (PfMSP-3) is a target of naturally acquired immunity against P. falciparum infection and is a promising vaccine candidate because of its critical role in the erythrocyte invasion of the parasite. Understanding the genetic diversity of pfmsp-3 is important for recognizing genetic nature and evolutionary aspect of the gene in the natural P. falciparum population and for designing an effective vaccine based on the antigen. Methods Blood samples collected from P. falciparum-infected patients in Naung Cho and Pyin Oo Lwin, Myanmar, in 2015 were used in this study. The pfmsp-3 was amplified by polymerase chain reaction, cloned, and sequenced. Genetic polymorphism and natural selection of Myanmar pfmsp-3 were analysed using the programs DNASTAR, MEGA6, and DnaSP 5.10.00. Genetic diversity and natural selection of the global pfmsp-3 were also comparatively analysed. Results Myanmar pfmsp-3 displayed 2 different alleles, 3D7 and K1. The 3D7 allelic type was predominant in the population, but genetic polymorphism was less diverse than for the K1 allelic type. Polymorphic characters in both allelic types were caused by amino acid substitutions, insertions, and deletions. Amino acid substitutions were mainly occurred at the alanine heptad repeat domains, whereas most insertions and deletions were found at the glutamate rich domain. Overall patterns of amino acid polymorphisms detected in Myanmar pfmsp-3 were similar in the global pfmsp-3 population, but novel amino acid changes were observed in Myanmar pfmsp-3 with low frequencies. Complicated patterns of natural selection and recombination events were predicted in the global pfmsp-3, which may act as major driving forces to maintain and generate genetic diversity of the global pfmsp-3 population. Conclusion Global pfmsp-3 revealed genetic polymorphisms, suggesting that the functional and structural consequences of the polymorphisms should be considered in designing a vaccine based on PfMSP-3. Further examination of genetic diversity of pfmsp-3 in the global P. falciparum population is necessary to gain in-depth insight for the population structure and evolutionary aspect of global pfmsp-3.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jinyoung Lee
- Department of Tropical Medicine, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Mya Moe
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Haung Naw
- Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Zaw Than Htun
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
14
|
Wang YN, Lin M, Liang XY, Chen JT, Xie DD, Wang YL, Ehapo CS, Eyi UM, Huang HY, Wu JL, Xu DY, Chen ZM, Cao YL, Chen HB. Natural selection and genetic diversity of domain I of Plasmodium falciparum apical membrane antigen-1 on Bioko Island. Malar J 2019; 18:317. [PMID: 31533747 PMCID: PMC6751645 DOI: 10.1186/s12936-019-2948-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/06/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a promising candidate antigen for a blood-stage malaria vaccine. However, antigenic variation and diversity of PfAMA-1 are still major problems to design a universal malaria vaccine based on this antigen, especially against domain I (DI). Detail understanding of the PfAMA-1 gene polymorphism can provide useful information on this potential vaccine component. Here, general characteristics of genetic structure and the effect of natural selection of DIs among Bioko P. falciparum isolates were analysed. METHODS 214 blood samples were collected from Bioko Island patients with P. falciparum malaria between 2011 and 2017. A fragment spanning DI of PfAMA-1 was amplified by nested polymerase chain reaction and sequenced. Polymorphic characteristics and the effect of natural selection were analysed using MEGA 5.0, DnaSP 6.0 and Popart programs. Genetic diversity in 576 global PfAMA-1 DIs were also analysed. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 program. RESULTS 131 different haplotypes of PfAMA-1 were identified in 214 Bioko Island P. falciparum isolates. Most amino acid changes identified on Bioko Island were found in C1L. 32 amino acid changes identified in PfAMA-1 sequences from Bioko Island were found in predicted RBC-binding sites, B cell epitopes or IUR regions. Overall patterns of amino acid changes of Bioko PfAMA-1 DIs were similar to those in global PfAMA-1 isolates. Differential amino acid substitution frequencies were observed for samples from different geographical regions. Eight new amino acid changes of Bioko island isolates were also identified and their three-dimensional protein structural consequences were predicted. Evidence for natural selection and recombination event were observed in global isolates. CONCLUSIONS Patterns of nucleotide diversity and amino acid polymorphisms of Bioko Island isolates were similar to those of global PfAMA-1 DIs. Balancing natural selection across DIs might play a major role in generating genetic diversity in global isolates. Most amino acid changes in DIs occurred in predicted B-cell epitopes. Novel sites mapped on a three dimensional structure of PfAMA-1 showed that these regions were located at the corner. These results may provide significant value in the design of a malaria vaccine based on this antigen.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, People's Republic of China
| | - Xue-Yan Liang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, People's Republic of China
| | - Jiang-Tao Chen
- Laboratory Medical Centre, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People's Republic of China
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong, People's Republic of China
| | - Dong-De Xie
- Laboratory Medical Centre, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People's Republic of China
| | - Yu-Ling Wang
- Laboratory Medical Centre, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People's Republic of China
| | - Carlos Salas Ehapo
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Urbano Monsuy Eyi
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Hui-Ying Huang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, People's Republic of China
| | - Jing-Li Wu
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Dan-Yan Xu
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Zhi-Mao Chen
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yi-Long Cao
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Lê HG, Kang JM, Jun H, Lee J, Thái TL, Myint MK, Aye KS, Sohn WM, Shin HJ, Kim TS, Na BK. Changing pattern of the genetic diversities of Plasmodium falciparum merozoite surface protein-1 and merozoite surface protein-2 in Myanmar isolates. Malar J 2019; 18:241. [PMID: 31311565 PMCID: PMC6636015 DOI: 10.1186/s12936-019-2879-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) and -2 (PfMSP-2) are major blood-stage vaccine candidate antigens. Understanding the genetic diversity of the genes, pfmsp-1 and pfmsp-2, is important for recognizing the genetic structure of P. falciparum, and the development of an effective vaccine based on the antigens. In this study, the genetic diversities of pfmsp-1 and pfmsp-2 in the Myanmar P. falciparum were analysed. METHODS The pfmsp-1 block 2 and pfmsp-2 block 3 regions were amplified by polymerase chain reaction from blood samples collected from Myanmar patients who were infected with P. falciparum in 2013-2015. The amplified gene fragments were cloned into a T&A vector, and sequenced. Sequence analysis of Myanmar pfmsp-1 block 2 and pfmsp-2 block 3 was performed to identify the genetic diversity of the regions. The temporal genetic changes of both pfmsp-1 and pfmsp-2 in the Myanmar P. falciparum population, as well as the polymorphic diversity in the publicly available global pfmsp-1 and pfmsp-2, were also comparatively analysed. RESULTS High levels of genetic diversity of pfmsp-1 and pfmsp-2 were observed in the Myanmar P. falciparum isolates. Twenty-eight different alleles of pfmsp-1 (8 for K1 type, 14 for MAD20 type, and 6 for RO33 type) and 59 distinct alleles of pfmsp-2 (18 for FC27, and 41 for 3D7 type) were identified in the Myanmar P. falciparum population in amino acid level. Comparative analyses of the genetic diversity of the Myanmar pfmsp-1 and pfmsp-2 alleles in the recent (2013-2015) and past (2004-2006) Myanmar P. falciparum populations indicated the dynamic genetic expansion of the pfmsp-1 and pfmsp-2 in recent years, suggesting that a high level of genetic differentiation and recombination of the two genes may be maintained. Population genetic structure analysis of the global pfmsp-1 and pfmsp-2 also suggested that a high level of genetic diversity of the two genes was found in the global P. falciparum population. CONCLUSION Despite the recent remarkable decline of malaria cases, the Myanmar P. falciparum population still remains of sufficient size to allow the generation and maintenance of genetic diversity. The high level of genetic diversity of pfmsp-1 and pfmsp-2 in the global P. falciparum population emphasizes the necessity for continuous monitoring of the genetic diversity of the genes for better understanding of the genetic make-up and evolutionary aspect of the genes in the global P. falciparum population.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hojong Jun
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Jinyoung Lee
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Khin Saw Aye
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
16
|
Reverse immunodynamics: a new method for identifying targets of protective immunity. Sci Rep 2019; 9:2164. [PMID: 30770839 PMCID: PMC6377634 DOI: 10.1038/s41598-018-37288-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Despite a dramatic increase in our ability to catalogue variation among pathogen genomes, we have made far fewer advances in using this information to identify targets of protective immunity. Epidemiological models predict that strong immune selection can cause antigenic variants to structure into genetically discordant sets of antigenic types (e.g. serotypes). A corollary of this theory is that targets of immunity may be identified by searching for non-overlapping associations of amino acids among co-circulating antigenic variants. We propose a novel population genetics methodology that combines such predictions with phylogenetic analyses to identify genetic loci (epitopes) under strong immune selection. We apply this concept to the AMA-1 protein of the malaria parasite Plasmodium falciparum and find evidence of epitopes among certain regions of low variability which could render them ideal vaccine candidates. The proposed method can be applied to a myriad of multi-strain pathogens for which vast amounts of genetic data has been collected in recent years.
Collapse
|
17
|
Afridi SG, Irfan M, Ahmad H, Aslam M, Nawaz M, Ilyas M, Khan A. Population genetic structure of domain I of apical membrane antigen-1 in Plasmodium falciparum isolates from Hazara division of Pakistan. Malar J 2018; 17:389. [PMID: 30367656 PMCID: PMC6203999 DOI: 10.1186/s12936-018-2539-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background The Plasmodium falciparum apical membrane antigen-1 (PfAMA1) is considered as an ideal vaccine candidate for malaria control due to its high level of immunogenicity and essential role in parasite survival. Among the three domains of PfAMA1 protein, hyper-variable region (HVR) of domain I is the most immunogenic. The present study was conducted to evaluate the extent of genetic diversity across HVR domain I of the pfama1 gene in P. falciparum isolates from Hazara division of Pakistan. Methods The HVR domain I of the pfama1 was amplified and sequenced from 20 P. falciparum positive cases from Hazara division of Pakistan. The sequences were analysed in context of global population data of P. falciparum from nine malaria endemic countries. The DNA sequence reads quality assessment, reads assembling, sequences alignment/phylogenetic and population genetic analyses were performed using Staden, Lasergene v. 7.1, MEGA7 and DnaSP v.5 software packages respectively. Results Total 14 mutations were found in Pakistani isolates with 12 parsimony informative sites. During comparison with global isolates, a novel non-synonymous mutation (Y240F) was found specifically in a single Pakistani sample with 5% frequency. The less number of mutations, haplotypes, recombination and low pairwise nucleotide differences revealed tightly linked uniform genetic structure with low genetic diversity at HVR domain I of pfama1 among P. falciparum isolates from Hazara region of Pakistan. This uniform genetic structure may be shaped across Pakistani P. falciparum isolates by bottleneck or natural selection events. Conclusion The Pakistani P. falciparum isolates were found to maintain a distinct genetic pattern at HVR pfama1 with some extent of genetic relationship with geographically close Myanmar and Indian samples. However, the exact pattern of gene flow and demographic events may infer from whole genome sequence data with large sample size of P. falciparum collected from broad area of Pakistan. Electronic supplementary material The online version of this article (10.1186/s12936-018-2539-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Muhammad Irfan
- Center for Human Genetics, Hazara University, Mansehra, 21310, Pakistan
| | - Habib Ahmad
- Center for Human Genetics, Hazara University, Mansehra, 21310, Pakistan.,Center for OMIC Studies, Islamia College University, Peshawar, 25000, Pakistan
| | - Muneeba Aslam
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Mehwish Nawaz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Muhammad Ilyas
- Center for Human Genetics, Hazara University, Mansehra, 21310, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| |
Collapse
|
18
|
Guo J, Li M, Sun Y, Yu L, He P, Nie Z, Zhan X, Zhao Y, Luo X, Wang S, Aoyang S, Liu Q, Huang C, He L, Zhao J. Characterization of a novel secretory spherical body protein in Babesia orientalis and Babesia orientalis-infected erythrocytes. Parasit Vectors 2018; 11:433. [PMID: 30045776 PMCID: PMC6060518 DOI: 10.1186/s13071-018-3018-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022] Open
Abstract
Background The spherical body, a membrane bound organelle localized in the apical organelle complex, is unique to Babesia and Theileria spp. The spherical body proteins (SBPs) secreted by spherical bodies include SBP1, SBP2, SBP3 and SBP4. Up to now, only SBP3 has been characterized in Babesia orientalis. Methods The BoSBP4 gene was amplified from cDNA and gDNA and cloned into the pGEX-6P-1 vector by homologous recombination, sequenced and analyzed by bioinformatics tools. The amino acid (aa) sequence of BoSBP4 was compared with that of Babesia bovis and Babesia bigemina as well as SBP3 of B. orientalis. The immunoreactivity was evaluated by incubating recombinant BoSBP4 (rBoSBP4) with the serum of B. orientalis-infected water buffalo. The native form of BoSBP4 was identified by incubating lysate of B. orientalis-infected water buffalo erythrocytes with the anti-rBoSBP4 mouse serum. The cellular localization of BoSBP4 was determined by indirect immunofluorescence assay. Results The full length of the BoSBP4 gene was estimated to be 945 bp without introns, encoding a 314 aa polypeptide with a predicted molecular weight of 37 kDa. The truncated recombinant protein was expressed from 70 to 945 bp as a GST fusion protein with a practical molecular weight of 70 kDa. BoSBP4 shared a 40% and 30% identity with B. bovis and B. bigemina, respectively. Furthermore, it was 31% identical to SBP3 of B. orientalis. BoSBP4 was identified in the lysate of B. orientalis-infected water buffalo erythrocytes with a molecular weight of 37 kDa, corresponding to the expected molecular mass of BoSBP4. The result of rBoSBP4 with positive serum revealed that BoSBP4 can elicit an immune response to B. orientalis-infected water buffalo. The cellular localization of BoSBP4 was detected to be adjacent to the merozoite nucleus in the intracellular phase, followed by the diffusion of the fluorescence of BoSBP4 into the cytoplasm of B. orientalis-infected erythrocytes as puncta-like specks and a gradual increase of the fluorescence. Conclusions In this study, SBP4 in B. orientalis was characterized for the first time. It may play a key role in interaction with the host cell by being secreted into the cytoplasm of the B. orientalis-infected erythrocytes to facilitate parasite growth and reproduction.
Collapse
Affiliation(s)
- Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yali Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Pei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xueyan Zhan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yangnan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xiaoying Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Siqi Aoyang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Cuiqin Huang
- College of Life Science, Longyan University & Fujian, Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| |
Collapse
|
19
|
Lumkul L, Sawaswong V, Simpalipan P, Kaewthamasorn M, Harnyuttanakorn P, Pattaradilokrat S. Unraveling Haplotype Diversity of the Apical Membrane Antigen-1 Gene in Plasmodium falciparum Populations in Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:153-165. [PMID: 29742870 PMCID: PMC5976018 DOI: 10.3347/kjp.2018.56.2.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/14/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
Abstract
Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pairwise population differentiation (Fst indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the Fst indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand’s borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS.
Collapse
Affiliation(s)
- Lalita Lumkul
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phumin Simpalipan
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Sittiporn Pattaradilokrat
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Veterinary Parasitology Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|